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Abstract
Visual pedestrian/car detection is very important for mo-

bile robotics in complex outdoor scenarios. In this paper,
we propose two improvements to the popular Hough Forest
object detection framework. We show how this framework
can be extended to efficiently infer precise probabilistic seg-
mentations for the object hypotheses and how those segmen-
tations can be used to improve the final hypothesis selection.
Our approach benefits from the dense sampling of a Hough
Forest detector, which results in qualitatively better segmen-
tations than previous voting based methods. We show that,
compared to previous approaches, the dense feature sam-
pling necessitates several adaptations to the segmentation
framework and propose an improved formulation. In addi-
tion, we propose an efficient cascaded voting scheme that
significantly reduces the effort of the Hough voting stage
without loss in accuracy. We quantitatively evaluate our
approach on several challenging sequences, reaching state-
of-the-art performance and showing the effectiveness of the
proposed framework.

1. Introduction
In the field of robotic perception, object detection plays

an important role. The autonomous entities need to under-
stand their environment and in several cases they are sup-
posed to interact with specific objects (object grasping, ob-
stacle avoidance, etc.). Therefore, a detector that provides
precise localization of objects is needed.

The recent PASCAL VOC Challenge object detection
benchmarks have documented an interesting development,
that simple, global sliding window representations for ob-
ject detection are reaching a performance limit [9] and
part-based models are again gaining popularity [12, 4, 14].
The reasons for this development are twofold. On the
one hand, many object categories are poorly represented
by axis-aligned bounding boxes, such that an increasingly
complex learning machinery would be required in order to
cope with the poor signal-to-noise ratio inherent in a holis-
tic representation. On the other hand, part-based models
have been augmented with powerful discriminative training
methods [12, 19, 4, 14] that significantly increase their ro-

bustness compared to their purely generative predecessors
[11, 13, 17].

At the same time, there has been a growing trend towards
segmentation as an additional cue in order to support, sup-
plement, and interpret the recognition results [15, 4, 18, 1].
This has been helped by the increasing availability of cheap,
pixel-level annotations created through Amazon Mechani-
cal Turk [23], from which category-specific segmentation
methods can be trained [16]. Indeed, segmentation pro-
cesses provide very useful information, since they allow
recognition approaches to perform a more detailed analysis
of the constituent object parts than a bounding box-based
sliding window framework would permit.

Hence, there is a strong incentive to make segmentation
capabilities available to approaches which have so far only
been applied in a sliding window fashion. Class-specific
Hough Forests [14] and their recent extensions [21, 3] are
a particularly interesting case in this respect. They take up
the voting idea of Implicit Shape Models (ISM) [17], but
extend it with densely sampled features and a discrimina-
tive training procedure. Hough Forests have been shown to
reach comparable performance to sliding window classifiers
on a number of benchmark datasets [14] and are inherently
capable of multi-class detection.

However, so far Hough Forests have only made use of
part of their full potential. In particular, they do not include
the top-down segmentation capabilities that were available
in their ISM predecessor. In addition, compared to effi-
cient sliding window implementations, the Hough voting
step incurs considerable computational effort. A Hough
Forest trained for a challenging object category will gen-
erate a large number of votes to be processed, limiting the
approach’s effective run-time.

