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Abstract

We present fast 3D surface registration methods for in-

hand modeling. This allows users to scan complete objects

swiftly by simply turning them around in front of the scan-

ner. The paper makes two main contributions. First, we pro-

pose an efficient method for detecting registration failures,

which is a vital property of any automatic modeling system.

Our method is based on two different consistency tests, one

based on geometry and one based on texture. Second, we

extend ICP by three additional fast registration methods for

both coarse and fine alignment based on both texture and

geometry. Each of those methods brings in additional in-

formation that can compensate for ambiguities in the other

cues. Together, they allow for the robust reconstruction of

a large variety of objects with different geometric and pho-

tometric properties. Finally, we show how both failure de-

tection and fast registration can be combined in a practical

and robust in-hand modeling system that operates at inter-

active frame rates.

1. Introduction

3D scanning and modeling of real world objects is attrac-

tive for a variety of applications, including entertainment,

cultural heritage and architecture. Most scanning systems

capture 3D surface patches from different viewpoints e.g.

using a turntable, and the different parts are stitched to-

gether in an offline process to form a coherent mesh. How-

ever, when scans are only registered offline, such a process

risks leaving holes in the reconstruction in places where

the scanner could not reach from the predetermined view-

points. Moreover, the offline processing means that those

holes may only be detected much later. Filling in the miss-

ing data then requires another scanning session, which is a

tedious process and which may in some cases even be im-

possible, since the object is no longer accessible.

In-hand modeling is an appealing concept, since it cir-

cumvents this problem. By allowing the user to interac-

tively see and control the object, while it is being recon-

structed online, he can directly fill in any remaining holes

[22, 13, 26]. Previous systems have shown that in-hand

Figure 1. In-hand modeling of different objects: Typical scan, tex-

tured scan, online preview model and final post-processed model

for frog, boris and ricola.

scanning is feasible in principle. However, in order to be

useful in practical applications, it needs to be robust to a

large variety of objects with different geometric and photo-

metric properties.

Especially symmetrical and highly textured objects pose

problems to current in-hand scanning systems, which only

use geometry-based ICP for registration [22, 13, 26]. More-

over, inevitable registration failures on such objects are not

detected by those systems, leading to reconstruction arti-

facts in the final model [25].

In this paper, we bridge the gap between feasibility and

practicality by the following contributions. 1) We propose

an efficient method for detecting registration failures based

on two different consistency tests using texture and geome-

try information. 2) We propose three additional coarse and

fine registration methods based on texture and geometry to

complement ICP. Together, these methods cover a wide va-

riety of object properties. Fine texture registration is in-

cluded into ICP using point-to-plane constraints along the

gradient direction of texture edges. Coarse texture registra-

tion is performed using texture features for RANSAC-like

transformation estimation and testing. For coarse geometric

registration, we describe a novel method based on snapshots



and spin-images combined with hypothesis verification us-

ing geometric consistency. 3) As speed is of prime impor-

tance for interactive modeling, we show how the proposed

methods can be optimized for real-time performance on the

GPU. 4) We demonstrate how the different components can

be combined into a practical in-hand scanning system and

report results on a variety of objects with different geomet-

ric and photometric properties.

The paper is structured as follows. Section 2 discusses

related work. After that, Section 3 introduces our novel

failure detection approach based on geometric and texture

consistency. Section 4 describes our proposed registration

methods, and Section 5 evaluates them in detail. Finally,

Section 6 shows how all components are integrated into a

practical in-hand scanning system.

2. Related Work
A comprehensive overview on methods required for 3D

modeling is given by [3]. Recently, interactive in-hand 3D

modeling systems have been demonstrated by [22, 13, 26].

Registration of the individual surface patches is a crucial

part of the modeling pipeline, and ICP [4, 7] and its vari-

ants [23, 10] are the best-known technique for registration,

assuming that an approximate alignment is known. An ex-

tension to include texture has been presented by [16]. Reg-

istration based on texture correlation additionally to ICP has

been proposed by [2].

