Welcome



Welcome to the Computer Vision Group at RWTH Aachen University!

The Computer Vision group has been established at RWTH Aachen University in context with the Cluster of Excellence "UMIC - Ultra High-Speed Mobile Information and Communication" and is associated with the Chair Computer Sciences 8 - Computer Graphics, Computer Vision, and Multimedia. The group focuses on computer vision applications for mobile devices and robotic or automotive platforms. Our main research areas are visual object recognition, tracking, self-localization, 3D reconstruction, and in particular combinations between those topics.

We offer lectures and seminars about computer vision and machine learning.

You can browse through all our publications and the projects we are working on.

We have two papers accepted at the IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.

Jan. 4, 2017

We have a paper on Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes at IROS 2016

Aug. 19, 2016

We have three papers accepted at the British Machine Vision Conference (BMVC) 2016.

Aug. 19, 2016

We have a paper on Joint Object Pose Estimation and Shape Reconstruction in Urban Street Scenes Using 3D Shape Priors at GCPR 2016

June 19, 2016

Semantic Segmentation dataset released

We just uploaded our dataset used to train the semantic classifier in our ICRA 2016 paper on tracking of generic objects. You can find the dataset here.

May 23, 2016

Recent Publications

SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction

IEEE Winter Conference on Applications of Computer Vision (WACV'17), to appear.

Inferring the pose and shape of vehicles in 3D from a movable platform still remains a challenging task due to the projective sensing principle of cameras, difficult surface properties, e.g. reflections or transparency, and illumination changes between images. In this paper, we propose to use 3D shape and motion priors to regularize the estimation of the trajectory and the shape of vehicles in sequences of stereo images. We represent shapes by 3D signed distance functions and embed them in a low-dimensional manifold. Our optimization method allows for imposing a common shape across all image observations along an object track. We employ a motion model to regularize the trajectory to plausible object motions. We evaluate our method on the KITTI dataset and show state-of-the-art results in terms of shape reconstruction and pose estimation accuracy.

 

3D Semantic Segmentation of Modular Furniture using rjMCMC

IEEE Winter Conference on Applications of Computer Vision (WACV'17).

In this paper we propose a novel approach to identify and label the structural elements of furniture e.g. wardrobes, cabinets etc. Given a furniture item, the subdivision into its structural components like doors, drawers and shelves is difficult as the number of components and their spatial arrangements varies severely. Furthermore, structural elements are primarily distinguished by their function rather than by unique color or texture based appearance features. It is therefore difficult to classify them, even if their correct spatial extent were known. In our approach we jointly estimate the number of functional units, their spatial structure, and their corresponding labels by using reversible jump MCMC (rjMCMC), a method well suited for optimization on spaces of varying dimensions (the number of structural elements). Optionally, our system permits to invoke depth information e.g. from RGB-D cameras, which are already frequently mounted on mobile robot platforms. We show a considerable improvement over a baseline method even without using depth data, and an additional performance gain when depth input is enabled.

 

Incremental Object Discovery in Time-Varying Image Collections

IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16)

In this paper, we address the problem of object discovery in time-varying, large-scale image collections. A core part of our approach is a novel Limited Horizon Minimum Spanning Tree (LH-MST) structure that closely approximates the Minimum Spanning Tree at a small fraction of the latter’s computational cost. Our proposed tree structure can be created in a local neighborhood of the matching graph during image retrieval and can be efficiently updated whenever the image database is extended. We show how the LH-MST can be used within both single-link hierarchical agglomerative clustering and the Iconoid Shift framework for object discovery in image collections, resulting in significant efficiency gains and making both approaches capable of incremental clustering with online updates. We evaluate our approach on a dataset of 500k images from the city of Paris and compare its results to the batch version of both clustering algorithms.

Disclaimer Home Visual Computing institute RWTH Aachen University