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Abstract. An important part of large-scale city reconstruction systems is an im-
age clustering algorithm that divides a set of images into groups that should cover
only one building each. Those groups then serve as input for structure from mo-
tion systems. A variety of approaches for this mining step have been proposed
recently, but there is a lack of comparative evaluations and realistic benchmarks.
In this work, we want to fill this gap by comparing two state-of-the-art landmark
mining algorithms: spectral clustering and min-hash. Furthermore, we introduce
a new large-scale dataset for the evaluation of landmark mining algorithms con-
sisting of 500k images from the inner city of Paris. We evaluate both algorithms
on the well-known Oxford dataset and our Paris dataset and give a detailed com-
parison of the clustering quality and computation time of the algorithms.

1 Introduction

Recently, significant advances in large-scale city reconstruction have been made. Struc-
ture from motion (SfM) is used as a basic tool for reconstructing environments as point
clouds [1–3], dense 3D representations [4, 5], or for photo browsing applications [6]. A
prerequisite for SfM is a high-quality set of photos of the object to be reconstructed. A
simple and cheap approach for obtaining such image sets is to collect them from com-
munity photo sharing sites However, this typically results in unordered photos of several
different buildings with a significant fraction of unrelated photos. Therefore, there is a
need for efficient image mining algorithms that group photos on a building or view level
and remove photos that do not show buildings. Such photo clustering approaches are
also a prerequisite for other interesting applications such as photo auto-annotation [7,
8], landmark recognition [2] or automatic landmark detection [9, 10].

Despite their importance, there is not yet a suitable benchmark for evaluating and
comparing large-scale landmark mining algorithms. In this paper we take a first step
in this direction by performing an evaluation of two state-of-the-art approaches: The
first [11] is a top-down method that builds the complete pairwise matching graph of
the image collection and segments it using spectral clustering. The second [12, 13] is a
fast and approximate bottom-up approach that finds cluster seeds using the (geometric)
min-hash image hashing algorithm. The seeds are then grown to clusters using query
expansion [14].
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In their original publications, both clustering approaches were evaluated on the Ox-
ford buildings dataset which was originally created for evaluating image retrieval [15].
The dataset was constructed by collecting images of touristic sites by querying Flickr
with the site labels. This results in a clear segmentation into groups that show a par-
ticular building, making the clustering task very simple. We use this dataset in our
evaluation for consistency, but show that due to its structure the results are not very
meaningful.

An important question not fully answered in the original publications [13, 11] is
how the performance of these approaches translates to a more unconstrained setting,
i.e. unstructured photos of an entire city. In this paper, we investigate this question by
applying spectral clustering and geometric min-hash to a dataset of 500k geotagged im-
ages from the inner city of Paris. We furthermore present a ground truth for the evalua-
tion of landmark mining systems on this dataset1. We closely examine the performance
tradeoff between the two methods and propose a combination of them that can help
eliminate the shortcomings of each approach. The tradeoff between computation time
and clustering recall can then be adjusted using a single parameter.

Related Work. In the following, we describe the most closely related approaches from
the literature in more detail. Agarwal et al. [1] present a large-scale SfM system with
a highly distributed clustering pipeline. Effectively, the major landmarks of Rome are
discovered and reconstructed from 150,000 images in 21 hours (using 495 compute
nodes) of which 13 hours are spent in the image matching stage. For the clustering, a
full tf · idf matching is performed and the top 10 matches for each image are verified
using epipolar geometry. The resulting clusters are then merged and extended using
query expansion to produce the largest possible connected components. Opposed to
this, Strecha et al. [16] propose to reconstruct cities at a building level and to then join
the partial reconstructions into a city-scale model using meta data. A prerequisite for
this is a clustering on the building level. Gammeter et al. [7] build a system for auto-
matic tagging of landmarks in touristic photos. Retrieval is performed by overlaying a
square grid of 200×200 m cells over entire cities. By performing matching only within
these cells, scalable and distributed preprocessing is possible. Meta information such
as tags are used as a cue to cluster photos and to distinguish between photos of events
and photos of landmark buildings. An object-driven pruning of the inverted index is
performed in order to speed up the retrieval process. Finally, the discovered clusters are
associated with Wikipedia articles, which serves as an additional verification. Zhang et
al. [17] build a web-scale image-based landmark search engine by compiling a list of
landmarks from geotagged photos and online travel guides and then collecting images
of these landmarks from community photo collections and image search engines. In
settings where meta information is not available, approaches based only on image in-
formation are necessary. Philbin et al. [11] present an exhaustive method for landmark
detection. A full pairwise matching graph is constructed and segmented using spec-
tral clustering. The approach is discussed in detail in Section 2. Because this approach
requires a complete pairwise matching including spatial verification of the image col-
lection it does not scale well to larger datasets. Chum et al. [13] present a faster but