In this paper, we propose an extension of the Hough For-
est approach that addresses both of the above issues. (1) We
show how top-down segmentation capabilities can be inte-
grated into the detection process and that this integration
improves the quality of the resulting detections. Compared
to previous procedures for sparse feature based segmenta-
tion [17, 20], the transition to densely sampled features ne-
cessitates several adaptations. We propose an efficient algo-
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rithm to compute top-down segmentations from Hough For-
est detections and derive a hypothesis verification scheme
that outperforms currently used schemes [14, 3]. (2) In ad-
dition, we propose a cascaded evaluation strategy that sig-
nificantly improves the run-time of Hough Forest detectors
without loss in accuracy. Our approach first uses a single
Randomized Tree to define conservative regions-of-interest
in which later features need to be evaluated. It then applies a
binned vote casting strategy that limits the number of votes
considered by each evaluated image patch to a small frac-
tion of the original votes. Together, those two steps reduce
the run-time of the voting step by a factor of more than two.
Related Work. Our proposed approach builds upon
the class-specific Hough Forest detection framework by
[14], which is in turn inspired by the ISM detector from
[17]. Both of those approaches map the appearance of ob-
ject parts onto visual words with specific spatial distribu-
tion. For generating the visual words, [17] clusters regions
around interest points, while [14] uses the Random For-
est framework [5]. This change enables the transition from
sparse to dense features and the use of discriminative train-
ing, which together significantly improve the detection re-
sults. Additional improvements for vote weighting and non-
maximum suppression have been proposed by [19] and [3].

The ISM detector [17] includes the capability to infer
probabilistic segmentations by back-projecting the votes
that contributed to a Hough-space maximum. However, the
segmentation results are not very precise due to the sparse
sampling only at interest points. In the recent work of [21],
back-projection was also used in a Hough Forest frame-
work, but only to reveal the support of a hypothesis in the
image domain. In our method, we take full advantage of the
back-projection process together with the dense sampling
by Hough Forests, resulting in precise segmentations.

Cascading strategies are a well-established means to
speed up object detector evaluation [24]. The idea behind
cascading is that some image regions are so different from
the target object class that they can be rejected already using
very simple classifiers. A cascade of object/non-object clas-
sifiers was successfully applied for face detection in [24].
Another approach that uses a cascaded framework is the
cascaded part-based model of [10], where each part appear-
ance model reduces the search space of its children models.
In this work, we propose a similar cascading idea in order
to speed up Hough Forest voting.

2. Object Detection with Hough Forests
This section describes the necessary background of the

Hough Forest framework [14] and the notation that we will
use in the rest of the paper. A Hough Forest consists of a
collection of randomized trees. Each image patch is passed
through all trees in parallel. In each non-leaf node, a sim-
ple binary test is performed. The test is applied to each

patch that arrives in the node, and its output defines the
child the patch will proceed to. Once a leaf node is reached,
it casts votes for possible positions of the object center in a
probabilistic Generalized Hough Transform, similar to [17].
Maxima in the Hough voting space correspond to object hy-
potheses.
Feature Channels. The images that are used for training
and testing are usually in RGB format, which in most cases
is not discriminative enough. We therefore compute the fol-
lowing feature channels: L ∗ a ∗ b color, first and second
order derivatives in x and y, and 9 HOG-like [6] channels.
In the case of pedestrians, we apply min and max filters in
a spatial window of 5× 5 pixels, similar to [14].
Training. The training procedure first extracts a set of ob-
ject and background patches. A patch can be expressed as
fi = (Ii, ci,di), where Ii corresponds to the feature chan-
nel, ci is the class label, and di is the relative position of the
patch to the object center (note that di is undefined for back-
ground patches). Based on such a set of patches, the Hough
Tree is then constructed recursively, starting from the root.
The selection of random tests is based on how well they sep-
arate the input set of patches. The quality of the separation
is measured by one of two uncertainty measures: class label
uncertainty U1 and offset uncertainty U2

U1(A) = |A| · E(ci) (1)

U2(A) =
∑

i:ci 6=background

(di − d̄), (2)

where A is the set of patches assigned to a node, E the
class label entropy and d̄ is the mean offset of this set. The
first measure tries to create two subsets of patches that are
as pure as possible in terms of their class labels, while the
second measure forces the patches’ offsets to be spatially
coherent. When the number of patches is below a certain
threshold or the maximum predefined height of the tree is
reached, the node is declared a leaf. For every leaf, we store
the proportion of object vs. background patches as an indi-
cator of the node’s specificity for the given object class, as
well as the spatial distribution of the offsets that reached the
leaf in a non-parametric model.
Testing. The Hough Forest framework is based on the
Generalized Hough Transform. In this paper we follow the
probabilistic framework of [17]. Given a novel image, we
first compute the same feature channels as during training.
The next step is to extract patches from the image and its
corresponding feature channels. As in [14], we sample the
image in a pixel-wise grid with patches of size 16× 16.

