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Abstract

This paper presents a robust real-time multi-person tracking framework for busy
street scenes. Tracking-by-detection approaches have recently been successfully applied
to this task. However, their run-time is still limited by the computationally expensive
object detection component. In this paper, we therefore consider the problem of making
best use of an object detector with a fixed and very small time budget. The question we
ask is: given a fixed time budget that allows for detector-based verification of k small
regions-of-interest (ROIs) in the image, what are the best regions to attend to in order
to obtain stable tracking performance? We address this problem by applying a statistical
Poisson process model in order to rate the urgency by which individual ROIs should be
attended to. These ROIs are initially extracted from a 3D depth-based occupancy map of
the scene and are then tracked over time. This allows us to balance the system resources
in order to satisfy the twin goals of detecting newly appearing objects, while maintaining
the quality of existing object trajectories.

1 Introduction
In this paper we address the problem of vision-based multi-person tracking in busy urban
environments using a camera setup mounted on a moving vehicle, e.g. an autonomous mobile
robot. Recent years have seen considerable progress in this area, fueled by the development
of advanced tracking-by-detection approaches [1, 8, 10, 14, 26]. However, those approaches
require a robust object detector, which is triggered for each frame to detect all target objects
in the scene. Although efficient CPU-based [19] and GPU-based [17, 25] detectors have
been proposed for this purpose, their requirements with respect to computational power and
energy consumption are not yet satisfactory for use on autonomous platforms.

Approaches targeted at automotive scenarios have had to deal with this problem for a
long time. They usually restrict detector evaluation to a small number of pre-selected ROIs
[11] based on 3D geometry [3], motion [5], texture content [20], or stereo depth [10]. Recent
approaches targeted at mobile robotics have adopted similar strategies [1, 2]. However,
such approaches risk losing detections if the corresponding regions are missed by the ROI
selection stage. What makes matters worse, the question which ROIs to select is usually
addressed independently for every frame [11]. This results in a suboptimal selection strategy,
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either risking to lose important detections, or spreading the detector’s time budget over many
regions that have already been verified as containing or not containing an object before.

In contrast, we consider the case of an object detector with a fixed time budget in the
context of a tracking system. We also assume that the detector can only process a small
number of ROIs in each frame, but we balance the ROI selection over time, such that at each
time instant, only those ROI candidates are considered for which attention is most urgently
required in order to produce stable tracking results. The question we pose is: given a detector
with a budget to attend to k ROIs in each frame and a cheap low-level tracking system to
follow ROI candidates over time, which ones should be selected? To address this question,
we propose the following approach. We first create ROI candidates from a depth map of
the scene and from already existing object trajectories. These candidates are associated and
tracked over time using local depth and appearance information. We then model the selection
process of k ROIs to be verified by the detector using a statistical Poisson process model.
Briefly stated, this model associates each tracked ROI candidate with a low probability of
causing an important event. For regions in the background, this event means that the region
now contains a person, despite of this having previously been verified as not being the case.
For regions on tracked person trajectories, the event indicates a tracking failure that causes
the low-level tracker to drift. In both cases, the occurrence of an event has the consequence
that the region should be attended to and be verified by the object detector. Since we cannot
predict where those events will happen, we model their probability of occurrence using a
Poisson process. The result of this process indicates the urgency by which the detector
should attend to a region in order to limit the probability of the event influencing the tracking
results. In our approach, the urgency of a region is additionally moderated by its utility for
maintaining tracking performance, which gives preference to regions close to the camera.

In order to separate the different effects of foreground and background regions (i.e., re-
gions stemming from already existing trajectories and regions in which no person has been
found yet), we propose to apply a two-tiered model. For foreground regions, the Poisson
process accumulates the uncertainty of the individual tracking steps, while it assumes a fixed
event occurrence rate for the background regions. In addition, we extend the model with a
special treatment for trajectories that are predicted to emerge from an occlusion. As such an
event requires immediate attention in order to apply potential corrections, we always give
preference to such regions. Once the selected ROIs have been verified by the detector, its
output is converted to 3D world coordinates using the camera position from Structure-from-
Motion (SfM), together with an estimate of the ground plane. We then integrate the 3D
measurements in a multi-hypothesis tracking approach similar to [14]. As our experimental
results will demonstrate, our approach reaches state-of-the-art performance with high track-
ing quality, even with a significantly reduced time budget for the detector. We experimentally
investigate the time budget required for robust system-level performance and show that em-
ploying the stochastic Poisson process model optimizes ROI selection, such that only three
detector evaluations per frame are sufficient for obtaining a highly robust tracking system.

