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Abstract
A wide range of methods have been proposed to detect

and recognize objects. However, effective and efficient multi-
viewpoint detection of objects is still in its infancy, since most
current approaches can only handle single viewpoints or as-
pects. This paper proposes a general approach for multi-
aspect detection of objects. As the running example for de-
tection we use pedestrians, which add another difficulty to
the problem, namely human body articulations. Global ap-
pearance changes caused by different articulations and view-
points of pedestrians are handled in a unified manner by a
generalization of the Implicit Shape Model [5]. An important
property of this new approach is to share local appearance
across different articulations and viewpoints, therefore re-
quiring relatively few training samples. The effectiveness of
the approach is shown and compared to previous approaches
on two datasets containing pedestrians with different articu-
lations and from multiple viewpoints.

1. Introduction

Detecting instances of an object category such as pedes-
trians from single still images has been an active research
topic for a number of years [4, 10, 9, 15, 7, 6, 3, 16]. Many
of the approaches use appearance based models and good
results have been reported on various databases. While the
approaches are typically fast, most of them have been only
trained and used for single aspects or viewpoints of pedestri-
ans such as side-views or front/back-views with two notable
exceptions [15, 3].

The standard approach to multi-viewpoint object detec-
tion is to use several detectors running in parallel and com-
bine their outputs via a complex arbitration scheme [11]. The
main drawbacks of this approach are the need for a com-
plex arbitration logic and for larger amounts of training data.
In addition, it is problematic how a discriminative classifier
for multiple (often similar and correlated) viewpoints of the
same object can be trained. Interestingly, recent work [14]
has shown that the individual detectors’ discriminance can
be increased and the training data can be more efficiently

used when features are shared between detectors.
Even when features are shared between different aspects,

current approaches typically require the training aspects to be
annotated manually. While this annotation step is still feasi-
ble for rigid object categories, it becomes problematic when
dealing with articulated categories such as pedestrians. The
combination of viewpoint and articulation changes makes it
difficult to discretize training views into consistent sets, let
alone to decide how this discretization roster should be set
up.

Instead of specifying the training aspects manually, it be-
comes therefore desirable to deal with various global appear-
ance changes caused e.g. by human body articulations, view-
point changes or object deformations in a consistent manner.
Ideally, those consistent appearance changes are learned au-
tomatically from training data, e.g. by clustering coherent
views. [4] pursues such an approach for detecting pedestrian
side views by clustering silhouettes and storing them in a tree
to speed up Chamfer matching. However, global approaches,
such as the Chamfer matching method, are not robust to par-
tial occlusion and local deformations. Local approaches can
in general deal better with partial occlusions and local defor-
mations but are less suitable to guarantee global consistency.
Therefore it is typically difficult for local approaches to han-
dle or even reliably estimate multiple viewpoints.

The method presented in this paper builds closely on the
approach developed in [6]. In that approach the Implicit
Shape Model (ISM) as a local approach is combined with
a global verification stage based on silhouettes. The global,
silhouette-based verification step essentially allows to en-
force global consistency of object hypotheses generated from
local evidence. While the principal effectiveness of the ap-
proach has been shown, the global nature of the verification
step makes it difficult to deal with partial occlusion. Rather
than to rely on a purely global verification stage the approach
proposed here uses a semi-local (or semi-global) verification
stage for different articulations and viewpoints in a unified
manner. The promise is that this semi-local verification is
more discriminative than a purely local approach while be-
ing more robust than a purely global approach. Interestingly,
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the verification stage can be scaled to behave more locally or
more globally depending on the object category at hand.

The main contributions of the paper are the following.
First, the paper introduces a unified approach for multi-
viewpoint and multi-articulation detection of pedestrians.
Second, through local appearance sharing across articu-
lations and viewpoints we can effectively learn a multi-
viewpoint and multi-articulation object model from rela-
tively few training samples. In a sense this algorithm gen-
eralizes the idea of sharing of features [14] to the sharing
of local appearance across object instances, viewpoints and
articulations. Third, the detection algorithm combines the
robustness of local approaches to partial occlusion and to lo-
cal deformations with the advantages of global consistency
verification. The semi-local nature of this approach can be
scaled either to behave more locally or globally e.g. depend-
ing on the amount of global deformations of the respective
object class

After a brief review of the original ISM recognition ap-
proach (see Section 2) the new extended 4D-ISM approach is
introduced in section Section 3. Section 4 describes experi-
mental results on two challenging datasets containing pedes-
trians from multiple viewpoints and with different articula-
tions.