1 Both the dataset and the ground truth are available from
http://www.mmp.rwth-aachen.de/data/paris-dataset.
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Fig. 1: The two different landmark discovery pipelines. The dashed lines denote the spectral clus-
tering add-on that we propose for improving clustering precision.

approximate approach using a randomized hashing scheme that allows for constant-
time discovery of near duplicates in web-scale databases. The authors propose to use
the hash collisions as “cluster seeds” from which to start a graph discovery using query
expansion [14].

2 Spectral Clustering on the Matching Graph
This section outlines the steps for clustering an image collection using spectral cluster-
ing, as proposed in [11]. Fig. 1a gives an overview of the pipeline.

Image representation. A local feature representation of the images is built by first
extracting scale-invariant Hessian affine regions [18] and SIFT descriptors [19]. The
collected SIFT features are quantized into a codebook of 1M entries using k-means. To
make this step computationally feasible, an approximate nearest neighbor (NN) search
based on randomized kd-trees [15] is employed. The visual vocabulary is constructed on
a smaller subset of the data with low-precision but a fast NN search. A higher precision
NN search is used when matching features against the visual vocabulary.

Efficient image matching. The final image representation comprises the bag of vi-
sual words, feature positions, and the affine regions from the detector. Image retrieval
is conducted in a similar fashion as text retrieval: query matches are retrieved using an
inverted file structure that maps every visual word to all images it occurs in. The results
are ranked using the cosine distance of their “term frequency · inverse document fre-
quency” (tf · idf ) vectors. This results in a shortlist of k candidate matches, which are
then geometrically verified by fitting a homography using SCRAMSAC [20]. The im-
ages for which the estimated homographies have sufficient support, are re-ranked above
all other images [15] by adding 1.0 to the tf · idf score. This yields the final ranking
score. The matching graph is constructed efficiently by querying the inverted file and
inserting an edge for each match that exceeds a certain matching score threshold.

Spectral clustering. In general, the connected components of the resulting matching
graph correspond to a rough under-segmentation of the landmarks. Following [11] we
first over-segment the connected components to get basic image clusters which can then
be merged again with sufficient spatial verification. To this end, we use the spectral
clustering algorithm of [21]. For each connected component, the optimal number of
clusters is found by optimizing the Newman Q measure [22].
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Re-merging clusters. Philbin et al. [11] employ a heuristic to determine which spectral
clusters show the same building and should therefore be merged: Each cluster is repre-
sented by its member image with the highest valence in the matching graph. The image
boundaries are then projected using the homographies of the edges along the shortest
paths between the representative images. This yields the length of the shortest paths and
the size of the overlapping area between representative images. Thresholds for the path
length and overlap influence precision and recall as we will show in Sec. 5.2.

3 min-hash Cluster Discovery

Min-hash [12, 23, 13] is a technique from text retrieval [24] used for efficiently discover-
ing pairs of similar images in large image collections. The special property of min-hash
is that the probability of an image pair being discovered increases with its similarity.
This makes min-hash suitable as a near-duplicate image detector [25]. Chum et al. [12]
demonstrate that the discovered image pairs can also serve as seeds for image cluster-
ing. Clusters are discovered in a growing step starting with the cluster seeds. This way,
instead of building a complete matching graph, the min-hash approach reduces com-
putational time by only exploring certain connected components. An overview of the
pipeline is given in Fig. 1b. The stages in dashed boxes are an extension that we propose
later in this section.