When no approximate alignment is known, coarse regis-

tration is required. Using texture features for coarse reg-

istration has been proposed by [24]. There is a wealth

of geometry-based methods, and [6] give a comprehensive

overview. Recent methods include [9, 17, 19]. Geometric

consistency for coarse registration has been used by [5].

Registration failure detection is necessary for any au-

tomated system. [12] proposed a geometric consistency

measure for failure detection within a multiview registra-

tion framework. To our knowledge texture consistency has

not yet been used for verification.

Scanning Setup. For shape and texture capture, we use a

phase-shift structured-light scanner as in [28, 27]. It uses

a modified DLP projector for projecting three sinusoidal

patterns into the working volume and a synchronized cam-

era for recording the resulting intensity images. A dense

reconstruction is obtained at 20-30 fps through triangula-

tion of the measured phase values for each pixel with the

known projection. For this, the wrapped phase is calculated

directly from the intensities, and phase unwrapping deter-

mines the phase period. A texture image is calculated as the

average intensity of the three patterns.

3. Registration Consistency
Automatic modeling systems need some form of reg-

istration failure detection, as already a few misregistered
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Figure 2. Geometric consistency: a) Consistent surfaces as Sp and

Sq are close in Cp. b) Free space violation as Sq occludes Sp in

Cp. c) Occupied space violation as Sq is not seen in Cp.
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Figure 3. a) OSV due to projector occlusions are handled by pro-

jection. a) type-I scanner error: Sq occludes (incorrect) Sp, but

phase is consistent in Cp. b) type-II scanner error: (incorrect) Sq

occludes Sp, but phase is consistent in Cq .

scans may lead to distorted models [25]. Similarly, inter-

active modeling [23, 13, 26] relies on correct sequential

registration. Yet, registration often fails in practice without

being detected. This is because many objects of practical

interest exhibit symmetries which may lead to misregistra-

tions with low error.

In the following, we propose an accurate and robust reg-

istration consistency measure that describes the quality of

the registration and that can be used for failure detection.

The consistency measure is based on both geometry and

texture, thus integrating all available information.

3.1. Geometric Consistency.

Geometric consistency of a registration is measured as

the consistency of two surfaces along the cameras’ lines of

sight. Here, we extend the method presented by [12]. Con-

sider for example the two registered surface scans Sp and

Sq in Fig. 2 that have been captured by cameras Cp and Cq

respectively. The registration is consistent (IN) for camera

Cp if the overlapping parts of Sp and Sq are at similar range

(Fig. 2(a)). A free-space violation (FSV) occurs in Cp when

the registered surface Sq occludes the observed surface Sp

(Fig. 2(b)). An occupied space violation (OSV) occurs

when surface Sq is falsely not observed in Cp (Fig. 2(c)).

If Sp occludes Sq in Cp, it is treated as don’t care (GND) as

it does not violate the observation in Cp.

The geometric consistency ratio is calculated by ren-

dering the registered surface Sq into camera Cp using z-

buffering and by then comparing the rendered range image

(Sq) pixel-by-pixel to the captured range image (Sp). Each

pixel x in Cp is classified by comparing the two depth val-
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Figure 4. a) Two registered scans. Geometric consistency b) with-

out and c) with phase consistency compensation.

ues zp(x) (from Sp) and zq(x) (from Sq):
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XIN (p, q) if |d(p,q)(x)| < tIN

XFSV (p, q) if d(p,q)(x) < −tIN

XOSV (p, q) if ∃zq(x) ∧ ¬∃zp(x)

XGND(p, q) if d(p,q)(x) > tIN ∨ ¬∃zq(x)

(1)

where d(p,q)(x) = zq(x)−zp(x) and tIN is an inlier thresh-

old. We record the FSV and OSV ratios as follows:

Rpq
FSV

=
|XFSV (p, q)| + |XFSV (q, p)|

|XIN (p, q)| + |XIN (q, p)|
(2)