Let f be an extracted patch at location λ with appear-
ance I(λ), namely the feature channel values. This patch is
matched with visual word L by passing it through a Hough
Tree, as each leaf represents a visual word. When the leaf
L is activated, it casts votes for a possible object center at
positions x with probabilities p(x|λ,L). Those probabil-
ities are estimated by the proportion CL of object patches
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Figure 1. Visualization of the efficient top-down segmentation pro-
cedure proposed in this paper. Each leaf node of the Hough Forest
contains a list of stored voting locations, together with an index
to a segmentation codebook. This codebook stores local figure-
ground labels that are back-projected to the image.

that were stored in leaf L, divided by the total number of
patches DL in this leaf. Extending the case to a forest with
T trees, the voting can formally be expressed as:

p(x|λ, f) =
T∑

t=1

p(x|λ,Lt) (3)

=
T∑

t=1

 1
|DLt |

∑
d∈dLt

exp
{
‖(λ− x)− d‖2

2σ2

}·CLt

The patches that are able to vote for an image location x
are limited to a certain region around this location, and this
region depends on the trained class. In Section 4, we will
present an extension that takes advantage of this property
to speed up detection. When all patches in the image have
traversed all the trees in the forest and all votes have been
cast, we smooth the obtained Hough space with a Gaussian
of scale σ.
Hypothesis Selection. The final step of the algorithm
is to extract maxima in the smoothed Hough space using
non-maximum suppression (NMS). The maxima from the
Hough space correspond to hypotheses for the object cen-
ter position and thus to bounding boxes. In order to detect
objects of different sizes, the test image is processed at mul-
tiple scales. The verification of hypotheses is performed by
checking the overlap between two hypotheses. In line with
[14], we use the bounding box intersection-over-union cri-
terion (IoU) [9] here.
Insights in the training and testing phase. The stan-
dard training procedure for object detectors is to take an
off-the-shelf training dataset or to create a new one that bet-
ter captures the implicit structure of the target class. The
main effort is spent on the positive images in order to ob-
tain specific properties, such as a large number of object
instances, large variance between the instances, etc. On
the other hand, the usual criterion for choosing a negative
dataset is simply that it should not contain instances of the
target class. [26] has shown for holistic detectors that this
is not always optimal. Following their example, we inte-
grate into the negative dataset positive examples of object

instances at larger scales from those that are used in the
positive set. In this way, our part-based detector becomes
more robust to false positives occurring on individual body
parts, a phenomenon that is more frequent in cases where
the detector searches for objects across a large number of
scales (see Section 5).

After the extraction of maxima in the Hough space, the
hypotheses are represented as bounding boxes in the im-
age domain. The final set of hypotheses is selected based
on their Hough scores and an overlap criterion. By vary-
ing the IoU overlap threshold, hypotheses can be discarded
or accepted. However, as pointed out by [25], such an ap-
proach is not optimal. Cases where objects are close to each
other have large IoU values, while small bounding boxes
that overlap strongly with larger ones result in small IoU
values because of the difference in the size ratio. We intend
to solve this problem by making decisions on a pixel level,
using the probabilistic segmentation of hypotheses, inferred
by the method described in the next section.

3. Inferring top-down segmentations
The goal of the Hough Forest top-down segmentation

framework is to generate a figure-ground segmentation for
each hypothesis. The segmentation is expressed in a proba-
bilistic way, meaning each pixel of the hypothesis has a cer-
tain probability of belonging to foreground or background.