2. Standard Implicit Shape Model
ISM Training. An ISM [6] is trained by extracting local

features from training examples and modelling their spatial
occurrence distributions on the object category. For this, a
scale-invariant interest point detector is applied to each train-
ing image, and local descriptors are calculated on the ex-
tracted regions. Subsequently, the local descriptors are clus-
tered to form a visual vocabulary (or codebook) of typical
object structures. In a second run over the training data, the
spatial distribution of each codebook entry is estimated by
recording all matching locations on the training objects. In
addition to each occurrence location, a local segmentation
mask is stored, which is later used to infer top-down seg-
mentations for detection hypotheses.

ISM Recognition. For recognition, the same feature ex-
traction procedure is applied, and extracted features cast
votes for object hypotheses in a probabilistic extension of the
Hough transform [6]. Let e be a local descriptor computed at
location `. Each of the local descriptors is compared to the
codebook and may be matched to several codebook entries.
One can think of these matches as multiple valid interpreta-
tions Ii for the descriptor, each of which holds with the prob-
ability p(Ii|e). Each interpretation then casts votes for differ-
ent object categories on, locations λx, λy and scales λσ ac-
cording to its learned occurrence distribution P (on, λ|Ii, `)
with λ = (λx, λy, λσ). Thus, any single vote has the weight
P (on, λ|Ii, `)p(Ii|e) and the descriptor’s contribution to the
hypothesis can be expressed by the following marginaliza-

tion:

P (on, λ|e, `) =
∑

i

P (on, λ|Ii, `)p(Ii|e, `) (1)

=
∑

i

P (λ|on, Ii, `)p(on|Ii, `)p(Ii|e)

P (on, λ) =
∑

k

P (on, λ|ek, `k) (2)

The votes are collected in a continuous 3D voting space, and
maxima are found using Mean-Shift Mode Estimation with
a scale-adaptive uniform kernel K [5]:

p̂(on, λ) =
1

nh(λ)d

∑

k

∑

j

p(on, λj |ek, `k)K(
λ − λj

h(λ)
) (3)

The above equations assume statistical independence of
the local image regions. While this is not generally valid,
it is an approxmation, which works well in practice. Note
also, that the final MDL verification step (see below) helps
to decorrelate the influences of overlapping descriptors.

Segmentation. Beyond object localization, a segmenta-
tion mask can be inferred for each hypothesis. This is accom-
plished by backprojecting the supporting votes to the image
and using the stored local segmentations to infer a pixel-wise
segmentation of the object as shown in [5].

Chamfer Verification. In [6], an additional Chamfer ver-
ification stage is applied to find a shape template that simul-
taneously maximizes the Chamfer score and the overlap with
the hypothesized segmentation. The overlap is expressed by
the Bhattacharyya coefficient [2], which measures the affin-
ity between two distributions. Assuming a uniform distri-
bution for the points inside the shape template s, shifted to
location q, its overlap is compared with the hypothesized seg-
mentation Seg:

O(q) =
∑

x

√

Seg(x)s(x, q) (4)

and a joint score is computed as a linear combination

score = α ·

(

1 −
Dchamfer

β

)

+ (1 − α) · O(q) (5)

MDL Verification. Finally, a Minimum Description
Length (MDL) based verification step is applied in order to
disambiguate overlapping hypotheses. This procedure se-
lects the subset of hypotheses which best explains the evi-
dence in the image (see [5] for details).

3. A 4D Implicit Shape Model
For the original ISM-model introduced in the previous

section good recognition results have been reported on sev-
eral object categories including cars, motorbikes, cows and



pedestrians [5, 6]. All of these results, however, have been
reported for a single viewpoint of a category. It is therefore
unclear how the model performs in a multi-aspect scenario.

This section extends the original model to explicitly han-
dle and estimate viewpoints and articulations of an object
category in a consistent manner. Rather than to use a 3D-
voting space as in equation 2 the new approach uses a 4D-
voting space. The additional dimension summarizes global
appearance changes caused for example by human-body ar-
ticulations, viewpoint changes, or global deformations of the
object shape. It is important to note that it is inherently diffi-
cult to define a metric on global appearance and shape defor-
mations. The additional dimension therefore consists of an
unordered set of discrete global object shapes. The particular
set of object shapes is obtained by a clustering scheme. The
following introduces the learning of these viewpoint and ar-
ticulation clusters and then describes the novel 4D-Implicit
Shape Model.