Rpq
OSV

=
|XOSV (p, q)| + |XOSV (q, p)|

|XIN (p, q)| + |XIN (q, p)|
(3)

We classify a registration Tpq as correct whenever both ra-

tios are below predefined thresholds:

Tpq is

{

valid if Rpq
FSV

<tFSV ∧ Rpq
OSV

<tOSV

invalid otherwise
(4)

Fig. 4(b) shows an example classification where inliers are

marked in green, XFSV are marked in red, XOSV are

marked in blue, and XGND are kept black.

This framework has been used successfully in several ap-

plications [12, 20]. However, it does not yet take into ac-

count how the range image was created. In the following,

we improve on it by using additional information available

from phase-shift range scanners.

Invalid Free Space Violation. FSV is a primary sen-

sor space violation, and the ratio threshold should be set

as restrictive as possible. Whenever the reconstructed sur-

faces are error-free, a correct registration will create no FSV.

However, depending on the range sensor, the reconstructed

surfaces might contain outliers and thus create invalid FSVs

for an otherwise correct registration.

For our scanning setup, the phase unwrapping may as-

sign the wrong period to a pixel, and may thus record too

large or too small a depth value. When the depth is too

large, a type-I scanner error may occur (Fig. 3(b)): the cor-

rect surface Sq occludes the wrong surface Sp and generates

an FSV. However, the estimated1 wrapped phase of Sq will

be consistent with the wrapped phase in Cp, and thus the

FSV can be invalidated. When the depth is too small, a

type-II scanner error may occur (Fig. 3(c)): the incorrect

surface Sq occludes the true surface Sp. However, Sp and

Sq are phase-consistent in Cq, thus invalidating the FSV.

1We can estimate the phase by projecting the surface point into the

projector and assigning the corresponding phase.

Hence, for every FSV pixel, the phase consistency is

checked in both Cp and Cq, and the FSV is invalidated if

any of the two is phase-consistent. Fig. 4(a) shows an ex-

ample registration of two surfaces. The encircled gray sur-

face patch is a type-I scanner error: the assigned depth is

too small. Hence, it creates FSV pixels, as shown in red in

Fig. 4(b). Phase consistency is used to detect and remove

invalid FSVs, as shown in yellow in Fig. 4(c). This implies

that we can recover from errors made by the scanner.

Invalid Occupied Space Violation. For our system the

following reasons for invalid OSVs can be identified (the

first four yield no reconstruction):

1) The surface Sq is occluded in the projector (Fig. 3(a)).

2) The surface is too oblique to either camera or projector.

3) Saturation or too dark surface cause problems.

4) The scanner assigns no period to a pixel in Cp (similar to

type-I scanner error).

5) The scanner performs a wrong reconstruction in Sq by

assigning the wrong period (type-II scanner error).

We can correct for most of the reasons above, thus mak-

ing the remaining OSV a valid consistency measure. Pro-

jector occlusions are removed by projecting both Sp and Sq

into the projector Projp. Each OSV pixel is thus checked

whether it is occluded by Projp. Oblique OSV pixels are

removed by checking the surface normal in Sq. OSVs due

to saturation are removed by checking intensity at the pixel

in Cp. OSV pixels due to scanner errors I and II are handled

similar to invalid FSV.

OSV due to low signal strength are not corrected for.

Moreover, if there are overlapping scanner errors in both

scans, these go undetected. However, registration failure

should be a conservative measure in any automatic registra-

tion system. Thus, too many invalid OSV (or invalid FSV)

will at most result in a failure detection for an otherwise

correct registration, which is acceptable in many situations.

In practice, the OSV ratio can be made less restrictive than

the FSV ratio. False OSV and FSV invalidations are possi-

ble due to random phase consistency, but are negligible in

practice.

