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Abstract We present an ample description of a socially compliant mobile robotic
platform, which is developed in the EU-funded project SPENCER. The purpose of
this robot is to assist, inform and guide passengers in large and busy airports. One
particular aim is to bring travellers of connecting flights conveniently and efficiently
from their arrival gate to the passport control. The uniqueness of the project stems
from the strong demand of service robots for this application with a large potential
impact for the aviation industry on one side, and on the other side from the scientific
advancements in social robotics, brought forward and achieved in SPENCER. The
main contributions of SPENCER are novel methods to perceive, learn, and model
human social behavior and to use this knowledge to plan appropriate actions in real-
time for mobile platforms. In this paper, we describe how the project advances the
fields of detection and tracking of individuals and groups, recognition of human
social relations and activities, normative human behavior learning, socially-aware
task and motion planning, learning socially annotated maps, and conducting empir-
ical experiments to assess socio-psychological effects of normative robot behaviors.

1 Introduction

The immensely growing passenger volume in air traffic worldwide poses an enor-
mous challenge for all air carriers and airport operators. With the increasing number
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of passengers arriving and departing at an airport, the probability of delays and
missed connection flights grows accordingly. Furthermore, busy hubs such as the
airport of Amsterdam Schiphol are particularly challenging for the growing num-
bers of first-time air passengers, people with little knowledge of foreign languages
or those who need any kind of special attendance. For them and for others, finding
a fast and efficient way from an arrival gate to a departure gate for connection can
be very difficult, especially if the first, incoming flight was delayed. For air carriers
such as the Dutch KLM, missed connecting flights often result in additional cost for
rebooking and baggage reloading, while for the passengers it means further delays
and the inconveniences associated with them.

This is the main motivation for the launch of the EU-funded project SPENCER,
which we present in this paper. In SPENCER, we develop a mobile robotic platform
that efficiently guides oversea passengers at Schiphol airport from their arrival gate
to the passport control point for further, inner-European connections, the so-called
“Schengen barrier”. The project is unique in at least two major aspects: First, it
addresses a highly relevant business case with a large potential impact for the entire
aviation industry, motivated by a growing need for passenger assistance and the
decrease of missed connecting flights. And second, in contrast to earlier tour-guide
robot systems (e.g. Burgard et al, 2000; Siegwart et al, 2003), it addresses topics
in social robotics by developing new methods to perceive, learn and model human
social behavior and to use this knowledge to plan appropriate actions in real-time
for a mobile robotic platform. In doing so, SPENCER generates novel scientific
contributions in the fields of

• detection, tracking and multi-person analysis of individuals and groups of people,
• recognition of human social relations, social hierarchies and social activities,
• normative human behavior learning and modeling,
• socially-aware task, motion and interaction planning,
• learning socially annotated maps in highly dynamic environments,
• empirically evaluating socio-psychological effects of normative robot behaviors.

In SPENCER, we address these problems jointly and in a multi-disciplinary project
team, which enables us to exploit synergies between social science and robot en-
gineering for the implementation of an effective cognitive system that operates ro-
bustly and safely among humans. In this paper, we present first encouraging results
in all mentioned fields, as well as the insights gained from integrating all relevant
system components onto the same common platform.

The paper is organized as follows: First, we present an overall view on the system
regarding the platform design and the system architecture. Then, we show results of
our socially aware localization and mapping module. In Sec. 4 we describe our peo-
ple and group tracking component, a major building block for social analysis tools.
Sec. 5 introduces the human-aware task and motion planning module of SPENCER.
Then, we develop important tools to analyse human social behavior and discuss the
two main approaches we pursue to implement social behavior on the robot. Finally,
Sec. 8 briefly describes the integrated system and concludes the paper.
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(a) (b) (c)

Fig. 1 a) and b) Design view and actual appearance of the robot platform. c) System architecture.