Hashing Images. A min-hash is a pseudo-random number generated from the visual
words of an image. Let V be a visual word codebook. Given a random permutation of
the numbers {1, . . . , |V |}, the min-hash of an image is the first of the image’s visual
words occurring in the permutation. Typically, about 500-1000 random permutations
are pre-generated and used for computing a set of min-hashes for each image. The
probability of two images having the same min-hash equals the set overlap of their
visual words [25]. To decrease the number of random collisions, several min-hashes are
summarized into s-tuples called sketches (s = 3, . . . , 5). An image pair is said to cause
a collision if all min-hashes in a sketch are identical.

Detecting Collisions. To efficiently find min-hash collisions, hash-tables are created,
storing for each min-hash the list of images with this hash. Then, sketch collisions
are the intersections of the s sets of colliding images. This hashing procedure enables
constant-time collision detection [12]. The price to pay for this efficiency is a very low
recall, particularly for less similar, but still relevant, image matches.

Geometric min-hash. In geometric min-hash [13], sketches are created from features
in a spatial neighborhood. This is done by selecting the first min-hash in a sketch ran-
domly and then restricting the search for the remaining min-hashes to the affine region
around the first feature. With this extension, a sketch collisions means that the colliding
images not only have the colliding visual words in common, but also that the corre-
sponding features come from the same image region. Because of this more distinctive
definition of a sketch, Chum et al. report [13] an increase in precision and recall over
standard min-hash even with the sketch size reduced to s = 2 and the number of min-
hashes per image reduced to k = 60. Therefore, we only use geometric min-hash in our
evaluation.
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Table 1: Statistics of the datasets, their corresponding ground truths and matching graphs.

Oxford Paris

# Images 5,063 501,356
# Features 16,334,970 1,564,381,034

# GT Images 568 94,303
# GT Clusters 11 79

(a) Statistics of Oxford and Paris datasets. GT
denotes ground truth.

Oxford Paris

# Nodes 5052 501,356
# Edges 11,957 11,356,090

avg. valence 4.7 45.3
max valence 83 4,100

(b) Statistics of the complete matching
graphs.

Cluster growing. Given a set of cluster seeds, clusters are grown by recursively ap-
plying query expansion [14]. For each cluster seed discovered by min-hash, codebook-
based image retrieval is performed (Sec. 2). For each match above a ranking score
threshold, a recursive retrieval is performed until no new images are found. This pro-
cess can be thought of as finding connected components in the matching graph.

Extension: Spectral clustering. The cluster growing process aims at maximizing re-
call by growing single-link components in the matching graph. Multiple landmarks can
thus potentially end up in the same cluster (see Fig. 2b). We thus propose to segment
the grown components with spectral clustering and subsequent merging (Sec. 2).

4 Experimental Setup

Datasets. We use two different datasets in our evaluation (Table 1a). The well-known
Oxford Buildings dataset consists of selected photos depicting eleven distinct landmark
buildings in Oxford that were retrieved from Flickr using keyword searches. With 5,063
images and well-separated objects, it is however quite limited. We use the dataset for
the sake of comparison but show that the results are not very expressive. Following the
approach of Philbin et al. [11], we build a clustering ground truth from the provided
image retrieval ground truth by combining the sets of “good” and “ok” relevant images
for each query.

Due to the lack of a large-scale landmark mining database with a “natural” distri-
bution of tourist photos, we built a larger corpus of photos downloaded from Flickr. We
deliberately neither queried particular landmarks nor filtered the query results, so the
resulting dataset is closer to real-world conditions. We downloaded all geotagged pho-
tos from a bounding box around the inner city of Paris from Flickr and Panoramio and
rescaled them to 1024×768 pixels. The Paris corpus therefore contains noise like heav-
ily post-processed images, images of parties, pets, etc. that do not depict landmarks as
well as many duplicates and near-duplicates, which we filtered out in order not to bias
our evaluation. To establish a ground truth we first over-segmented the complete match-
ing graph using spectral clustering on the connected components (Sec. 2). Inspection
showed that the resulting clusters had a high purity with only a negligibly low number
of outliers. We then manually joined clusters which showed the same buildings from
the same view. The ground truth consists of 79 clustering covering 94k images (Tab.
1a).
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(a) Density of the matching graph. Color en-
codes node valence (log scale).

(b) Connected components of the matching
graph larger than 20.

Fig. 2: Distribution of downloaded photos in Paris.

