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Abstract

Pedestrian detection in real world scenes is a challenging problem. In recent
years a variety of approaches have been proposed, and impressive results
have been reported on a variety of databases. This paper systematically eval-
uates (1) various local shape descriptors, namely Shape Context and Local
Chamfer descriptor and (2) four different interest point detectors for the de-
tection of pedestrians. Those results are compared to the standard global
Chamfer matching approach. A main result of the paper is that Shape Con-
text trained on real edge images rather than on clean pedestrian silhouettes
combined with the Hessian-Laplace detector outperforms all other tested ap-
proaches.

1 Introduction

Detecting pedestrians or people has been an active area of research in recent years. Gavrila
[5] for example proposes a hierarchy of global pedestrian silhouettes using Chamfer
matching and the distance transform to compare the silhouettes with the image content.
Papageorgiu et al. [18, 17] use Haar wavelet coefficients to build a global pedestrian
model. Zhao and Thorbe [25] perform detection with a neural network and exploit stereo
information to pre-segment the image. Viola et al. [24] use simple local features and a
boosting scheme to train a cascade of classifiers. They use consecutive frames in an image
sequence to detect movement features. Mikolajczyk et al. [13] use several part detectors
that are based on local gradient and Laplacian features. Probabilistic co-occurrences of
these features help to disambiguate detections. Mori et al. [15] model human body con-
figurations where body part templates are represented by local Shape Context. In later
work [16], they apply a normalized cuts segmentation and use shape, shading, and focus
cues for retrieving the body parts. Thayananthan et al. [23] compare Shape Context and
Chamfer matching for recognizing and localizing gestural hand shapes in cluttered scenes.
Forsyth and Fleck [4] introduced the general methodology of body plans for finding peo-
ple inimages. Felzenszwalb and Huttenlocher [3] learn simplistic detectors for individual
body parts. Dynamic programming is applied to connect the detected parts to a hierarchy.
Ronfard et al. [19] extended this work by using stronger classifiers such as SVMs and
RVMs. Mohan and Papageorgiu [14] apply the wavelet-based detectors from [18] to de-
tect body parts and then use body geometry to infer a person’s position and pose. Shashua
et al. [21] divide a search window into 9 overlapping subregions and classify the regions
with a discriminant function. A second-stage classifier based on AdaBoost integrates the
obtained results.



Itis interesting to note that the variability of approaches ranges from global pedestrian
models over part models to models which mostly rely on local features. At the same
time the type of features employed ranges from purely silhouette-based to appearance
based. Since those approaches are seldomly compared, it is currently quite unclear if
global or local models on the one hand and if silhouette or appearance based features on
the other hand are more appropriate for pedestrian detection. Traditionally, silhouette-
based approaches have been pursued since they appeared more intuitive and appropriate.
However the success of more appearance-based approaches questions this intuition.

This paper makes a first step to understand the strengths and weaknesses of various
approaches. The main purpose of the paper therefore is a systematic comparison of some
novel techniques with existing techniques. The first comparison is between global Cham-
fer matching to an extension thereof, namely local Chamfer matching. Quite surprisingly,
local Chamfer matching clearly outperforms the original global Chamfer matching tech-
nigue. In a second comparison, local Chamfer matching is compared to local Shape
Context, where again local Chamfer matching is found to be the better technique when
using silhouette information alone. However when using real edge images for training,
local Shape Context outperforms all other tested approaches. Besides this, we also com-
pare four different interest point detectors in combination with the various local features,
which results in a clear ranking of the different detectors. All results are validated and
replicated on two different training and test sets, suggesting that the obtained results are
indeed generalizable.

The paper is structured as follows: Section 2 shortly describes global Chamfer match-
ing as well as Shape Context and local Chamfer descriptors, which are used within the
Implicit Shape Modelframework. Additionally, this section contains descriptions of the
properties of the tested interest point detectors. Section 3 explains our test setup for the
evaluation and presents the obtained results. A final discussion concludes the paper.

2 System Overview

The main focus of this paper is the comparison of different shape-based detection algo-
rithms for pedestrian detection. A popular detection approach based on global feature is
global Chamfer matching [5]. Approaches based on local features can be integrated using
a voting framework, which accumulates local evidence to joint hypotheses. The voting
framework used in this paper is based on an implementation of the Implicit Shape Model
(ISM) [8, 7].

2.1 Global Approach - Global Chamfer Matching

The global Chamfer approach [5] matches object shape silhouettes to image structures.
For that purpose, a silhouette is shifted over the image, and a didbapgg.(T,|) be-

tween a silhouettd and the edge image at each image locatias calculated. The
distance measure is based on a distance transibFimwhich computes for each im-

age pixel the distance to the nearest feature pixel (e.g. edge piX&&mte(T,!) =

Tl\ Stet DT(t+1). The advantage of matching a silhouette with the distance transform
rather than the original feature image is that the resulting similarity measure will be
smoother [5], which allows to speed up the matching process by employing a hierarchical
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Figure 1: Recognition procedure for the ISM.

coarse-to-fine search.