3.1. Efficient Top-Down Segmentation
Training. In order to incorporate the top-down segmen-
tation capabilities into the Hough Forest framework, it is
necessary to record additional information about the votes
that are stored in the leaves of the trees. This additional in-
formation comes in the form of a local figure-ground mask
that corresponds to the patch sampled from the training im-
ages. This means that figure-ground segmentation masks
are required for the training images. However this is not a
drawback anymore, since many publicly available datasets
provide fine [17, 26] or coarse [22] segmentations. More-
over, the use of Amazon Mechanical Turk [23] has opened
new possibilities in the annotation process.

As a consequence of working with densely sampled im-
age patches, storage and processing of the segmentation
masks for every extracted patch requires a considerable ef-
fort in terms of memory and computation time. For this
reason, we propose the generation of a mask vocabulary,
based on a random subset of figure-ground patches, which
are clustered using average-link agglomerative clustering
with Normalized Grayscale Correlation (NGC) and a cut-
off threshold set to 0.7. The cluster centers will be used
as figure-ground visual words. Therefore, when a patch is
extracted from a training image, the corresponding figure-
ground mask is matched to a vocabulary entry and we can
store only the ID of the entry (Fig. 1). In this way we reduce



the amount of memory that is used for the figure-ground
masks storage.
Testing. In the voting phase of the algorithm, we first fol-
low the same procedure as described in Sec. 2. Top-down
segmentations are obtained from the back-projection of the
votes that caused a maximum in the Hough space. Once
a maximum is found, we retrieve all information from the
votes that contributed to this maximum, namely the contri-
bution of each vote, the position of the patch the vote was
cast from, and the index to the stored mask vocabulary en-
try.

Knowing the position from where a vote came and its
contribution, we back-project the figure-ground mask to the
image space and weight it according to the corresponding
vote’s contribution, similar to [17]. Repeating the same
procedure for every vote in a Hough-space maximum will
result in a figure-ground segmentation for the hypothesis.
In particular, we compute the figure and ground probabili-
ties for each pixel p based on the patches (λ, f) containing
that pixel, which were back-projected from the hypothesis.
Knowing the weight and the matched figure-ground vocab-
ulary entry for the vote that contributed to a hypothesis h at
position xh, we derive the figure and ground probabilities
as follows [17]:

p(p=fig |xh) =
∑

(λ,f)3p

p(p=fig |λ, f)p(λ, f |xh) (4)

p(p=gnd |xh) =
∑

(λ,f)3p

(1− p(p=fig |λ, f))p(λ, f |xh)(5)

where p(p = fig |λ, f) is obtained from the correspond-
ing pixel in the stored figure-ground mask. Effectively, this
procedure can be realized by iteratively adding the back-
projected figure-ground patches to an initially empty result
image, weighted by the contribution of the corresponding
votes. This can be implemented extremely efficiently on
today’s graphics cards. The final segmentation is then ob-
tained as the pixel-wise likelihood ratio between the figure
and ground probability maps. Some example segmentation
results are shown in Fig. 2.

In the following, we denote the probability maps by
p(fig |h) and p(gnd |h), respectively. The area Segh where
p(fig |h) is larger than p(gnd |h) is considered to be the ob-
ject area and this region will be used for solving the final
hypothesis selection problem.

3.2. Segmentation-based Hypothesis Verification
[17] introduced a quadratic binary optimization proce-

dure for non-maximum suppression based on the MDL
principle. The main idea behind this approach was to dis-
tribute a hypothesis’ score over its supporting pixels in the
form of the p(fig|h) probabilities, while enforcing that ev-
ery pixel can only contribute to a single hypothesis. In this
section, we revisit this procedure and examine how to adapt
it for densely sampled image features.
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Figure 2. Example results of the Hough Forests top-down segmen-
tation on different test sequences used in this paper.