In summary, our paper makes the following contributions: (1) We demonstrate how ROI
selection can be optimized in general by employing a Poisson process model and how this
model can be adapted for a tracking-by-detection approach. (2) In order to satisfy the con-
flicting goals of detecting new objects while stabilizing already existing tracks, we propose
a two-tiered realization of the Poisson process model that takes into account a track’s ac-
cumulated uncertainty. (3) We experimentally show that the proposed framework achieves
robust multi-person tracking performance even with few ROI detector evaluations, making
it possible to reduce detector evaluation to a minimum.
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Figure 1: (left) Overview over the different components of our tracking system and their
connections. (right) Visualization of how we create new observations for the EKF based on
the detection from the last frame and the extracted ROI candidates. For each detection from
the last frame, we sample points from ROI candidates which are inside a certain uncertainty
region around the last detection. The final observation is computed by the mean of sampled
points which are weighted corresponding to the Bhattacharyya distance between the last
detection and the back-projection of the individual sampled position.

2 Related Work
Multi-object tracking is an important capability for vision applications in mobile robotics
and autonomous vehicles [10]. The development of powerful object detectors [4] has made
robust multi-person tracking-by-detection approaches feasible in challenging inner-city sce-
narios [1, 7, 10, 14, 26]. A disadvantage of pure tracking-by-detection approaches is however
the requirement of running a computationally expensive object detector for each frame and
sliding it over the entire image, even though only a small fraction of the considered image
locations actually contain persons.

Many object detection approaches targeted at real-time applications follow a simple
strategy of extracting ROIs based on motion [5], texture content [20] and stereo depth
[1, 2, 11, 13] in order to reduce the detector evaluation time. In our approach we follow
the strategy of extracting the ROI candidates from stereo depth data similar to [1]. In con-
trast to [1], we however do not run the detector for all given ROI candidates per frame, since
inner-city scenes contain many unwanted objects (e.g. trees, buildings, signs, trash bins)
that are also potential ROI candidates. As the results from [1] show, their strategy is more
applicable to open land scenes with few potential ROI candidates.

There are also hybrid approaches that try to reduce the number of frames for which the
detector needs to be evaluated by applying a low level image based tracker [16] that tracks
detected persons based just on foreground and background appearance models. We follow
a similar strategy in propagating candidate ROIs and tracked persons using low-level depth
and appearance cues. However, the approach by [16] only reduces the frequency of detector
evaluation on average – in busy scenes where low-level trackers degrade fast, it may still
need to run the detector in every frame. As a result, this approach is less suitable for hard
real-time systems, where a fixed time budget needs to be kept.

The task of selecting ROIs is closely related to visual attention. Saliency based visual
attention systems [9, 12] typically extract image areas which differ from surrounding dis-
tractors by their unique color and intensity. However, those approaches are not applicable
for our task, where not only one individual object sticks out of the background, but where
many people with potentially similar appearance need to be detected and reliably tracked.
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Poisson process models were already applied for active scene exploration with pan-tilt-
zoom cameras [21, 22, 23]. Those approaches model the chance of appearance of pedestrians
in a certain area in order to decide whether to zoom inside this area and risk missing some
occurrence of newly appearing persons in other areas. Our scenario is however different in
that the Poisson process models are attached to moving objects, which periodically need to
be re-attended, rather than to fixed areas.

3 System Overview
Fig. 1 (left) shows an overview of our proposed tracking system. The system consists of
three major components: ROI candidate generation, object detection, and tracking, which
will be explained in more detail in the following.

For extracting the ROI candidates, we rely on depth information, which we assume to
be available nowadays in real-time through dedicated sensors (e.g., Microsoft’s Kinect) or
hardware processing solutions (e.g., [18]). In addition, we use visual odometry to estimate
the camera vehicle’s egomotion, and we estimate the scene ground plane in each frame. For
both tasks, there are also real-time approaches available [13, 15]. For the purpose of this
paper, we use the data generously provided with the datasets of [7].