2.2 Local Approach - Implicit Shape Model (ISM)

Model Training. An ISM [8] is trained by extracting local features from the training
images and modelling their spatial occurrence distributions on the object. For each train-
ing image, an interest point detecor(see section 2.3) is applied, and local featufes

(see section 2.4) are calculated around the extracted points. Subsequently these local fea-
tures are clustered to form a visual vocabulary of typical local features, which we call
codebook. In a second step, the spatial occurrence distributions on the training data are
recorded for each of those typical features. Together with each feature occurrence, a local
segmentation mask is stored, which is later used to obtain a top-down segmentation of
detection hypotheses.

Hypotheses Generation.During detection, the same feature extraction procedure as in
the training step is applied. Codebook entries which match to one of the extracted features
cast votes for possible object locations according to the learned occurrence distributions.
These votes are collected in a probabilistic Hough voting procedure (see upper part of the
loop in Figure 1).

Segmentation and Verification.Beyond the object localization, we can infer a segmenta-
tion mask for each hypothesis. This is accomplished by projecting the supporting features
of a hypothesis back to the image and using the stored segmentation masks for the local
features (see Fig. 3). Finally, a Minimum Description Length (MDL) based verification
step is applied in order to disambiguate overlapping hypotheses. For the computational
details please refer to [7, 8].

2.3 Interest Point Detectors

Within the ISM approach, an interest point deteddas used to extract feature points. In

this paper we use and evaluate four different interest point detectors: Harris, Difference-
of-Gaussian, Harris-Laplace, and Hessian-Laplace. The different types of structures ex-
tracted by these detectors are visualized in Figure 2.
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Figure 2: Interest points (in yellow) on an example image from test set B: (b) Harris
(c) DoG (d) Harris-Laplace (e) Hessian-Laplace. Circle diameters are proportional to the
scale of the corresponding interest point.

Harris Detector (Har). The Harris detector [6, 20] was designed to find corner points
which are repeatable under translation, image-plane rotation, and noise. The basic idea
of this detector is to find image locations where the signal changes in two directions.
The most significant signal changes are given by the eigenvectors of the auto-correlation
matrix, which takes into account the first derivatives of the signal on a window. Hence,
the Harris detector does not respond to straight lines, since the signal changes in a single
direction. The Harris detector is the only interest point detector examined in this paper
which is not scale-invariant.

Difference-of-Gaussian Detector (DoG)The DoG detector [10] detects stable keypoints
across image scales. This is accomplished by searching for scale-space extrema of the
difference-of-Gaussian function convolved with the ima@gx,y,c) = (G(x,y, ko) —
G(x,y,0)) *1(x,y), whereG is a Gaussian function with variane#. The DoG detector

finds blob-like features, but also responds to edges. Keypoints on edges can be unstable,
though, since their localization is not clearly defined.

Harris-Laplace Detector (Har-Lap). The Harris-Laplace detector [11] detects key-
points by a scale-adapted Harris function. It then selects the points for which the Laplacian-
of-Gaussian reaches a maximum over scale. Similar to the Harris detector, this method
finds corner-like keypoints, but in a scale-invariant fashion.

Hessian-Laplace Detector (Hes-Lap)The Hessian-Laplace detector [12] searches for
local maxima of the Hessian determinant. As in the Harris-Laplace detector, a Laplacian-
of-Gaussian is used for selecting maxima over scale. The detector finds blob-like struc-
tures. Its localization accuracy in scale-space is higher than for the DoG detector. More-
over, the scale selection accuracy is better than for Harris-Laplace (see [12]).

2.4 Local Descriptors

In this paper, we compare two shape-based local feature descriptors and apply them within
the ISM framework.

Shape Context Descriptor.The Shape Context was originally developed to find match-
ing points between object shapes [1]. Essentially, it builds for each point along a shape
a log-polar histogram of edges around it. Edge structures close to the reference point are
sampled in more detail than structures further away, as histogram bins become larger with
increasing radius. This is a property equivalent to the idea of Geometric Blur [2]. We use
9 bins for the histogram and distinguish 4 edge orientations for each bin, which results
in a 36-dimensional descriptor (see [12]). Feature similarity is measured by Euclidean
distance.