In [17], the initial MDL score for each hypothesis was
calculated based only on the figure probabilities p(fig|h) ∈
Segh. However, considering only the p(fig|h) term in the
Hough Forest framework results in decreased performance
for some datasets. The main reason for this effect is that
Hough Forests perform a dense sampling over the image
and a large number of patches contribute to a hypothesis.
These patches result in a large variance in the figure-ground
masks, and the contribution is not proportional to the ob-
ject area they cover. In particular, a patch containing only
a foot of a pedestrian can have larger contribution to the
Hough score than a patch that lies inside the body of the
pedestrian. Nevertheless, the patch from the body will yield
a higher p(fig|h) contribution, as it contains more figure
area. Hence, it is necessary to integrate also the p(gnd|h)
score into the total contribution. Below, we present two
methods that can be used in computing the hypotheses’
scores and for resolving their conflicts.
Version 1. This version of calculating scores and defin-
ing interaction terms between hypotheses is based on [17].
Once the p(fig|h) and p(gnd|h) probabilities have been
calculated, the scores qii and interaction terms qij for the
hypotheses are computed as follows:

qii =
1
Ahi

∑
p∈Seghi

p(p = fig|hi) (6)

qij =
1
Ahk

∑
p∈Oij

p(p = fig|hk), (7)

where hk, k∈{i, j} is the hypothesis with the smaller score,
Ahk

is the expected area for this hypothesis (in our ex-
periments, this term is equal to the size of the hypothesis’
bounding box), andOij = Seghi∩Seghj is the overlapping
area between the two hypotheses.
Version 2. The main idea behind our improved scoring
scheme is to distribute the hypothesis score over all pix-
els that contributed to the Hough score. That is, we also
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Figure 3. Cascaded Hough Forests with Binned Voting. The first tree defines the regions of interest around possible hypotheses. Each of
those regions and the leaf distributions are subdivided into bins. Patches belonging to one bin in a hypothesis region cast only the votes
that contribute to the center of the region.

consider the contribution to a hypothesis’ Hough score that
was caused by background pixels around the object’s bor-
der, which may be particularly discriminative.

The initial score for each hypothesis is found by back-
projecting the votes around a Hough maximum (we define
a 5 × 5 box kernel Φ(h) in our current implementation),
and adding their contribution, resulting in a score similar
to the Hough score. In fact, given our new definition, the
score qii assigned to hypothesis hi is the sum of the Hough
scores of the bins in the hypothesis neighborhood Φ(hi) be-
fore the Gaussian smoothing, multiplied by the patch size in
pixels. In parallel, we compute the top down segmentation,
as described in the previous subsection. Having an initial
score for each hypothesis, the segmentation Segh, and the
p(fig|h) probabilities, the calculation of each pixel’s con-
tribution to the score is feasible.

When two hypotheses hi, hj overlap in an area Oij , they
compete for the assignment of the overlapping pixels. In
the current framework, we assume that the hypothesis with
the larger score is in front of the other one. Thus, if hi

has larger score, we want to penalize hypothesis hj for the
overlapping area. The part of p(fig |hj)∈Oij is an indica-
tor of how much we should penalize the second hypothesis,
as these pixels will be assigned to hi. Since the hypothesis
score qjj =φ(hj) from which this penalty is subtracted now
also includes a ground contribution p(gnd |hj), we need to
introduce a weighting factor r, which scales the penalty ac-
cording to the total contribution φ(hj):

qii = φ(hi) =
∑

p∈Areahi

(p(p=fig |h) + p(p=gnd |h)) (8)

qij =
∑

p∈Oij

p(p=fig |hk) · r, (9)

where Areahi
describes the pixels where figure and/or

ground probability exist and hk is the hypothesis with the
smaller score and

r =
φ(hk)∑

p∈Seghk
p(p = fig |hk)

. (10)

The final hypothesis selection for both versions is per-
formed using the greedy search algorithm described in

[17], which solves a quadratic binary optimization problem
maxmmTQm, with the interaction matrix Q = {qij} and
the indicator vector m ∈ {0, 1}N (a global maximum solu-
tion is not always feasible).