Learning viewpoint/articulation clusters. Clearly,
manual labelling of aspects in the training data is undesir-
able, since it is both time consuming and difficult if objects
get more complex. Moreover, it’s unclear in how many view-
points or articulations the data should be divided.

Since an object’s shape is often a good indication of the
current viewpoint and articulation, we automatically learn
shape clusters from training data. Each of these clusters cor-
responds to one articulation and viewpoint. During train-
ing we extract object silhouettes or shapes from the training
images and cluster these with an agglomerative clustering
scheme. The similarity measure between two shapes is based
on the Chamfer distance, which enforces global consistency.

As an example Figure 4 shows the articulation clusters for
side-view pedestrians generated by this method.

The advantage of this approach is on the one hand, that ar-
ticulations or viewpoints can be identified without labelling
effort, on the other hand it’s easy to change the number of
clusters by selecting the appropriate level in the clustering
hierarchy.

4D Recognition Procedure. Now, having our training
data labelled with shape cluster information for different ar-
ticulations and viewpoints, we add them as a 4th dimension
to the ISM voting space (see Figure 1). In principle it is pos-
sible to extend the probabilistic formulation (eqs. 1 and 2)
directly to also incorporate multiple shapes s:

P (on, λ, s|e, l) =
∑

i

P (on, λ, s|Ii, l)p(Ii|e, l) (6)

=
∑

i

P (λ, s|on, Ii, l)p(on|Ii, l)p(Ii|e)

P (on, λ, s) ∼
∑

k

P (on, λ, s|ek, lk) (7)

There are several issues with this formulation. First, it is
difficult to estimate the probability densityP (λ, s|on, Ii, l)

reliably due to the increased dimensionality, in particular
from a relatively small set of data. Second, it would be com-
putationally difficult to perform a maximum search in a4-
dimensional space. Third and quite importantly, since the
shape dimension s is neither continuous nor ordered it is not
even clear how the maximum search should be formulated.
The standard ISM approach applies a Mean-Shift search with
a scale-adapted kernel which is no longer feasible for this 4-
dimensional case.

Therefore we use the following factorization to obtain a
tractable solution:

P (on, λ, s|e, l) = (8)
∑

i

P (s|λ, on, Ii, l)P (λ|on, Ii, l)p(on|Ii, l)p(Ii|e)

Please note that all but the first term (P (s|λ, on, Ii, l)) are
the same as in equation 1. Therefore we can use the fol-
lowing simple yet effective strategy to find the maxima of
equation 7. By first searching the K 3D-maxima in equa-
tion 2 we can not only reduce the computational complexity
but also constrain our search to those areas of the probability
density with enough evidence and training data. Choosing K

sufficiently large, we can find all maxima with high proba-
bility. In practice, the results are rather insensitive to the par-
ticular choice of K. For those K maxima we then retrieve
the contributing votes and use the following calculation (for
simplicity of notation we use P (s|H) = P (s|λ, on, Ii, l)):

P (s|H) =
∑

j

P (s|cj ,H)p(cj |H) (9)

=
∑

j

P (s|cj)p(cj |H) (10)

In this equation cj corresponds to the individual shapes
present in the training data and s is a shape cluster. P (s|cj)
represents the probability that shape cj is assigned to cluster
s. Herefore we can either use hard or soft assignments to
shape clusters. If we use hard assignments, we set P (s|cj)
to 1 if cj is contained in cluster s. For the soft assignments,
we use in our experiments the normalized average similarity
of a shape to the shape clusters.

By following the above procedure, we can obtain the 4D-
maxima of P (on, λ, s). This means in particular, that the
votes corresponding to these maxima conform to a common
shape cluster. As a result, the voting scheme produces hy-
potheses, which have a consistent articulation or viewpoint.
An example of this improved consistency is depicted in Fig-
ure 2. The two overlapping pedestrians create an hypoth-
esis with a third foot (second image). By considering the
shape dimension in the voting procedure, the new approach
is able to eliminate this local evidence inconsistent with the
estimated shape cluster.

By altering the thresholds of the clustering step, we can
adjust the above voting scheme to be more sensitive to local



Figure 1. For each codebook entry, we store the spatial occur-

rence distribution, as well as the associated shape resulting in a

4-dimensional occurrence space.