Local Chamfer Descriptor. Chamfer distances are usually only used for entire object
silhouettes, which is why we call the resulting approgtibal Chamfer matching. The

Local Chamfer descriptor is an extension of this scheme which uses only local areas or
sub-parts of the object shape or edge structure. Thus, matching can be done for subparts of
the object. The edge structure is computed with the Canny detector. To obtain comparable
results to those of [8], we use the same feature size of 25x25 pixels. Feature similarity
is measured by the Chamfer distance between the edge structures. In order to obtain a
codebook of Local Chamfer descriptors, we also use the Chamfer distance for clustering.
Local Chamfer Descriptor and Shape Context Descriptor using real edge images.
Traditionally, Chamfer matching approaches, as well as Shape Context descriptors are
trained on silhouette images. In the later test stage, however, they are applied to real
edge images of which the silhouette images are only an idealized approximation. In order
to make the descriptors more powerful and realistic, we therefore train both descriptors
not only on silhouette images, but also on real edge images. When learning shape-based
features on real edge images rather than on idealistic silhouette images, foreground as
well as background structures influence the resulting features considerably. This is due to
the fact that features may be localized only partly on the object boundary, and thus feature
values can sometimes be dominated by background instead of foreground structures. As
we will see in the experiments, however, this approach improves the detection results
significantly, in particular for the Shape Context descriptor.

3 Experimental Evaluation

The aim of this paper is to evaluate the performance of various interest point detectors
and different shape descriptors for pedestrian detection. The evaluation was conducted
on two different training and test sets containing side views of pedestrians. Training set
A and test sef contain images of people walking on the sidewalk or on the street. The
images are recorded in front of two different backgrounds (the same for training and test
set). In total, the training set consists of 105 images. The test set contains 197 images.

Image seB is more challenging. The images are recorded in common traffic scenes
and pedestrian zones. Pedestrian appearances vary considerably, and people often take up
only a small portion of the image. Also the backgrounds are far more varied and contain
a significant amount of clutter. Figure 3 and 4 show some examples. From this data, we
use 108 images as training &and another set of 181 images as tesBseh particular,
we made sure that none of the pedestrians, nor the image backgrounds occurred both in
the training and the test set. For the results reported below, we use trainitpgether
with training seB and evaluate the performance on testBeat/e also used training sBt
only and obtained results similar to the ones reported below (they were omitted because
of space constraints).

For both training sets, segmentation masks are available. These are either computed
from the recorded image sequences with a Grimson-Stauffer background model [22] or
manually annotated. Pedestrians in the test sets are annotated with bounding boxes.

For the evaluation, both test satand B were rescaled, in order to enable a fair
comparison with Harris points, which are only capable of single-scale detection. DoG,
Harris-Laplace and Hessian-Laplace detectors are scale-invariant and therefore enable
multi-scale detection.



Evaluation Criteria.  The detection quality is measured by three critecazer, overlap
andrelative distance Coverandoverlapmeasure how much the annotation rectangle is
covered by the detection hypothesis and vice versa. Faethtve distancewe consider

the distances between the bounding box centers of annotation and detection rectangle.
We inscribe an ellipse in the annotation rectangle and relate the measured distance to
the ellipse’s radius at the corresponding angle. In the experiments only hypotheses with
values of more than 50% faoverandoverlapand less than.8 for therelative distance

are accepted as correct.

3.1 Results on Test Sef\

In a first step, we investigate the performance of the different interest point detectors for
the Local Chamfer and Shape Context descriptors on tegt. sbtoreover, we explore
how the use of real edge images during training influences detection performance.

Figures 5(a) and (b) show the performance of Local Chamfer and Shape Context
trained on object silhouettes alone. With an equal error rate performance (EER) of up to
80% local Chamfer matching achieves better results than Shape Context with only around
63% EER. Figures 5(c) and (d) show the same detectors, but now trained on real edge im-
ages. In both cases we observe a clear improvement in performance, especially for Shape
Context. Overall, Shape Context trained on real edge images (91% EER) outperforms
all other combinations (up to 84% EER). This is an interesting result, in particular as it
has been reported previously [23] that Shape Context matching does not perform well for
cluttered scenes. From our experiments, one might even conclude that it is necessary to
use real edge images to achieve good performance.

In the same Figures 5(a) through (d), one can observe great differences in detection
performance depending on the choice of the interest point detector. The Hessian-Laplace
detector performs best for most cases. Visually, it finds more points localized on pedes-
trians than the DoG detector and less on the background (see also Fig. 2). The Harris-
Laplace detector also responds well on pedestrians, but detects less points in total. The
Harris detector finds mainly corner points, which occur on both the pedestrian and the
background.

We also compared the above results to global Chamfer matching and the method of
[8], which is based on local image patches of size 25x25 instead of local shape descrip-
tors. Figure 5(e) shows the respective results. The method of [8] achieves performances
comparable to those for the local Chamfer matching. Global Chamfer matching with 4
orientation planes achieves only 77% EER performance, compared to 91% for the Shape
Context descriptor. The local shape-based approaches therefore seem to be better suited
for pedestrian detection than global Chamfer matching alone.