Evaluation Measures. We adopt the measures precision and recall from classification
evaluations. Let G denote the ground truth and C a clustering. Then NC and NG denote
the total number of images covered by C and G, respectively. To measure how well an
algorithm groups similar photos, we use the well-known concept of purity:

P =
1

NC

∑
c∈C

max
g∈G
{|c ∩ g|} (1)

Note that this formulation allows more than one cluster in C to be “assigned” to the
same ground truth cluster. This measure is insensitive with respect to over-segmentation
and missing borderline cases.

We define recall similar to [12]: For each ground-truth cluster g, we find its best
representative c in the clustering C and sum up the fraction of member images actually
represented by c.

R =
1

NG

∑
g∈G

max
c∈C
{|c ∩ g|} (2)

The Mean Cluster Recall allows multiple ground-truth clusters to be assigned to the
same cluster c, so assigning all photos to the same cluster would optimize recall. Thus,
recall is insensitive with respect to under-segmentation and including borderline cases.

5 Results
We now evaluate spectral clustering and min-hash on the Oxford Buildings and Paris
datasets. In particular, we show what level of performance spectral clustering can achieve
and how the performance of min-hash compares to this. Finally, we give a detailed anal-
ysis of the computation time of both algorithms.

5.1 Matching graph
The first step of the spectral clustering pipeline is to build a matching graph (Section 2).
Table 1b shows statistics of the graphs for the two datasets. Interestingly, the average



An Evaluation of Two Landmark Building Discovery Algorithms 7

Table 2: Statistics of the connected components. The first column gives the number of connected
components with a particular size, and the second column gives the total number of images in
these components. Connected components of size 1 are images for which no match was found.

CCs images

total 3,297 5,052
= 1 2,917 2,917
≥ 2 380 2,135
≥ 20 11 929
≥ 100 2 518
≥ 500 0 0

(a) Oxford

CCs images

total 303,522 501,356
= 1 277,490 277,490
≥ 2 26,032 223,866
≥ 20 397 150,367
≥ 100 63 138,122
≥ 500 19 129,961

(b) Paris

valence of the Paris dataset is an order of magnitude higher than the average valence
of the Oxford dataset. This is due to the extreme density of tourist photos at the most
popular public places. The photo with the highest valence (4,100) is a frontal shot of
the facade of Notre Dame. Fig. 2a shows the distribution of valences in the matching
graph of Paris and Figure 2b shows the connected components. The largest connected
component (blue, 58,652 images) spans an area ranging from Notre Dame to the Lou-
vre. This shows that connected components can give a good initial grouping [11], but
further segmentation is required for a building-level clustering. In contrast, the largest
connected component on the Oxford dataset is All Souls College (406 images). Table 2
gives statistics of the connected component sizes.

5.2 Spectral Clustering
For each connected component we perform a spectral clustering as described in Section
2. This results in 3,881 clusters for the Paris dataset and 410 clusters for the Oxford
dataset. Since spectral clustering results in an over-segmentation (images of the same
building are split up into several clusters), a subsequent homography-based merging
step is performed [11]. We found that this step requires some tuning to produce the
desired results, since the error in the estimated homographies increases when accumu-
lating the transformations along long paths. Limiting the path length is an effective way
to restrict this effect. Furthermore, it is necessary to define a lower bound on the overlap
between the two cluster centers. A too low value results in different views being merged.
A too high value limits the permitted degree of viewpoint change too much. Fig. 3
shows the effect of both parameters on precision and recall. On the Oxford dataset,
when increasing the overlap threshold, we see an increase in recall while maintaining
100% precision, which means that only correct join operations are performed. From a
certain point on, only wrong merges are performed, resulting in a decrease of precision
without any change in recall. Due to the simplicity of the Oxford task we cannot draw
any conclusions regarding the merging parameters. On the Paris dataset, the tradeoff is
more clearly visible: A larger path length leads to a loss in precision, since clusters are
incorrectly joined. Too short paths cause us to miss cluster pairs that should be joined,
resulting in low recall. The best tradeoff is a path length of 5. Similarly, a too high over-
lap threshold will cut off paths between valid matches, while a too low threshold will
allow paths between barely overlapping images.
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Fig. 3: Cluster merging performance when varying the overlap parameter from 0% to 100%. The
colored lines show results for different path length settings.