3.2. Texture Consistency.

For symmetric objects such as a cylinder, surface geom-

etry alone cannot yield an unambiguous registration. Thus,

no geometry based consistency measure can detect regis-

tration failure in all cases (see Fig. 5). In contrast, texture

can not only help for registration (see Sec. 4.2), but also for

measuring the consistency of the registration.

For each intensity image Ip and Iq, we calculate the gra-

dient magnitude using simple Gaussian derivative kernels

(Fig. 5(d)). Similar to geometric consistency, the texture of

surface Sq is compared against the texture of Sp in Cp’s im-

age space. For each pixel x∈Cp, the gradient magnitudes

gp(x) and (projected) gq(x) are compared with local nor-
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Figure 5. a) Scan of a cylinder. b) Bad registration despite c) good

geometric consistency. d) Magnitude image. e) Bad registration

with low texture consistency (neg. evidence in red, pos. in green).

f) Correct registration with high texture consistency.
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Texture

Geometry

Coarse Fine

3D Surf
Sec 4.3

Texture Correlation
Sec 4.2

ICP
Sec 4.1

Hypothesize & Test
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Figure 6. Registration methods are divided into whether a coarse

or fine alignment is required and whether texture or geometry are

used as cues.

malized cross-correlation (NCC). NCC is weighted by the

local maximum magnitude, thus emphasizing textured ar-

eas. Unweighted NCC ranges from −1 to 1; thus negative

values give negative evidence, and positive values give posi-

tive evidence for the registration (Fig. 5(e)). Both are aggre-

gated for the whole image, and the ratio negative to positive

evidence RTEX is used as texture inconsistency measure.

We exclude pixels close to depth and normal discontinu-

ities based on the variance of the depth derivative. Spec-

ularities on the object reduce texture consistency, but can

be detected given the known scanner geometry and surface

normals. Hence, we include a term to reduce the correlation

weight at surface points with high specular likelihood.

4. Registration Methods
Registration is a crucial part of any modeling system,

bringing all surface patches into a common coordinate sys-

tem. Two types of registration methods can be distinguished

for in-hand scanning: fine registration for finding exact

alignments between successive scans and coarse registra-

tion for reinitializing the scanning procedure after the object

has been lost or moved out of the scanner. Both types can be

based on geometry or texture (see Fig. 6). Current in-hand

scanning systems only use geometry-based ICP [23, 13, 26].

However, only a combination of different registration

types can lead to robust and accurate registration for a wide

variety of objects. In addition, the methods should be fast

enough for interactive registration tasks in an in-hand scan-

ning system, or for an automatic multi-view registration

system. In the following we propose three additional meth-

ods for fast, robust, and accurate registration.

4.1. Fine Geometry
ICP [4, 7] is the best-known technique for pairwise sur-

face registration. ICP performs fine geometric registration

assuming that a coarse registration transformation T 0
pq is al-

pi,qj

q’j
n’(q’j)

c

dj

e’j

Figure 7. Fine texture registration is used for accurate registration

of geometrically underconstrained alignments, such as for a cylin-

der. Closest point search is performed along the gradient direction

dj , and the plane Π = {c, n(qt
j} is added into ICP.

ready known. Many different variants of ICP have been

proposed; a comprehensive overview can be found in [23].

For real-time registration we use the method as described

by [13]. Fast ICP uses projection along the line of sight

of the range sensor for closest-point lookup, thus reducing

the closest-point search from O(log n) to O(1). Instead of

minimizing the point-to-point distance, it uses the point-to-

plane error metric as introduced by [7]:
∑

n(qj)
(

T k+1
pq pi − qj

)

(5)

where n(qj) is the estimated normal at qj , and T k+1
pq is the

transformation minimizing this distance after k iterations

for point sets P={p1, .., pN} and Q={q1, .., qM}.