2 Platform Design and System Architecture

A key element of a socially acting and interacting robot is its physical appearance,
because even if the robot’s behavior fully complies with socially normative rules, it
is of little use if the platform itself appears unfriendly or even threatening. There-
fore, a human- or animal-like appearance is often chosen for robots that operate in
human environments. However, a completely antropomorphic design has the disad-
vantage that it implicitly raises expectations regarding certain cognitive capabilites
of the platform, which cannot be accomplished with current systems. This can lead
to disappointments or to refusal of the system. To avoid this, we decided to use a
human-like but abstract appearance, which combines friendliness with believability.
The result is a human-size platform (see Fig. 1(a) and 1(b)), where the body resem-
bles the functionality of an information desk, and the head serves as a device for a
comprehensible but simplified non-verbal communication (e.g. nodding or orienta-
tion towards spokesperson). For physical interaction with the user, the platform has
a touchscreen and a boarding pass reader. The sensors consist of two SICK LMS 500
2D laser scanners covering 360◦ range in total at 0.65m height, two front and two
rear RGB-D cameras, and a stereo camera system at shoulder height. A schematic
view of the architecture is given in Fig. 1(c). We use the Robot Operating System
(ROS, see www.ros.org) as a middleware for the software components.

3 SLAM and Socially Annotated Mapping

Airports are very dynamic environments, and this poses a big challenge for the lo-
calisation and mapping module. Often, large parts of the range sensors’ field of view



4 Triebel et al.

1150 1200 1250 1300 1350 1400 1450 1500 1550

−1100

−1050

−1000

−950

−900

−850

−800

−750

Estimated Trajectories 2D Projection

Position y (m)

P
os
iti
on

x
(m

)

Ground Truth
Estimated Trajectory cutoff 100m resolution 1m
Estimated Trajectory cutoff 150m resolution 1.5m

0 50 100 150 200 250 300 350
−6

−4

−2

0

2

4

6

8

10
Estimated Z−Trajectories

Time (s)

Po
si
tio
n
z
(m

)

Ground Truth
Estimated Trajectory cutoff
100m resolution 1m
Estimated Trajectory cutoff
150m resolution 1.5m

Fig. 2 Mapping and tracking results on the FORD data set. Left: Maps produced by the system
while tracking a) top view, b) zoomed view of the start in point, c) overview. The ellipsoids repre-
sent height-coded scaled covariance matrices in each map cell from a map at 1 m resolution. Right:
trajectory plots, at the top x-y trajectory for the 100 and 150 m cutoff settings, bottom estimated z
position over time. Note the zoomed-in detail and the re-entry into a previously mapped area.

are occluded by people or semi-static objects such as carts or trolleys. When these
large semi-static obstacles are placed close to walls they can cause major problems
in measuring the true distance to the walls. To build consistent maps in environ-
ments with high dynamics, we recently introduced the Normal Distributions Trans-
form Occupancy Map (NDT-OM) (Saarinen et al, 2013) and the NDT-OM Fusion
algorithm (Stoyanov et al, 2013). We have also developed a data structure called the
Conditional Transition Map (CTMap) to model typical motion patterns. Here, we
present a novel extension of the CTmap, the Temporal CTMap, which can addition-
ally represent motion speeds. CTMaps are very useful for “social” motion planning,
as they enable to plan paths that interfere less likely with the flow of passengers.