The merging step can still perform false merges in some problematic cases typical
for internet photo collections: For example, time-stamps in photos or embedded sig-
natures of the photographer can create false-positive edges in the matching graph that
serve as “tunnels” between normally unconnected landmarks. Here, further heuristics
would be necessary to discard such matches, which is not done here.

5.3 Geometric min-hash
Using spectral clustering as a baseline, we now evaluate the performance of min-hash.
Min-hash generates suitable cluster seeds i.e. entry points into the image collection
[12]. The reason is that many similar images are made at popular places, and thus the
probability for a seed is high at landmark buildings. To show this, we compare the
clusters discovered starting from min-hash seeds to clusters discovered starting from
randomly drawn images. We then apply the spectral clustering and merging steps [11]
to break down the connected components to building-level clusters and evaluate the
resulting clustering.

Seed generation. The parameters of the seed generation procedure are the sketch size
s and the number of sketches k. Fig. 4 shows the influence of these parameters (dashed
lines). The more sketches are used, the more collisions occur and the more seeds are
generated. For larger sketch sizes the algorithm becomes more selective and returns
only very similar images, which significantly decreases the number of seeds.

Duplicate removal. Since by design, the probability for min-hash collisions is pro-
portional to the similarity (visual word set overlap) of the colliding images, duplicate
images are returned first and introduce arbitrary seeds which have a lower probability
of belonging to a landmark cluster. Therefore, it is necessary to filter the duplicates
from the seeds. Chum et al. [12] manually removed duplicates for their experiments.
We chose to perform duplicate detection using the tf · idf distance of a seed image pair.
By visual inspection of min-hash seeds, we determined a tf · idf threshold of 0.3. Seeds
with a higher tf · idf score are considered duplicates and are removed. Figure 4 (solid
lines) shows the effect on the number of seeds for different settings of s. For s = 3,
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Fig. 4: Number of cluster seed images for
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Fig. 5: Min-hash and spectral clustering re-
call and precision for varying overlap thresh-
old. The path length is set to 5.

Fig. 6: Distribution of min-hash seeds (drawn as yellow dots) for k=60 and s=2 (left) and the
distribution when drawing the same number images (31,946) randomly (right).

most of the returned seeds are duplicates, and the number of seeds detected increases
only very slowly. We thus use a setting of s = 2 for our following experiments.

min-hash vs. random. Fig. 6 (left) shows the distribution of the min-hash seeds for
k = 60 and s = 2 (31,946 images), and Fig. 6 (right) shows the distribution when
the same number of images is selected randomly. The random images are much more
scattered over the city while the images selected by min-hash concentrate around the
landmarks, which is the desired behaviour for a seed selection algorithm.

For a quantitative comparison, we use the following procedure: For each setting of
s, we consider the number of seed images Ns that min-hash produces and randomly
draw Ns images from the dataset. This is done 10 times, for each value of s. In our
evaluation, we give the average results for the 10 sets of images. We only perform this
comparison on the Paris dataset.

Cluster growing. Starting from the seeds, we grow clusters by query expansion (Sec.
3). Each resulting cluster corresponds to a connected component of the matching graph.
Table 3 shows the results of the cluster growing process. The number of discovered
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Table 3: Results of the cluster growing process starting from min-hash seeds and random images.
On the Paris dataset, the ground truth consists of the 79 largest landmark clusters. CC and GT
denote connected component and ground truth respectively. The sketch size is s = 2.

k # seeds # clusters # images covered GT covered

1 8 3 4 38.98%
2 12 4 40 52.56%
3 16 6 43 66.31%
5 36 8 54 66.31%

10 55 13 71 75.84%
30 167 26 108 80.07%

120 422 63 367 84.48%

(a) Oxford

min-hash random (avg. of 10)

k # seeds # CCs avg. CC size GT covered # CCs avg. CC size GT covered

1 784 58 2,158.2 81.87% 590.0 222.6 87.11%
2 1,883 102 1,268.9 90.39% 1,407.5 97.6 94.53%
3 2,570 141 941.1 93.38% 1,887.9 74.5 96.70%
5 4,437 220 620.5 94.53% 3,236.1 44.9 98.63%

10 8,753 360 389.3 97.56% 6,292.2 24.5 99.60%
30 20,453 915 161.6 99.56% 14,463.7 11.8 99.98%

120 51,855 3,022 52.8 100.00% 35,607.5 5.7 100.00%

(b) Paris

clusters is roughly proportional to the number of seeds. However, we find less new
images when increasing the number of sketches k, because the largest clusters have the
highest probability of being found [12]. On the Paris dataset, the 79 largest clusters in
the dataset (which make up the ground truth) are almost fully discovered already for
k = 10.