4.2. Fine Texture
As pure ICP uses no texture information, geometric sym-

metries result in ambiguities. For example, a cylindrical ob-

ject has two unconstrained degrees of freedom: translation

along and rotation around the principal axis (Fig. 7). Tex-

ture can often break the symmetry. Moreover, whereas ICP

is particularly suited for optimizing along the range sensor’s

line of sight, texture is particularly suited for constrain-

ing the optimization perpendicular to the line of sight, thus

nicely adding complementary information also for asym-

metric surfaces.

ICP with texture has been used before by modifying the

closest-point search to include texture [16]. However, this

is not compatible with fast projective lookup. On the other

hand, assuming we already have a good registration, we can

project and search the local neighborhood for a compati-

ble point [2]. Using the compatible point directly with the

point-to-point distance metric would provide enough con-

straints. However, for many objects, texture edges are pre-

dominant, and finding the compatible point is again under-

constrained, similar to the aperture problem of optical flow.

We take advantage of the aperture ambiguity by search-

ing for the most compatible point q′j only along the gradient

direction dj (see Fig. 7). We use the best point as point-

to-plane constraint, which can be conveniently added into

the ICP error metric. Instead of using the surface normal of

the most compatible point, we use the normal n′(q′j) of the

plane formed by the sensor center c and e′j , which is the line
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Figure 8. a) Texture of 1st scan. b+c) Gradient magnitude of 1st

and 2nd scans projected onto 1st scan. d) Close-up texture im-

age e) Corresponding magnitude image f,g,h) Magnitude differ-

ence image for ICP, coarse texture + ICP, and fine texture registra-

tion. The improvement can be clearly perceived as a reduction of

the differences (red positive, green negative difference).

perpendicular to the gradient direction (on the image plane).

This leads to the following ICP error metric:
∑

n(qj)
(

T k+1
pq pi − qj

)

+ λ
∑

w′

jn
′(q′j)

(

T k+1
pq pi − q′j

)

(6)

where w′

j is a compatibility weighting factor and λ is used

to control the influence of texture within ICP.

We use a 3D object space error metric instead of the cor-

rect 2D image space error. The inaccuracy is negligible, as

fine registration assumes an initialization close to the cor-

rect registration. Thus, the surface distance to the camera

will remain approximately constant, and the object space

error will be the scaled image space error.

Compatible Point Search. For each pi, we search for the

most compatible point q′j using correlation with a 5×5 win-

dow along dj . Similar to the texture consistency test (Sec.

3.2), we correlate the gradient magnitudes to be more ro-

bust to intensity variations. We do not need the concept of

negative evidence here and can therefore use SSD instead

of NCC for efficiency. Subpixel accuracy is achieved us-

ing quadratic interpolation of the SSD. For each compatible

point q′j , the correlation weight w′

j is calculated based on

the correlation function and the gradient magnitude. Sim-

ilar to texture consistency, the influence of parts with high

specular likelihood and/or geometric variance is reduced by

reducing the correlation weight w′

j . Texture distortions due

to surface transformations are implicitly handled by project-

ing each point in the correlation window independently.

4.3. Coarse Texture
Texture features can also be used for coarse registration

and thus as initialization for ICP. We use the following ba-

sic approach: 1) extract interest points, 2) find correspon-

dences, 3) generate transformation hypotheses, 4) test hy-

potheses and keep the one with most inliers.

We detect interest points using Harris corners [11] on

the texture image and calculate a SURF descriptor [1] for

each feature point. Scale invariance is inherently obtained

by scaling the descriptor window size with the depth of the

feature point; orientation invariance is achieved by deter-

mining the dominant orientations as in SIFT [18]. We do

not warp the texture based on 3D geometry as described in

[24], as this did not improve registration in our experiments.

For two scans P and Q, we get a set of feature points

FP = {fp
i , i = 1..N} and FQ = {fq

j , j = 1..M}. The 3D

position vp
i of fp

i is obtained from the range images

vp
i = d(fp

i )K−1
C x(fp

i ) (7)

where KC are the camera intrinsics, x(fp
i ) is the homoge-

neous feature coordinate, and d(fp
i ) is its depth.