3.1 Normal Distributions Transform Occupancy Map

NDT-OM (Saarinen et al, 2013) combines two established mapping approaches:
Normal Distribution Transform (NDT) maps (Biber and Straßer, 2003; Magnusson
et al, 2007) and occupancy grid maps (Moravec and Elfes, 1985). It has been shown
that the NDT-OM Fusion algorithm (Stoyanov et al, 2013) produces consistent maps
in large-scale dynamic environments in real time, and it can handle dynamic changes
and provide a set of multi-resolution maps. For map building, the vehicle pose is
tracked using a frame-to-model registration, and the sensor data are fused into the
NDT-OM, by updating distributions with newly obtained and aligned points. By
using submap indexing the system can represent large-scale environments at com-
bined registration and fusion times between 100ms and 2s. Evaluations on the pub-
lic FORD data set (Pandey et al, 2011) yield absolute trajectory errors (ATE) of
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(a) (b)
Fig. 3 Visualization of CTMap using data from a roundabout. (a) Overhead view of the enivron-
ment. (b) Pattern of movement on the roundabout, extracted with CTMap, using a cell size of
2× 2 m. As a simple denoising step we have removed edges with less than 10 exit events. For
clarity, the entry directions are not shown. The colors refer to the orientation of the vectors.

1.7m after 1.5km (see Fig. 2). Further evaluations on a ten-hour data set in a large
industrial environment resulted in ATEs of under 0.1m and update rates of 510Hz.

3.2 Conditional Transition Maps

NDT-OM can compactly represent dynamic environments, but for social interac-
tion we also need to distinguish directions of motion. For that, we have developed
the Conditional Transition Map (CTMap, Kucner et al, 2013), a grid-based repre-
sentation that models transitions of dynamic objects in the environment. For each
cell x, CTMap learns the probability distribution of an object leaving to each neigh-
boring cell, given the cell from which it entered into x. Based on these learned
patterns, motion directions can then be predicted, which is a very important feature
for socially aware navigation. We evaluated the CTMap approach on data from a
Velodyne-HDL64 3D laser scanner that was placed at the center of a roundabout
during rush-hour (see Fig. 3(a)). The obtained CTMap after 1.5h of observation is
shown in Fig. 3(b). The arrows show the most likely exit directions from each cell.
They are distributed along highly dynamic areas and closely correspond to the shape
of the roads. We also see that the map is able to capture correct motion patterns of
pedestrians on the sidewalks.

As an extension to CTMap, we introduce here the Temporal CTMap. In addi-
tion to the set of conditional probabilities of exit directions stored for each entry
direction of a cell, the T-CTMap stores a bivariate normal distribution to model
the dependencies between entry and exit times. This allows us to not only learn the
average motion directions and speeds, but also the variations of speed. Thus, in con-
trast to Pomerleau et al (2014), who average velocities of neighboring points over
consecutive frames, the T-CTMap represents a complete distribution of velocities.



6 Triebel et al.

Hypothesis 0

Model hyp. 0

Model hyp. 1

Data association

Hypothesis 0

Hypothesis 1

Hypothesis 0

Hypothesis 1

Time step t Time step t+1

CONT
CONT
CONT

MERGE
MERGE
CONT

Group formation Data association Group formation

Model hyp. 3

Model hyp. 4

Model hyp. 5

...

...

...

MATCH
OCC

MATCH

MATCH
DEL

MATCH

MATCH
OCC

MATCH

MATCH
DEL

MATCH

CONT
CONT
CONT

CONT
SPLIT
CONT

CONT
(DEL)
CONT

p=1.0

p=0.4

p=0.6

p=0.4⋅0.3

p=0.4⋅0.7

p=0.6⋅0.6

p=0.6⋅0.4

p=0.36⋅0.7

p=0.36⋅0.3

p=0.24⋅1.0

(a) (b)
Fig. 4 a) In our multi-model MHT approach, group formation hypotheses are interleaved between
regular data association hypotheses. b) A social network graph, based on the output of a probabilis-
tic SVM trained on coherent motion indicator features (relative velocity, orientation and distance).

4 People and Group Tracking

Another crucial component for a socially compliant robot is a reliable detection and
tracking of humans in the environment. As described in Sec. 2, our robot uses 2D
laser and RGB-D sensors, and each has benefits and drawbacks. While 2D laser data
is more robust against illumination changes and provides a large field of view, it is
sparse and has no appearance information. Therefore, we use multiple detection and
tracking algorithms that operate on different sensors, as described next.