The choice of the scoring scheme depends on the spe-
cific problem. In scenarios with constant background and
large overlap between the objects, the first scoring scheme
(MDL1) performs better. On the other hand, MDL2 is more
suitable for most practical scenarios. A more extensive eval-
uation of the two scoring schemes is presented in Sec. 5.

4. Cascaded Hough Forests
The general Hough Forest framework processes the im-

age in the following order: feature extraction, tree traversal,
voting, and post-processing of the Hough space. During
our experiments, we noticed that the most expensive part
of the pipeline is the voting stage. Moreover, the time for
voting increases with the number of trees and the number
of patches that were used for training. In our approach, the
voting and post processing steps require additional time and
memory, because for each vote we store its contribution,
the position from where the vote was cast, and the index to
the associated mask vocabulary entry. Given that we sam-
ple the image in a pixel-wise grid and we typically use 15
trees, the number of votes that are cast to the Hough space is
considerable. Reducing the number of training samples per
tree or performing voting with fewer trees decrease the per-
formance, especially in the complex datasets. Therefore, a
more sophisticated solution that reduces computation with-
out losing performance is necessary.

4.1. Cascaded Tree Voting
The cascaded voting scheme builds upon two ideas: 1)

The first tree of the forest is able to roughly locate all the
true positives, plus a number of false positives whose rela-
tive Hough scores will be reduced by the accumulated votes
of the next trees. 2) The region of the image that can provide
votes (support) to a hypothesis is restricted to the neighbor-
hood around the hypothesis. Therefore, the first tree of the
forest can be used as an indicator in order to find possible
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Figure 4. The performance of the Hough Forest detector increases
with the integration of true positives at different scales into the
negative dataset (50k patches for building a tree).

hypotheses and the remaining trees in the forest only need
to process the regions around those neighborhoods.

The back-projection of the votes that contributed to a
Hough maximum indicate the support of the hypothesis in
the image domain. The contributing patches come from a
region around the Hough maximum: During training, the
patches are sampled from the training images in order to
represent part of the object instance. The information from
where we are able to sample patches is offered as bounding
boxes or segmentation masks. However, the range of poses
of objects such as pedestrians or cars is limited. Therefore,
there is a rectangleR that bounds all the patch locations and
consequently the votes in the leaf distributions.

On the other hand, an image patch can vote only in its
neighboring region. This region is defined by the rectangle
R. Therefore, once the first tree finds a set of hypotheses
H = {hi}, we place the rectangles Ri to the correspond-
ing positions of hi. The union of all rectangles Ri gener-
ates the area A that will serve as the region of interest for
the later trees in the forest, reducing the computation time
spent on patches traversing the trees and casting votes. In
addition, the memory requirements are reduced, as the to-
tal number of votes is decreased significantly. The first two
images from Fig. 3 visualize the proposed procedure.

4.2. Binned Voting
The cascaded scheme and the introduction of the rect-

anglesRi around possible hypotheses hi allow for a further
clipping of votes. In order to speed up the voting process for
the remaining trees in the forest, we subdivide the minimum
rectangleRi intoM×N bins. This rectangle bounds all the
votes stored in the leaves of the Hough Forest, as well as the
patches that can contribute to one hypothesis. Therefore, it
can be used as a common framework for the bin parameter-
ization of a patch’s location relative to the object center, as
well as for the votes in the leaf distributions.