Feature matching based on Euclidean distance is used to

create a set of correspondences Kij = (fp
i , fq

j ). In order to

estimate a transformation, we need three valid feature cor-

respondences. In theory, we could also use the estimated

normal and feature orientation to reduce the necessary cor-

respondences to one. However, both orientation and esti-

mated normal are often noisy, particularly as texture corners

frequently coincide with geometric corners.

Usually, RANSAC [8] is used to remove outliers.

RANSAC generates a random set of transformation hy-

potheses and chooses the transformation Tpq with most in-

liers. All inliers are then used to calculate the optimal align-

ment. A feature correspondence Kij is counted as inlier iff

||Tpqv
p
i − vq

j ||<tD, where tD is a user-defined threshold.

Similar to [9], we use the implicit distance RMS error

(dRMS ) to speed up the transformation calculation. Then,

for two inlier feature correspondences Kij and Kkl:

dRMS (Kij , Kkl)=
(

||vp
i −vp

k|| − ||vq
j −vq

l ||
)2

< 2tD (8)

The smaller the dRMS , the more distance-compatible are

two correspondences. Thus, we speed up the valid hypoth-

esis generation time by only using distance-compatible fea-

ture correspondences. In addition, we employ the heuristic

that an inlier correspondence Kij will most likely have an-

other inlier correspondence Kkl as most compatible coun-

terpart. We adopt an iterative greedy strategy. First we

find for a feature correspondence the two most compati-

ble counterparts. We then get the most distance-compatible

triple minimizing the combined dRMS error (Fig. 9). Thus,

we generate one hypothesis per feature correspondence and

keep the transformation Tpq with most inliers. Tpq can then

be used as initialization of ICP. In addition, inlier features

of Tpq can be integrated into the ICP framework.

All of the above steps, namely corner detection, SURF

descriptor calculation, feature matching, transformation hy-

pothesis generation, and inlier test are implemented on the

latest GPU (NVidia Geforce 8800 GTX) using both CG and

CUDA. Thus, coarse registration based on texture features

takes about 10 ms for two scans of about 30000 vertices, im-

age size 640×480, 500 features, and 250 correspondences.
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Figure 9. Correspondences of two features sets FP and FQ are

shown in green. The two most distance-compatible correspon-

dences of Kij = (fp
i , f

q
j ) are shown in black, an incompatible

correspondence red, and the most compatible triple in blue.

4.4. Coarse Geometry
In case no texture features or approximate alignment are

available, coarse registration based on geometry needs to

be performed. Previous methods we are aware of are too

slow for interactive applications or lack robustness. In the

following, we therefore propose a new algorithm that is par-

ticularly fast (200-300ms). This algorithm adopts a hypoth-

esize & test framework for geometric registration, where

most steps are efficiently implemented on the GPU.

For hypothesis generation we combine the idea of snap-

shots [19] with spin-images [14]. We uniformly sample the

surface points of a scan and create a snapshot for each sam-

ple. A snapshot is a synthetic rendering of only the local

surface, as seen from the perspective of a virtual camera that

is placed at a certain distance along the sample normal [19].

This way, self-occlusions of the surface are automatically

handled. Instead of using the snapshots directly as descrip-

tors as in [19], we create a rotation invariant representation

similar to spin-images. Our modified descriptor uses the

pixel-radius and depth as given by the snapshots.

One descriptor is created for each sample. For two scans,

the feature descriptors are matched, and transformation hy-

potheses are generated from the best distance-compatible

pairs (similar to texture registration). In this case, we only

use two features and their normals, as many samples will lie

on smooth parts and the normal will often be correct.

Uniformly sampling the surface points implies that we

may not sample the same points on both scans. In prac-

tice, when enough samples are used (here 2500), neighbo-

ring points often have similar descriptors, and matching will

pick a point close to the correct match. The resulting small

error is negligible for coarse registration, and two correct

correspondences will still likely be distance-compatible.