3.2 Results on Test SeB

As already mentioned, test #1is a more challenging image set. Nevertheless, the con-
clusions drawn from test satstill hold and can be reproduced on this test set as well.

With the new training and test set, we performed the same evaluation as before. We
report only the details for the Shape Context descriptor, since again it performed consider-
ably better than the other approaches. In combination with the Hessian-Laplace detector
it achieves an EER performance of 89% (see Fig. 5(f)). The Harris-Laplace, DoG and
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Figure 3: Example detections on test set B with support images and segmentation masks
((b) support and (c) segmentation for Shape Context; (d) support and (e) segmentation for
Local Chamfer).

Harris detectors achieve 83%, 72% and 42% EER, respectively. This is consistent with
the results for test s&§, where we observed the same ranking for the different interest
point detectors.

Integrated over the complete test set, the Hessian-Laplace detector finds ah0600130
interest points; Harris and DoG around 1000; and Harris-Laplace 7000. One could
argue that more interest points lead to better detection results. In order to verify this, we
performed another experiment and increased the thresholds for the Hessian-Laplace de-
tector such that it also yielded only around 1000 points. Indeed, we observed a drop
in performance to 87% EER. However, this result still outperforms the other detectors,
which suggests that the quality of the interest points is higher as well.

The Shape Context descriptor trained on real edge images again achieves better re-
sults than with plain object silhouettes (we only show the best results obtained with the
Hessian-Laplace detector in Fig.5(g)). For test&ehis is more surprising than for test
setA. This time, training and test backgrounds were different. Thus, the Shape Context
descriptor trained on real edge images seems to generalize well even when training and
test backgrounds vary substantially. Again the Hessian-Laplace detector outperforms all
other detectors (89% EER). Additionally as can be seen in Figure 5(g), the Shape Context
descriptor again performs better than all other local descriptors such as Local Chamfer
and local image patches, which achieve equal error rates below 70%. Global Chamfer
matching performs very poorly on test &tvith an EER of 21%.

The results for test set and test seB show that Shape Context descriptors trained
on real edge images together with the Hessian-Laplace detector seem to be particularly
well-suited for pedestrian detection. Figure 4 shows some example detections (row 1 and
2) and typical false positives for this approach (row 3). False positives are sometimes
obtained on background structures with similar edge patterns, such as columns or lamp
posts. In other failure cases, localization of the pedestrian is not precise enough, and the
detection bounding box contains the pedestrian only partially. Quite interesting is the
last example image, where a pedestrian in the background is detected which was just not
annotated. As training s& contains only three pedestrians in frontal views, we did not
expect to detect any non-side-view pedestrians in the test set.



typical false positives drawn in red (row 3).

4 Conclusion

The main aim of this paper was to compare various approaches for pedestrian detection.
Quite interestingly various local approaches based on local Chamfer matching, Shape
Context or image patches outperformed the standard technique of global Chamfer match-
ing. Training the Local Chamfer and Shape Context descriptors on real edge images rather
than on object silhouettes alone resulted in a substantial improvement in detection perfor-
mance. Overall, the Shape Context descriptor trained on real edge images performed
best, particularly on difficult images and backgrounds. Compared to raw image patches
and Local Chamfer, it achieved a gain in EER performance of up to 20%.

The different interest point detectors had a large impact on detection performance, as
well. The scale-invariant detectors perform better than the single-scale Harris detector.
From our experience, this is due to the fact that codebooks from multi-scale detectors
contain both small and large object structures, which can help to disambiguate detections.
Overall the Hessian-Laplace detector outperformed the other detectors for all tested local
descriptors.

In order to further confirm our results, we conducted an additional test on the data
set used in [9]. This data set contains very challenging images with multiple overlap-
ping pedestrians at various scales. As can be seen from Figure 5(h), Shape Context and
Hessian-Laplace achieve a considerable improvement for this data set as well. The EER
performance is slightly higher than the results reported in [9], where a supplementary
Chamfer verification stage is applied. When a larger training set, as in section 3.2, is
used, these results can be improved even further to a final EER of 83%.

In conclusion, using Shape Context descriptors trained on real edge images and the
Hessian-Laplace detector represents a good combination for pedestrian detection. They



outperform the previously used combination of image patches and DoG [8, 9]. Moreover
the Shape Context descriptor has a relatively low dimensionality, which speeds up the
computation of the hypotheses.

In future work we plan to extend this study to other types of detectors, descriptors and
also compare different recognition models. Moreover, we want to investigate the combi-
nation of various local features as well as the combination of local and global information
in order to further improve detection performance.
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Figure 5: Results on test set A (Plots (a)-(e)). Results on test set B (Plots (f) and (g)).
Comparison to the results reported in [9] for multi-scale detection (Plot (h)).