Given a color image and a corresponding depth map, we extract ROI candidates as local
maxima of the depth map points within a height corridor of two meters, projected onto the
ground plane. For each new ROI candidate, a Poisson process is initialized modeling the
urgency of verification of the ROI by the detector. The candidate regions of past frames are
associated with the newly extracted ROI candidates in the current frame and the urgency is
propagated to the new regions. Depending on the time budget defined for the detector, a
certain number k of ROIs with the highest urgency is verified by the detector. The detector
output then enables the multi-hypothesis tracker to initialize new trajectories or to extend
the existing ones based on an Extended Kalman filter (EKF). Overall, this results in a robust
tracking system running at more than 15 Hz and allowing to define a time budget for the
computationally expensive object detector. The time budget is represented by the number k
of ROIs which are verified in each frame.

4 Poisson Process Attention Model
A Poisson process is a stochastic process in which events occur continuously and indepen-
dently of each other. Mathematically, the process is described by a collection of random
variables {N(t) : t ≥ 0} where N(t) is the number of events that have occurred up to time
t. Given a rate parameter λ , if the interval times are independent and obey exponential
distributions (Poisson distributions) Exp(λ ), then a Poisson process is formally defined as

P{interval time > t}= exp(−λ t)
From this, one can directly derive the chance of an event to occur. This chance increases
with each time step since the last event occurrence at t0 and can be defined as:

p(T < (t− t0)) = 1− exp(−λ (t− t0)) (1)

where T is the waiting time until the next event. As described above, we fix the time budget
for the detector, such that it is only allowed to evaluate a certain number of ROI candidates.
In order to resolve the question in which order the ROI candidates should be verified by the
detector, we will in the following model the urgency for verifying the region of interest using
a Poisson process.

Having a busy street scene scenario, where pedestrians show up regularly, we consider
the occurrence of a person within an ROI as a random event. We model the waiting time T
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until the next occurrence within ROI r by an exponential distribution with the occurrence rate
λ . The chance of an occurrence having taken place always increases with each frame where
the ROI r is not verified by the detector and is computed by Eq. 1. As we are interested in
tracking all persons in the scene, this chance corresponds to the urgency by which the ROI
should be attended to in order to detect newly appearing persons.

After generating new ROI candidates, we associate the ROIs from the last frame with the
new ones and propagate the time when the previous ROI was evaluated to the new ROI, thus
increasing the urgency for verifying this part of the image. More details on the association
procedure for ROIs can be found in Section 5. For the remaining new ROIs that could not be
associated to ROIs from the previous frame, we start a new Poisson process. The urgency for
the new ROIs is set to the lowest value by setting t0 = t. Consequently, the detector always
attends the ROI candidates with the highest urgency.

So far, the described ROI association process is a so-called background process, where
we try to find newly appearing persons in the background and start new tracks for them. In
addition, we run a second Poisson process (foreground process) for each already existing
trajectory, which incorporates the track consistency based on the appearance model. This
step assures that already found trajectories do not get lost due to low fixed-time budgets for
the detector. To this end, we run a non-homogeneous Poisson process, whose rate function
can change over time, representing the appearance model’s consistency of the track:

λ (t) = wtr

t

∑
i=t0

(1−bhatta(ti)), (2)

where wtr is a weighting factor, t0 the time since the last detector verification, and bhatta is
the Bhattacharyya coefficient between the new region’s color histogram and the last associ-
ated detection. When a region was evaluated by the detector, the urgency is reset to zero as
t0 = t in Eq.1.

In addition to the Poisson process, we introduce a further utility factor, which weights
the ROI candidates with respect to their distance to the camera as follows:

utility(r) = 1− exp(−wd/dcam)), (3)

where wd is a weighting parameter and dcam represents the distance to the camera. The utility
factor is necessary in order to give the detector a preference for attending close-by regions,
which are important for tasks like collision avoidance or pedestrian safety.