4.1 2D Range-based Detection and Tracking

To detect people from 2D laser data, we first segment the data points using ag-
glomerative hierarchical clustering. Then we compute 17 different features for each
segment and apply a boosted classifier that was previously trained on 9535 frames
of hand-labelled data. The resulting detections are tracked using a multi-hypothesis
tracker (MHT), which generates hypotheses by considering all feasible assignments
between measurements and tracks, all possible interpretations of measurements as
new tracks or errors, and all tracks as being matched, occluded or deleted (see Arras
et al, 2008). Each hypothesis represents one possible set of assignments between
measurements and track labels. Given a parent hypothesis and new detections, the
MHT generates a number of assignment sets, where each produces a new child hy-
pothesis branching off from the parent. To prune the exponentially growing hypoth-
esis tree, a probability is computed recursively for each hypothesis using the mea-
surement likelihood, the assignment set probability and the probability of the parent
hypothesis. We use multi-parent k-best branching according to Murty (1968) and
N-scan back pruning (Cox and Hingorani, 1996). A Kalman filter with a constant-
velocity motion model then predicts the state of tracked people.

We extend this MHT approach in Luber and Arras (2013) for the detection and
learning of socio-spatial relations and to track social groupings. To do this, layers
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(a) (b) (c) (d)
Fig. 5 a) Person- and group-tracking experiments during a SPENCER integration meeting. The
robot tracks and guides a group of people to the other end of a corridor. b) Group affiliations
are displayed as green lines connecting the group members. The group is tracked robustly even if
individuals are occluded temporarily. c) The groundHOG detector most likely detects persons in
the distance. d) People near the robot, often partly visible, are detected by the upperbody detector.

with group formation hypotheses are interleaved with regular data association hy-
potheses (see Fig. 4(a)), each leading to a social network graph (see Fig. 4(b)). We
reason about social groupings recursively to achieve real-time tracking performance.
The resulting group information can be fed back into person-level tracking to predict
human motion from intra-group constraints and to aid data association with track-
specific occlusion probabilities. This leads to an improved occlusion handling and
a better trade-off between false negative and false positive tracks. In experiments
on large outdoor data sets, we obtain an improved person tracking by a significant
reduction of track identifier switches (TIS) and false negative tracks. In Linder and
Arras (2014), we extend this to RGB-D data, and we show that the approach can
track groups with varying sizes over long distances with few TIS. Some results of
the combined people and group detection and tracking method are shown in Fig. 5.

4.2 Tracking Based on RGB-D Data

For close-range, appearance-based people detection and tracking we developed a
real-time RGB-D based multi-person tracker (Jafari et al, 2014), which aims at
making maximal use of the depth information from the RGB-D sensors to speed up
computation. It classifies the observed 3D points into object candidates, ground, and
fixed structures, e.g. walls. Ground points are used to estimate the ground plane, and
object candidates are passed to an efficient upper-body detector (Mitzel and Leibe,
2012), which uses a learned normalized-depth template to find head-shoulder re-
gions. It operates on depth only and is thus limited to the depth range of the RGB-D
sensors, i.e. up to 5 meters. To obtain also far-range detections for pedestrians, we
combine the upper-body detector with a full-body HOG based detector. This second
detector runs efficiently on the GPU and uses the estimated ground plane to restrict
the search for geometrically valid object regions (Sudowe and Leibe, 2011). Finally,
we use the estimated camera motion, the ground plane and the detections from both
detectors for tracking based on Leibe et al (2008) (see Fig. 5(c) and (d)).
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5 Human-aware Task and Motion Planning

In SPENCER, there are three main components responsible for planning actions,
interactions and the motion of the platform: the supervision system, the task and
action planner, and the motion planning module. All three operate human-aware,
e.g. by aiming for legibility of the paths and collaborative planning, as detailed next.