Comparing min-hash to a random selection of seed images shows that roughly ten
times the number of connected components are found, but their average size is roughly
ten times smaller. This shows that randomly selected images more likely belong to small
connected components than images selected using min-hash.

Spectral clustering of discovered connected components. Even very low settings of
k produce impressive recall but the clustering lacks precision, because the clusters dis-
covered using query expansion become too large and thus cover multiple landmarks. To
break up the clusters to a building level, we apply spectral clustering and homography-
based cluster merging (Sec. 2) on top of the min-hash pipeline [12]. Table 4 shows the
effect of this additional step on the results. Since the results vary only slightly for differ-
ent min-hash sketch counts, we only give mean and standard deviation values computed
using settings of k from the range [1, 120]. The additional steps strongly improve the
clustering precision while only slightly decreasing recall. Fig. 5 shows a comparison of
the precision-recall curves of the two approaches when varying the minimum overlap
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Table 4: Summary of precision/recall of min-hash and subsequent cluster growing before and
after spectral clustering on the Paris dataset. Tolerance values are given in standard deviation.

Precision Recall

w/o spectral clustering 50.1% ± 0.04 97.0% ± 0.07
w/ spectral clustering 85.7% ± 7.4 83.9% ± 9.9

parameter of the merging step. The recall of min-hash increases with a growing number
of sketches and almost reaches the recall of spectral clustering at 120 sketches. Note that
the precision of min-hash does not change much when varying the number of sketches.

To summarize, the extended min-hash pipeline achieves performance comparable
to the spectral clustering pipeline for high values of k. However, the largest landmark
clusters are already discovered for low settings of k. Reducing the number of sketches
k trades off recall for computational speed. In the following section, we will investigate
this tradeoff more closely.

5.4 Runtime Analysis
Pairwise matching. The first step of the spectral clustering pipeline the pairwise image
matching (Sec. 2). The runtime of this step consists of the inverted-file matching and
the RANSAC verification of the top k matches. Performing inverted file lookup for such
a database size has an effective runtime that is quadratic in the number of images2:

Tif = (N · (N − 1))/2 · cm . (3)

Here, N is the number of database images and cm is a constant for the matching time of
one image pair. In our measurements, cm ≈ 5.75·10−6 seconds. The time complexity of
the RANSAC verification is linear in the number of images and depends on the number
l of matches that we verify for a query.

Tv = N · l · cv (4)

Here, cv denotes the time required for the spatial verification of one image pair. It can
approximately be considered a constant. We measured the verification time to be on
average cv = 0.0005 seconds. The number of top l matches trades off missing potential
matches for computational time. Following [15], we choose k = 800 for the Oxford
dataset. For the Paris dataset we use l = 15, 000 following considerations of worst-case
match counts. Table 5a gives the number of operations and an approximate computation
time for both databases using our implementation.

Cluster Growing. Cluster growing (Sec. 3) is performed using query expansion, i.e.
by querying the inverted index with the seed image and using each verified result as
another query. This process is iterated until no new results are found and the whole
connected component is explored. Thus, the number Nc of queries for exploring a con-
nected component corresponds to its size. The runtime for this can be written as:

Tg(c) = Nc · (N · cm + l · cv) . (5)

2 Assuming N images, f matching features per image and a codebook with C entries, the ex-
pected number of inverted file entries processed per query is (without stop word removal) N·f2

C
.
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Table 5: (a) Number of matching operations and runtime estimates of the pairwise matching for
both datasets. (b) Approximate runtime of cluster growing for different min-hash settings. For all
results, a sketch size of 2 was used.