Within the binned framework, the center of the rectan-
gle Ri and a patch inside the rectangle are assigned to a
bin. Once the patch is matched to a leaf in a Hough tree,
votes are cast according to the stored spatial distribution.
The votes that are cast insideRi correspond to several bins.
However, only the votes that are located in the bin of the
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Figure 5. Comparison between different post processing methods
(MDL1, MDL2, and IoU with thresholds 0.3 and 0.5) on the TUD
Crossing and Campus datasets.

center ofRi will contribute to the particular hypothesis.
The votes that belong to one bin in the rectangleRi, also

belong to one bin in the binned leaf spatial distribution. The
goal of binned voting is to accept only the votes that lie in-
side the bin where the center of the rectangle is located. In
order to find which bin in the leaf distribution corresponds
to the rectangle center’s bin, we use the relative position be-
tween the bin position of the patch and the bin location of
the center. This mapping is necessary, because the centers
of the spatial distributions in the leaves represent the part
locations, while the center of rectangleRi is the center of a
possible object. Once the respective bin in the leaf distribu-
tion is found, we cast only the votes that belong to that bin
and discard the others, as shown in Fig. 3(right).

5. Experimental Results
Training Sets. For the side-view pedestrians, we use the
TUD dataset that was also used in [14, 2]. This training
dataset contains 400 images of pedestrians, which we mir-
rored to get 800 training examples. As negative images,
we used a random subset from the background images of
the INRIA dataset [6], plus the negative pedestrian exam-
ples from [26] and a random subset of our true positives at
larger scales (518 images total). In this way, the system is
more robust to false positives generated by structures that
belong to parts of the object (Fig. 4).

For the multi-view pedestrians, we integrate the TUD
dataset (0◦ side views), with a multi-view pedestrian dataset
of our own (198 images total, consisting of 55 images at
45◦, 76 at 90/270◦, and 67 at 135◦). The negative set is the
same as for the side view case. Note that the dataset is not
optimal, as the number of images per view is not balanced,
ranging from 55 to 400 examples.

For the multi-view car forest we used the training images
from [8] (7 viewpoints, 1279 images in total) and the forest
was trained similar to [21].
Test Sets. Fig. 2 lists the datasets we used for testing.
The TUD Crossing/Campus datasets contain side views of
pedestrians in different scales, and consist of 201 and 71
images respectively. The other pedestrian dataset we used
in our evaluation is ETH Person, which contains three se-



Recall IoU Precision
72.15% 62.54% 82.45%

Table 1. Segmentation results on the TUD-Crossing sequence (de-
tection EER).

quences of 999, 450, and 354 images. The bounding box
used for pedestrian detection is 40× 100 pixels.

In addition, we examine the behavior of the our method
on the multi-view car dataset ETH-Bellevue from [8]. This
sequence (377 images) contains 1591 annotated cars as
small as 20 pixels height.
Top-down Segmentation. Fig. 2 shows example segmen-
tations obtained with our approach (more results and videos
are given in the supplementary material). In order to quan-
titatively evaluate the segmentation performance, we man-
ually created ground truth segmentations for every 10th

frame of the TUD-Crossing sequence and applied the eval-
uation measures from [9]. Tab. 1 shows the correspond-
ing segmentation performance at the approach’s detection
Equal-Error-Rate (EER) point.
Segmentation-based Verification. Next, we compare
the performance of our top down segmentation approaches
against the IoU bounding box criterion (Fig. 5).

On the TUD Crossing sequence, the pedestrians can be
detected using only three scales and the number of overlap-
ping pedestrians is large. Both MDL 1 and MDL 2 perform
well, with MDL 2 showing better performance in the high-
precision range. Here the performance of IoU 0.3 is sat-
urated at 93% recall, because the overlap threshold rejects
hypotheses close to each other.

In TUD Campus, 5 scales were used and the improve-
ment by the top-down segmentation is clearly visible. True
positives at small scales are correctly accepted, while false
positives caused by parts of pedestrians are removed. In
contrast, the IoU criterion is not able to handle strong occlu-
sions between objects, while rejecting the false positives.