Instead of using inlier counting, we test each transfor-

mation hypothesis for geometric consistency (see Sec. 3.1)

on the actual scan data. The advantage is that this test is

independent of the actual number of inliers. Furthermore,

only hypotheses that are consistent with the scans are cho-

sen. We combine the FSV and OSV ratios (Eq. 2 & Eq. 3)

to get an inconsistency score for each hypothesis h:

Rij(h) = µRij
FSV + Rij

OSV (9)

where µ determines the relative weight of Rij
FSV and

Object ICP Coarse Geometry Coarse Texture

boris 36 (0 / 4.2) 74 (0 / 3.0) 42 (0 / 5.3)

frog 56 (0 / 2.6) 66 (0 / 2.9) 38 (0 / 5.0)

coati 58 (0.2 / 0.1) 74 (0 / 0.7) 46 (0 / 0.9)

marvin 50 (0 / 1.4) 56-70 (0 / 0.6) 44 (0 / 3.7)

pot 10 (16.1 / 0) 14 (21.8 / 0) 82 (12.9 / 0)

ricola 4 (100 / 1.2) 4 (98 / 2.0) 60 (72.2 / 2.8)

Table 1. Registration results for the objects from Fig. 10(a). The

first number indicates the rotation angle at which the registration

method fails with 50% probability. The values in brackets show

the false positive rates for geometry and texture consistency tests.

Rij
OSV . We keep the hypothesis with the lowest score. The

inlier threshold tIN of Eq. 1 is increased, since larger reg-

istration errors will be tolerable for coarse registration. For

efficiency reasons, we do not check for invalid FSV or OSV.

A further speedup is obtained by performing the consis-

tency checks on a subsampled version of the scans. Note

that coarse geometry is sufficient, as small geometric detail

will have a small effect on the consistency check.

Both hypothesis generation and hypothesis testing are in-

dependent, and each part can be used within other coarse

registration frameworks.

5. Registration Results

Texture registration significantly improves both robust-

ness and accuracy. Fig. 8 shows the gradient magnitude

difference images of two scans which have been registered

using ICP, coarse texture + ICP, and fine texture enhanced

ICP. The results are considerably better for ICP + coarse

texture than for ICP and best for fine texture registration.

For a quantitative evaluation, we present registration

tests on a variety of objects with different geometric and

photometric properties (shown in Fig. 10(a)). Controlled in-

put data was generated by rotating or translating each object

on a turntable. Ground truth alignments were generated us-

ing sequential registration with multi-view optimization. In

order to generate ground truth for the rotationally symmet-

ric ’ricola’ can, a marker was placed on its top for scanning,

but was later removed from the scans for testing.

Rotation. Tab. 1 compares the different methods’ results

when the test objects are rotated. Each scan was registered

with all other scans, and the difference to the ground truth

was recorded. The results show how far the object can be

rotated until more than 50% of the registrations fail, where

failure is defined as a deviation of more than 1◦/1mm in

rotation/translation from the ground truth (3◦/3mm for ’ri-

cola’ and ’pot’). The results show that both coarse texture

and geometric registration improve on pure ICP and that the

most appropriate method depends on the object’s properties.

Tab. 1 also displays the false positive rates of both ge-

ometric and texture consistency. This rate is particularly

important, as it signifies how many failed registrations are

classified as correct. All objects have below 0.2% false



Method ms

ICP (10K samples, 20 (5) iter) 17.5 (6.5)

Texture Correlation 12

3D SURF (500 features, 250 matches, 200 inliers) 10

Hyp. & Test (2304 samples, 1K hypotheses) 220

Geometric Consistency 9

Texture Consistency 7.8

Table 2. Timings for registering two pot scans, with each scan con-

sisting of ∼30K vertices (coarse: 3500).

positive rate, except for ‘ricola‘ at 2.8%, which can be ex-

plained by the specularity of the object. (False negative

rates were between 5-10% for this experiment).