Figure 2. Overlapping pedestrians can lead to hypothesis with too

many extremities. By considering the shape dimension in the voting

framework, these influences can be diminished or even eliminated.

Figure 3. Example images from training set A

or global influences. In the extreme case of only one shape
cluster, we are back at the original Standard ISM, which re-
lies only on local evidence.

4. Experimental Evaluation
The aim of this section is to evaluate the performance of

the new 4D recognition scheme proposed in section 3. The
main emphasize is on the overall recognition performance
by finding hypotheses, which are consistent with the shape
clusters. Additionally, we are evaluating the articulation and
viewpoint estimation as well.

Two sets of experiments are described. Training and test
set A contain pedestrians from a single viewpoint, namely
side-views, but different articulations. A particular challenge
in this experiment is that the backgrounds and the visual ap-
pearance differ considerable between training and test set.
See column (a) of Figure 6 for example images of the test set
and Figure 3 for examples of the training images.

Training set A contains 210 pedestrians, which are mir-
rored in order to have the same amount of pedestrians head-
ing left and right. Test set A consists of images from traffic
scenes with a total of 181 pedestrians. Training and test set
B contain pedestrians from multiple viewpoints. The train-
ing set consists of 412 examples. The test set has 279 images
with a total of 847 annotated pedestrians (see Figure 9).

For both training sets, segmentation masks are available.
These are typically computed from the recorded image se-
quences with a Grimson-Stauffer background model [13].

Figure 4. Automatically found articulation clusters on training set

A for the right-left walking direction. There exist an equal number

of mirrored clusters.

From these segmentation mask, we additionally compute the
shape silhouettes, which are used for the shape clustering
step during model training.

Pedestrians in the test sets are annotated with bounding
boxes. Additionally we annotated the articulation and view-
point. For the viewpoints we use 3 orientations: front-back,
side and diagonal. The articulations are annotated according
to the clusters which resulted from an agglomerative cluster-
ing of the shape silhouettes. This clustering contains 5 ar-
ticulations from a typical walking cycle and their respective
mirrored articulation, which results in a total of 10 clusters
(see Figure 4)

4.1. Test Set A - Articulations
Our evaluation on test set A is conducted with regard to

pedestrian articulations. For model training we use a mod-
ified Shape Context descriptor [1, 8], which has been pro-
posed for pedestrian detection in [12]. For comparison we
also provide the results obtained with plain image patches as
local descriptors.

Figure 5 depicts the respective results. The standard
ISM approach using image patches and the Difference-of-
Gaussians detector achieves only an equal error rate (EER)
of 50%. This is probably due to the large appearance dif-
ferences between training and test set and the difficult data,
which includes heavily cluttered backgrounds. As shown in
[6] this performance can be improved by a Chamfer verifi-
cation stage. For test set A, however, the improvement is
moderate.

Using Shape Context descriptors along with the Hessian-
Laplace detector greatly improves performance to an EER of
74%. Shape Context descriptors seem to generalize better,
since they operate on edge information only (see also [12]).
Further improving these results with a Chamfer verification
fails for a number of reasons. Firstly, the remaining object
instances are quite challenging as these often correspond to
instances with low contrast against the background or sig-
nificant partial occlusion. Chamfer verification is a global
constraint having difficulties with such cases. Particularly
if edge structures are not visible at some part of the object.
Secondly, Shape Context and Chamfer matching both focus
on edge information. Thus, there is no additional comple-
mentary information which is exploited.



Figure 5. Recognition performance on side-view pedestrians (Test

Set A).

The proposed 4D-ISM is a semi-local approach and does
not suffer from the same drawbacks of the global Chamfer
verification. Additionally it exploits consistency information
on the articulation clusters not on a single silhouette alone.
This information has not been available in the standard ISM
approach and results in a significant performance increase.
The 4D-ISM achieves up to 85% EER on test set A, which
means an improvement of 11% (see Figure 5). Therefore
the novel 4D-recognition scheme proves to increase perfor-
mance both with respect to the original ISM approach as well
as the global Chamfer verification scheme.