Finally, we tested the performance of our system on the
TUD Crossing and TUD Campus sequences with the ex-
tended annotations of [3]. This annotation set includes ev-
ery pedestrian whose head and at least one leg is visible.
As Fig. 6 shows, our approach performs equally well on
those more challenging annotations. For the TUD Crossing
sequence, both MDL1 and MDL2 outperform [3]. On the
TUD Campus sequence, MDL1 gives better results than [3]
in the high-precision regime, while MDL2 performs compa-
rably in this range. Both approaches however do not reach
the very high levels of recall that [3] can achieve.

From the above experiments we can conclude that
MDL1 is suitable for scenarios with relatively simple back-
grounds, and objects suffering from strong occlusions. On
the other hand, MDL2 is more stable in dynamic environ-
ments, where it can reliably reject false positives on the
background, due to the more discriminative Hough score.
For this reason, we choose MDL2 for all subsequent exper-
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Figure 6. Effect of MDL1 and MDL2 on the updated annotations
of [3] for Crossing and Campus datasets.

Single View Multi View
Original MDL Original MDL

Original 14.97 s 34.21 s 41.87 s 143.09 s
Cascaded 12.20 s 24.05 s 32.60 s 38.51 s
Binned 8.49 s 14.90 s 30.22 s 31.98 s

Table 2. Times for the voting step for the different voting schemes
(single-view: TUD Crossing; multi-view: ETH-Bellevue cars).

iments.
Cascaded Voting. In the next round of experiments, we
demonstrate the gain of the cascaded and binned voting
schemes on the ETH-Person dataset, using the same eval-
uation protocol and annotations as [26]. Fig. 7 shows the
results of this experiment. We observe that the binned vot-
ing procedure does not introduce any loss in performance
(IoU 0.3 and IoU 0.3 Binned curves). Comparing Binned
MDL2 with the results of the original ISM detector [7], we
clearly see that our framework outperforms the sparse fea-
ture based version in all sequences. In order to relate our
approach’s performance to that of a more recent state-of-
the-art detector, we plot the HOG+HIKSVM performance
[26]. As Fig. 7 shows, MDL2 performs only slightly worse
than HOG+HIKSVM on ETH-02, but outperforms the lat-
ter on ETH-01 and ETH-03.
Multi-View Case. For this experiment, we used a multi-
view Hough Forest. Fig. 7(d) shows the performance of
MDL2 with cascaded voting compared to IoU 0.5 with
the same voting scheme on the ETH-Bellevue sequence.
Again, these results confirm the improvement of MDL2
compared to the simpler IoU criterion. In addition, they
show that our framework can be successfully extended for
multi-view/multi-class object detection.
Runtime Improvement. As pointed out before, the voting
stage is currently the most expensive part of the algorithm.
In order to quantify the improvement of cascaded voting, we
use the single-view pedestrian and multi-view car Hough
Forest detectors and measure the time spent on casting the
votes (the other parts are almost negligible). Table 2 shows
that both the cascaded and the binned voting bring consid-
erable improvements in our current (unoptimized) imple-
mentation, rendering the more expensive MDL procedure
affordable.
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Figure 7. Performance of our approach and comparison of the proposed framework against [26, 7] on the ETH Person dataset.

6. Conclusion
In this paper, we have proposed two improvements to

the Hough Forest detection framework. The first contri-
bution is a way to integrate the ISM top-down segmen-
tation capabilities into Hough Forest detectors. We have
shown that the use of densely sampled image features re-
quires several adaptations to the segmentation framework
and proposed an improved hypothesis selection strategy
building upon the segmentation results. Our second contri-
bution is a cascaded voting strategy that reduces the effort
of the Hough voting stage without loss in detection accu-
racy. Both improvements are general and can be readily in-
tegrated with other recent Hough Forest extensions [3, 21].
As our experimental results have shown, the resulting de-
tector is competitive with current state-of-the-art detectors
such as HOG+HIKSVM.
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