5.1 The Supervision System

The supervision system (SUP) interacts with the user and generates and executes
action plans. For interaction, we use the devices ’lights’, ’head’, ’screen’, and ’mi-
crophone’ and provide three interaction modes: Engaging with potential users be-
fore guiding, giving information to guided users, and asking other people to clear
the passage. The SUP also receives safety-critical information, e.g. about planning
failures or potential dangers for humans, and reacts accordingly. Using the work of
Fiore et al (2014), the SUP was built and sucessfully tested in a simplified scenario.

5.2 Action Planning with Human Collaboration

Action planning and execution alone is not sufficient for a socially aware robot, be-
cause it also needs to consider actions performed by the users. For example, while
guiding, the robot has to deal with situations where some members of the guided
group purposely don’t follow the robot. Therefore, we represent the human’s in-
tention as a hidden variable and formulate the problem as a Mixed Observability
Markov Decision Process (MOMDP, Ong et al, 2009), where in contrast to stan-
dard POMDPs some state components are fully observable and others only par-
tially. MOMDPs can be solved much more efficiently than general POMDPs. For
cooperation with humans in different tasks we associate to each task a collaboration
planner (CP) represented as a MOMDP. To reduce complexity we use a simplified
state space, focusing on the intention estimation problem, and let the SUP adapt the
MOMDP plans to the current situation. When executing a cooperative action with a
human, the SUP gathers observations about the human and updates the correspond-
ing CP, resulting in a high-level action adapted to the situation. In our system, we
use a CP for the guiding action and tested it successfully with a single person fol-
lowing the robot. For groups, we currently regard the “most cooperative” behavior,
i.e. we consider the group as following as long as a single member follows the robot.

5.3 Socially Compliant Motion Planning

The motion planning module is the system component for which the benefit of com-
plying with social rules is most obvious. Whereas standard planning algorithms
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(a) (b) (c)

Fig. 6 a) An example tree generated by the RRT* motion planner on IRL cost maps, when a
single relation is in the scene. Red branches are high cost actions, low cost actions are displayed
in blue. b) and c) Learning to approach a person using IRL. The light blue line is the result of the
discretized position and the green line is the smoothed path used by the planner.

mainly aim to find shortest feasible paths, social motion planning trades the shortest
path off with the cost of breaking social rules, e.g. when crossing through a group
of people instead of deviating it. Therefore, our motion planner extends standard
kinodynamic planning in the following ways. First, for global planning we use a
human-aware cost map that ensures a path around the detected people, which hu-
mans consider as safe. Second, our planning algorithm produces legible paths by
avoiding abrupt motion changes in presence of dynamic obstacles and by anticipat-
ing future collisions and adapting the velocity accordingly. The improved legibility
of the produced paths has been experimentally validated in a user study with a robot
platform similar to the SPENCER robot (see Kruse et al (2014)).

As a further extension to standard motion planning, we investigate RRT*-based
planning (Karaman and Frazzoli, 2010) using low-level vehicle constraints in com-
bination with high-level socially compliant cost maps. Our planner uses a novel
extent function for differential-drive robots, which improves the smoothness of the
paths and overcomes some limitations of other existing control laws (see Palmieri
and Arras (2014)). To reduce planning time, we use a learning approach based on a
nonlinear parametric model that infers the distance metric for selecting the nearest
vertex in RRT*. Results of our improved RRT* planner using a cost map learned
with inverse reinforcement learning (IRL, see Sec. 7.2) are shown in Fig. 6(a).