Figure 6 compares the detection results of Chamfer verifi-
cation and the novel 4D-ISM visually by illustrating some of
the typical failure cases of the global Chamfer criterion. Row
1 and 2 of the figure show how the Chamfer Verification can
get distracted by neighboring edge features and shift the hy-
potheses away from their proper position. Row 4, 5 and 7
depict cases where no training silhouette matches to the test
pedestrian. This can be due to different clothing (row 4) or
partial occlusion (row 5, 7). While Chamfer verification fails
in these cases, the semi-global 4D-ISM still manages to re-
cover the articulation from local information. In general, the
4D-ISM seems to be much less sensitive to background clut-
ter (see e.g. false positive detections on background in row
4 and 6). This can be explained by the fact, that influences
from the background are seldomly consistent with the same
shape cluster and can thus be eliminated in the 4D-ISM.

This results in particular in a better detection precision,
with the first false positive detections appearing at50% recall
(see Figure 5). But also the recognition recall is significantly
improved with the new approach.

The results in Figure 5 also show that using soft assign-
ments in the 4D voting procedure is superior to hard assign-
ments. This was to be expected, since errors in the cluster
assignment have a direct impact on the recognition perfor-
mance. Soft assignments avoid a hard decision and feed ad-

(a) (b) (c)
Figure 6. Articulation estimates containing typical failure cases for

Chamfer verification (silhouettes and shape clusters drawn in yel-

low) – (a) test image, (b) Chamfer verification hypothesis, (c) 4D-

ISM articulation estimate

Figure 7. Typical failure cases of the 4D-ISM approach. False pos-

itives drawn in red.

ditional similarity information to the later recognition stages.
In this way articulations and viewpoints, which are between
the learned clusters are better handled.

Nevertheless there are situations, where even voting with
soft assignments fails. Figure 7 shows some typical fail-
ure cases of the our approach. Mainly, we distinguish two
classes of failures. The first class are missed detections due
to clothing with poor contrast to the background (see first
image of Figure 7). Distracting background structures are
responsible for false positive detections, the second class of
failures. Even though this effect has been successfully re-
duced by the proposed approach, false detections occurr if
local background structures are particularly strong and nu-
merous over a larger image region.

Finally, we compared the obtained results to the state-
of-the-art detector from Dalal&Triggs [3] using the detector
available form the author’s webpage. We had to adapt the
size of the detection bounding boxes, which tend to be quite
large and cause our strict evaluation criterion to reject cor-



Articulation Estimates (column 1-10)

A
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1-
10

) 63% − 5% − 5% 11% − − 16% −

8% 58% − − 8% − 25% − − −

− − 82% − − 5% 9% 5% − −

− − 7% 21% 36% − 14% 21% − −

21% − − − 68% − 5% 5% − −

− − 7% − − 86% 7% − − −

6% − 6% − 6% 25% 44% 6% − 6%

− − 10% − − 10% 10% 70% − −

− − 17% − − − − 17% 33% 33%

− − − − − − 17% 8% − 75%

Table 1. Confusion matrix for the articulation estimate (left/upper
part for articulations heading right, right/lower part for the mirrored
articulations). Rows correspond to the annotations, columns to the
estimates.

rect detections as false positives. The detector achieves an
EER performance of 57% on test set A. To be fair, it should
be mentioned, that our detector was trained in this case on
side-views only, whereas their system was built for multi-
viewpoint detection. On test set B the comparison will be
more meaningful as we also train our detector for multiple
viewpoints.

Using the novel 4D recognition scheme we obtain not
only a position estimate of the pedestrians, but also an es-
timate of the human body articulation. In our evaluation, we
achieve an articulation recognition rate of 63% for detections
at the EER, which is respectable considering that we have a
10 class problem and very difficult background structures.
In order to have a proper comparison for these figures, we
evaluated the articulation estimate on the hypotheses of the
Chamfer verification as well. There an estimation perfor-
mance of 55% is achieved for the same number of clusters.

Table 1 shows the confusion matrix for the articulation
estimates with the 4D-ISM. The upper left part of the ma-
trix corresponds to articulations heading right in the order
depicted in Figure 4. The lower right part to their respec-
tive mirrored versions. The rows of the matrix correspond to
the annotations and the columns to the articulation estimates.
Though the estimation is reliable for most of the articula-
tions, it performs poor on some of them. Often, however, the
estimate confuses the real articulation with one of the neigh-
boring articulations in a walking cycle (see e.g. row 9, where
17% and 33% of the estimates correspond to the previous and
next cluster). Other failure cases include misinterpretation
of the walking direction, which can be hard for articulations,
that are quite symmetrical (see e.g. row 2, where 25% of
the estimates are the correct cluster in the walking cycle, but
heading in the opposite direction).