Oxford Paris

Ops t Ops t

p/w matching 1.2 · 107 73 s 1.3 · 1011 201 h
verification 4.0 · 106 34 m 7.5 · 109 44 dP

35 m 52 d

(a)

Oxford Paris

k # imgs t # images t

5 54 23 s 102,865 12.4 d
10 71 30 s 108,982 13.1 d
15 80 34 s 113,328 13.6 d
30 108 46 s 120,760 14.5 d
60 246 106 s 126,814 15.2 d

120 367 157 s 134,884 16.2 d

(b)
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Fig. 7: Computation time of the min-hash pipeline for varying k

Table 5b gives a comparison of the computation times for different sketch counts.
Since most of the large clusters are already discovered using very few sketches, the
sketch count does not affect the computation time of the cluster growing step much.

Min-hashing. An appealing property of min-hash is that its time complexity is (in
practice) linear in the number of images [12]. The computation of the hashes itself
takes up the major part of the processing time. Insertion into the hash table and finding
collisions is comparably fast. Computation time increases linearly in both the number of
sketches s and the sketch size k. In our implementation, the computation of a geometric
min-hash took on average 0.015 seconds per image and sketch for s = 2, and 0.016
seconds per image and sketch for s = 3. Hashing and finding collisions took 0.0008
seconds per image and sketch. So, for k = 5 and s = 2, the total time for computing
min-hash seed candidates for the Paris dataset is 10.4 hours, whereas for k = 120
computation would take 10.4 days. Additionally, a spatial verification of the candidate
seeds is performed, but the computation time for this is negligible in comparison.

Spectral Clustering. Spectral clustering involves three basic steps. First, it is neces-
sary to compute a singular value decomposition on a modified matching graph (N×N )
into k singular values, where k is the number of clusters we want to obtain for every
connected component. Then we need to find k out of N vectors of dimension k which
are orthogonal to each other to initialize k-means clustering in order to obtain stable
results. Finally, we need one run of k-means with k centroids, N points, and k dimen-
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sions. This procedure has to be repeated for different k, to find the appropriate number
of clusters for each connected component.

Experiments showed that runtime of one spectral clustering run is approximately
linear in the number of photos, but quartic in the number of clusters k. For large con-
nected components we also need larger values for k, in order to discover cluster on a
building level. Therefore, runtime is dominated by the few largest connected compo-
nents: Clustering the largest four connected components takes about 2 weeks, whereas
clustering all other connected components (smaller than 5,000 images) only takes 2
hours in total. Since all methods explore the four largest connected components, we can
approximate the runtime for spectral clustering with 2 weeks in each case.

Summary. We now summarize the computation times of both approaches for the Paris
dataset. We will not cover feature extraction time, because this step is necessary for both
approaches. The total computation time of the spectral clustering pipeline includes pair-
wise matching (47 days), spectral clustering (14 days) and cluster merging (12 hours).
The total computation time of the spectral clustering pipeline on the Paris dataset is thus
61.5 days. (Computation was performed on a cluster of PCs.)

The computation time of min-hash is influenced by the sketch count k. This pa-
rameter directly affects the time for computing the min-hashes and it indirectly affects
the cluster growing time through the number of discovered clusters. Fig. 7 gives an
overview of the computation time of the min-hash pipeline for different settings of k.
For a choice of k = 5, the total runtime is 16 days, and for k = 120, the runtime is 30
days. Depending on the parameter settings, min-hash is thus two to four times faster.

6 Conclusion and Outlook
In this paper we evaluated two approaches for automatic landmark mining in large-
scale image collections. Additionally, we presented a new dataset and ground truth for
the evaluation of such approaches. Our results show that spectral clustering is capable
of clustering the pairwise image matching graph into building-level clusters, however
at high computational cost.

Min-hash makes it possible to focus the cluster growing step on promising entry
points, and thus trades off speed for recall. However, it is necessary to implement du-
plicate removal, since min-hash is designed for detecting duplicates and not for finding
landmarks. We also showed that using the connected components directly as clusters,
as proposed by Chum et al. [14], results in low precision, which can be improved by
subsequently applying spectral clustering on the connected components. The resulting
approach was shown to be a good tradeoff between computation time and clustering
quality, but is relatively complex. In particular, it seems overkill to first over-segment
the image collection and to then again join clusters of the same building.

An ideal approach would find seed images with a high probability if they are good
representatives for their neighbors. The growing step should avoid under-segmentation,
so that it becomes unnecessary to run a costly re-segmentation process. That is, the seed
growing step should stop as soon as a single building is covered. Achieving these goals
will require deeper investigation, which is ongoing research.
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