6 Perception of Human Social Attributes

We have shown how information about social human relations is obtained from
basic cues such as tracked groups, and how social rules are used to perform human-
aware actions and motions. However, for a deeper analysis and recognition of social
relations and attributes, more detailed information must be extracted from the sensor
data. Therefore, in SPENCER we develop tools for automatic estimation of body
postures, classification of human attributes such as gender and age, estimation of
head poses, spokesperson detection, and the classification of important objects in
the environment. For the latter three, we present details in the following.
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6.1 Head Pose Estimation

An important cue for human social interactions is the head orientation. Groups of
people can often be recognized as either standing in a circular formation facing
towards the centre, or walking next to each other while looking into the same di-
rection. This suggests that the head orientation can be used to support tasks such as
group detection and tracking. To estimate the head orientation, we classify a given
upper-body detection as looking left, right, front, back or being a false-positive.
Our approach computes a feature covariance matrix of the image’s Lab colors and
applies a Difference of oriented Gaussians (DooG) filter. The result is split into a
regular, overlapping grid and a kernel-SVM is trained on a Riemannian approxima-
tion to the geodesic distance between covariance matrices in each cell of the grid.
We have evaluated various such approximations, which can trade off computational
speed for accuracy, with either an accuracy of up to 93.5% or a two orders of mag-
nitude faster computation than the current state of the art (see Tosato et al, 2013).

6.2 Spokesperson Detection

Another key element of analysing social behaviour is the detection of a spokesper-
son, i.e. a group member who is available for interaction and can make decisions on
behalf of the group. Examples include parents in a family and teachers in a school
class. For the guiding scenario in SPENCER, determining a spokesperson is partic-
ularly useful, because other group members will more likely follow the robot when
the spokesperson does. Thus, even if some members are not tracked due to occlu-
sions, the robot can still guide the group as long as the spokesperson is following.

To determine a spokesperson, one can use heuristics such as people’s height (this
excludes children as a spokesperson) or their position relative to the robot. Another
approach is to use people’s speech patterns to determine dominance in multi-party
meetings (see Hung et al, 2011). However, audio-related cues can not be extracted
reliably in airports. Cristani et al (2012) use body behavior and gestures to clas-
sify a video of four participants having a conversation into intervals of speech or
non-speech. The method achieves 72% accuracy, but the setting is static. However,
in an airport people usually move. Also, from our investigations on the same data
the movements associated with speech are much shorter-lived than the gesture it-
self, i.e. different metrics to quantify gesturing are needed. Furthermore, gestures
can indicate both speaking and “active listening” behavior. In further experiments
with three different implementations of speaker detection using the above data and
recordings from speed datings (Veenstra and Hung, 2011), we found that gesturing
alone is not a good indication for speech (up to half of the observed speech was not
accompanied by strong gesturing), and that the relationship between gesturing and
speaking is person-specific. We are therefore investigating the relation of gestures
and the length of the subsequent speech period for a more reliable speaker detection.
Meanwhile, we use the above mentioned heuristics to determine the spokesperson.
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6.3 Efficient Object Classification using Online Learning

Apart from people and their attributes, the robot must also be aware of relevant
objects in the environment. In an airport, these include moving objects such as carts
and trolleys, which can be dangerous for the robot. However, instead of employing
standard offline learning from previously obtained training data, we develop online
learning methods for object classification. Particularly, we focus on autonomous
learning methods, which have the two major advantages that they are adaptive to
new situations, i.e. they can incorporate new information by updating their learned
models, and they require less user interaction by selectively choosing the data that
is particularly useful for training. Based on the work of Triebel et al (2013, 2014),
we developed in Mund et al (2015) an efficient online multi-class classifier, that
generates less label queries but better classification results than previous methods.
This is particularly useful for classifying and learning many different objects online
and with only little user interaction, as it is given for the application in SPENCER.

7 Analysis and Learning of Socially Normative Behaviors

So far, we have shown cues to analyse human social behavior, and how social rules
can be used to perform a socially compliant robot behavior, particularly during path
planning. But how can we obtain these social rules? In principle, there are two differ-
ent approaches. Either the rules are provided manually by human experts and con-
verted into machine-understandable representations, or they are learned automat-
ically from sensor observations. In SPENCER, we pursue both approaches: High-
level, complex rules are established using empirical user studies, and low-level rules
are learned automatically from demonstrations. Here, we give two examples.