Translation. When comparing performance under transla-

tion, we found that ICP fails for all objects at ≥ 10-40mm

translation. Coarse registration using texture or geometry is

not affected, as it is implicitly position independent.

Examples. Fig. 10 visualizes these results for two typical

examples. Fig. 10(b) shows the large performance increase

due to coarse texture registration on the rotationally sym-

metric ’pot’. In this example, coarse texture registration can

successfully align two surfaces that are rotated by up to 80◦,

whereas ICP fails already at about 5◦. Fig. 10(e) displays

the texture ratio RTEX for the corresponding registration

methods. Whenever registration fails, RTEX increases be-

yond the dashed line and detects the failure reliably.

The improvements due to coarse geometry registration

are shown in Fig. 10(c) for ’boris’: the funnel of conver-

gence for rotation is increased from about 30◦ (ICP) to up

to 70◦. Fig. 10(f) demonstrates that the FSV ratio RFSV

can reliably detect the registration failures.

Finally, Fig. 10(d) verifies that transformation hypothe-

sis generation using the most distance-compatible triangles

is as good as standard RANSAC (50K hypotheses). In addi-

tion, registration only fails when the number of inliers goes

below 10 (out of ∼200 correspondences and 500 features).

Timings for all methods and consistency tests can be

found in Tab. 2. All methods require typically around 10

ms, except for coarse registration which takes between 200

to 300 ms. ICP takes 17.5 ms for 20 iterations, but in prac-

tice only about 5 iterations are required.

6. In-hand Modeling

Our in-hand modeling system is akin to the approach in-

troduced by [22]. This system however only uses ICP and

requires users to manually align the reconstructed object to

displayed scans for reinitialization. Moreover, this system

cannot handle highly textured and/or symmetric objects. In

contrast, we propose to employ all four registration meth-

ods described in Sec. 4 and combine them with automatic

failure detection.

First, coarse texture registration is performed at each step

and is used whenever enough inliers are available. ICP in-

corporating the coarse texture features is executed next. Fi-

nally, fine texture registration is used for refining the align-

ment. Coarse geometry registration is only performed when

no features are available and the previous registration failed.

Coarse geometry turns out to be particularly useful for reini-

tialization, e.g. when the user takes out the object, investi-

gates the preview model, and then continues to scan. It is

only applied about once a second to keep the system respon-

sive (as it takes up to 300 ms for coarse registration).

Geometric and texture consistency are used for fail-

ure detection, thus removing registration errors that would

make the modeling system “useless” due to sequential er-

ror propagation. The system is adaptive in the sense that

it performs registration based on texture whenever enough

features are available. Fine texture registration and the tex-

ture consistency test are currently enabled manually, but for

future work this could be replaced by an adaptive scheme.

As the user’s hands will be visible during in-hand scan-

ning, we use skin color detection based on [15] to efficiently

remove the hands from the geometry. For each depth sam-

ple, the color is used in conjunction with a lookup table to

decide whether it is a skin pixel. Median filtering is used

for robustness. Finally, foreground-background segmenta-

tion [21] on the phase images removes the necessity of hav-

ing a black background.

Altogether, the in-hand modeling system runs at about

10 fps for an average scan size of 30,000 triangles. About

one third of the computation time is spent on data cap-

ture. Some typical modeling results can be found in Fig. 1.

Note that the final model is integrated using offline pro-

cessing [22]. Videos showing the system in action are at

http://www.vision.ee.ethz.ch/˜weiset/cvpr08.

7. Conclusion
We have presented a set of fast registration methods us-

ing both geometric and photometric cues. For robust and ac-

curate registration, all available cues need to be integrated,

and we proposed three additional registration methods to

complement ICP for textured and symmetric objects. In ad-

dition, we have proposed two efficient consistency tests for

registration failure detection, which is a crucial capability

for automated model integration. As we have shown, all of

those methods can be efficiently integrated, creating a truly

practical in-hand modeling system.
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