Finally, we observed that the scale estimation for the hy-
potheses generated by the 4D-ISM is significantly enhanced,
too. This indicates that the quality of the hypotheses is im-
proved by the approach. At the EER, the standard ISM has
a scale estimation error of 6.1%. The 4D voting scheme re-
sults in a scale estimation error of only 4.2%. The reason for
this improvement is that the resulting hypotheses of the 4D-
ISM are more consistent and less influenced by background

structures.

4.2. Test Set B - Viewpoints
On test set B we analyse the performance of the proposed

approach for multi-viewpoint images. Again, we apply the
standard ISM approach, as well as the new 4D-ISM.

The standard ISM approach achieves already an equal er-
ror rate of 74%. Even though all local appearances are in-
corporated into a common model, which discards any infor-
mation about viewpoints, the model seems to be able to suc-
cessfully detect pedestrians in any orientation.

When using 4D-ISM we can further increase this perfor-
mance 77% EER (see Figure 8). Of special interest is also
the fact that the system generates valid hypotheses even if
pedestrians are considerably overlapping or occluded. This
is one of the strength of this semi-local approach.

Particularly the recognition precision in the first part of
the curve benefits from the additional shape dimension with a
16% higher recall for 90% precision. At higher recall values
in the second part of the curve, no significant difference can
be observed. An improvement in recognition recall would
have probably needed a finer grained viewpoint clustering.

In order to compare these results to the state-of-the-art,
we applied again the detector of [3]. The performance of
this detector on test set B is better than ISM and 4D-ISM
for recall values below 40%. Above 40% the proposed 4D-
ISM outperforms the detector with, e.g., 8% higher recall for
80% precision. This indicates that our system can generate
consistent detection hypothesis for difficult test examples at
higher recall values. Especially interesting is, that this per-
formance is achieved by training our detector on only 412
training images. The detector of [3] was trained on 2416
positive examples and 12180 negative examples, which is
more than an order of magnitude more. This demonstrates
the efficiency of our approach to share features between the
different viewpoints and articulations.

As for the viewpoint estimation, an overall accuracy of
71% is achieved for the 3 classes side-view, diagonal and
front-back. As can be seen from the confusion matrix in
Table 2, there is a bias towards the front-back viewpoint.
23% of the side-view pedestrians and 31% of the pedestri-
ans walking diagonal are recognized as frontal or backwards
orientated (last column of the matrix). This seems odd at
first, however it can be explained by the fact, that pedestrians
with closed legs have very similar shapes in any viewpoint
and are hardly distinguishable by the system.

5. Conclusion
In this paper we have introduced a unified approach for

multi-aspect object recognition. The approach is able to au-
tomatically identify the different aspects in the training data,
by clustering the object shapes with an agglomerative clus-
tering scheme. This clustering is used to augment the ISM’s



Figure 8. Recognition performance on multi-view test data (Test

Set B). As the provided detector of [3] uses a fixed threshold, we

could not determine the later parts of the precision-recall curve of

the detector.
Viewpoint Est.

A
nn

o. 66% 11% 23%
6% 63% 31%
2% 2% 95%

Table 2. Confusion matrix for viewpoint estimation (side, diagonal,
front-back). Rows correspond to the annotations, columns to the
estimates.

probabilistic voting scheme with a 4th shape dimension.
Thus, we can search for object hypotheses in a 4D voting
space, which are consistent with the learned aspects. In or-
der to make the search efficient, we proposed to first search
in the marginalized 3D space and use these results to infer
the maxima of the 4D space.

We have shown the performance of the approach on two
challenging data sets with focus to object articulations and
multi-viewpoint detection. Our approach outperforms both
the original ISM approach of [5, 6], as well as the state-of-
the-art detector of [3] on both test sets. Its semi-local nature
combines the robustness of local approaches to partial oc-
clusion and local deformations with the advantages of global
consistency verification.

By sharing features between object aspects, we can ef-
ficiently learn a statistical model from relatively few train-
ing examples. In our experiments, we achieve already good
recognition rates with 50 − 100 training examples.

In addition to the improved recognition performance of
the approach, the new approach enables the estimation of ar-
ticulations or viewpoints of a test object. This is, e.g., impor-
tant in a traffic scenario to predict the direction a pedestrian
is heading.
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Figure 9. Example detections (in yellow) and false positives (in red)

on testset B at the EER.
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