7.1 User Studies and Contextual Analysis

Airport environments are naturally populated by people from many different cul-
tures. Thus, many different social rules may be required here. One example we
investigate is proxemics (Hall, 1966), i.e. the distance the robot should keep from a
group when interacting. We consider this in the exemplified scenario of a robot ap-
proaching a small group of people. The results of an online survey (N=181), which
was distributed to people in China, the U.S.A. and Argentina (see Fig. 7(a)), show
that participants prefer a robot that stays out of their intimate space zone just like
a human would be expected to do (Joosse et al, 2014). However, Chinese partici-
pants accepted closer approaches than people from the U.S.A. and Argentinia. This
suggests a culturally dependent application of social rules also for SPENCER.

Furthermore, we conducted a contextual analysis at Schiphol Airport to analyze
human behavior and to identify observable social rules that the SPENCER robot
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Fig. 7 a) Results of a survey distributed to Chinese, Argentinian and U.S. participants convey
cultural different preferences for human-robot spacing. b) Context analysis at Schiphol Airport
showing that passengers keep a distance from information monitors. Socially normative behavior
here means to not pass in front of the passengers. c) Example of a social navigation setup. The robot
needs to move efficiently from the bottom to the goal (green circle), with minimal disturbance for
the people and social groupings indicated by dotted lines. d) A costmap learned with IRL for the
setup. Areas around people have high cost, but also the ’social’ links between individuals.

must be aware of (Joosse et al, 2015). From video data collected during two con-
secutive days, we established several typical, highly relevant human behaviors. For
example, one such behavior is that groups of people tend to walk in pairs or triads
behind each other. Another one is the typical avoidance of areas close to informa-
tion monitors (see Fig. 7(b)). These findings have direct implications both for the
perception and the planning module of the system, because they potentially lead to a
more reliable group tracking and to a more socially appropriate motion of the robot.

7.2 Behavior Learning via Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL Abbeel and Ng, 2004) aims at recovering
an objective function that encodes a given behavior from an input reward signal.
This is more robust than policy search, because rewards are better generalizable
and more succinct (see Vasquez et al, 2014). We use Bayesian IRL (Michini and
How, 2012) to learn a distribution over the rewards and select the best reward as
the MAP estimate. For experiments we use a custom-made pedestrian simulator
based on models from computational social sciences to perform behavior tests with
arbitrarily large crowds, because testing on the real robot with large crowds is too
costly. Fig. 7(c) shows a typical social navigation setup in a crowded environment.
The learned costmap using IRL is shown in Fig. 7(d). Such a costmap is then used
by the RRT-based motion planner (see Sec. 5.3) to find the desired path for the setup.

Furthermore, we aim at learning relevant social norms when approaching a per-
son. These norms involve a comfortable speed, an appropriate approaching direction
and social relations within groups if the person is in a group. Currently, however, we
focus on approaching only one person. Again we use IRL, and in particular Gaus-
sian Process IRL (Levine et al, 2011) to learn a policy from a set of demonstrations
given by an expert. In our MDP formulation the states are given by distance and ori-
entation in a human-centered frame, and actions are those performed by the motion
planner. Two paths learned from 11 demonstrations are shown in Fig. 6(b) and 6(c).
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8 System Integration and Conclusion

All presented system components are developed independently and simultaneously.
However, to also achieve a steady progress of the entire system, all components
are integrated and attuned to each other in regular meetings every six months. As
a result, the platform in its current state already combines the map representation
presented in Sec. 3, the laser-based people and group tracker (Sec. 4), and the task
and motion planner (Sec. 5). Experiments with the complete system have shown
that the robot is able to approach and engage with a person, receive a goal position
and guide the person or a group to the goal while keeping track of the following
person(s). If a failure of cooperation is detected when the person does not follow
any more, it stops and waits for re-engagement. Encouraged by these results, a first
deployment of the platform at the Schiphol airport is planned for the near future.
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