In order to select the k ROIs for verification, both measures, urgency and utility, are
combined for ROI r as:

w(r) = 1− exp(−λ (t− tl)−wd/dcam)) (4)

where tl represents the frame where the ROI was last evaluated. The detector is then triggered
only for the k ROIs with the highest weight w(r).

5 System Realization
Depth based ROI Generation. The idea behind the ROI extraction using stereo data is to
fix the attention of the detector only on the few regions which may contain a wanted object.
This allows us to run the computationally expensive detector only on small image regions
regarding only few scales, rather than sliding over the whole image and all possible scales,
which is computationally very expensive.

The results of ROI generation are shown in Fig. 2 (left). Given a depth map and the
ground plane, the 3D points are projected onto a 2D grid map, omitting the points which
are more than 2 meters above the ground plane. This restriction on the height helps us to
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Figure 2: (left) An example of the stereo based ROI generation. The left image is the depth
map. The middle image is the stereo range data projected onto the ground plane. (right)
An example of EKF based trajectory generation. The blue hypothesis was started in the
new frame and propagated backwards through previous frames. The red one is a hypothesis
which was extended in the current frame.

reject points from overhanging parts of the scene, e.g. from buildings. Next, the grid cells are
weighted with the distance to the camera, smoothed with an average filter, and thresholded by
θroi in order to remove small noisy regions. The weighting is necessary, since farther objects
consist of fewer points and thus would be removed by the thresholding without weighting
them higher. Finally, we find the connected components on the grid map, which become
the final ROI candidates. Each ROI candidate is represented by its center of mass and its
width. Note that these ROIs are regions in 3D world coordinates. In order to obtain the
corresponding image region, we take a rectangle with width of the ROI, height of 2 meters
centered on the ROI’s center of mass and parallel to the camera and project it into the image.
Object Detection. For pedestrian detection, we employ the popular HOG detector [4] in
an efficient GPU implementation. Without any further constraints, our implementation [24]
processes 640×480 images at 22Hz and 1280×960 images at 5Hz, while achieving the same
detection performance as the original HOG detector [4]. When applied to full images, the
GPU’s power consumption however presents a serious limitation to its use for autonomous
systems, restricting the vision system’s battery life.

The advantage of our approach is that only small regions of interest need to be evaluated,
rather than sliding over the entire image for all 27 scales the detector would consider for
a 640× 480 image resolution. Thus, in each frame we call the detector for evaluating k
ROIs with 5 scales per ROI. The scales are determined as follows. The base scale is the
result of dividing of the height of the ROI in image coordinates by 128 (the height of the
sliding window of the HOG detector). To ensure the detection of pedestrians inside the ROI,
we also consider two scales above the base scale and two scales below that are computed
in multiplicative scale steps of 1.05. To summarize, we run the detector on small ROIs,
which means computing the features only for those small regions and considering only five
instead of 27 scales per region. This gives us an enormous speed-up – on average, only 2 ms
computation time are required per ROI, instead of 44 ms if we slide over the entire image.
Tracking Model. The tracking model is an extended version of the multi-hypothesis
tracking-by-detection system by [14]. In brief, the approach works as follows. The detector
output is accumulated in a world coordinate system on the ground plane using the camera
information estimated from SfM. The detections are linked to generate an over-complete set
of competing trajectory hypotheses. For obtaining a subset of trajectories that best explains
the collected measurements, we apply model selection in each frame.
Trajectory Generation. Linking the detections on the ground plane is done using an EKF
with a constant-velocity model (Fig. 2 (right)). In each frame when new detections become
available, we first try to extend already existing trajectories. In addition, new trajectory
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hypotheses are generated by starting from the new detections and trying to grow them by
applying the EKF backwards in time through the past detections in previous frames. Here
we keep a trajectory’s history for up to 100 frames. Due to the fact that a new detection is
used for extension and also for generating new trajectories, each detection may end up in
several competing trajectory hypotheses.
Hypothesis Selection. As a result of trajectory generation, we obtain an over-complete set
of trajectory hypotheses. The score of each hypothesis is the combination of the likelihood
of the assigned detections under the trajectory’s motion and appearance model (represented
by an RGB color histogram). The set of candidate trajectories is then pruned to a minimal
consistent explanation using model selection in a Minimum Description Length framework,
as presented in [14]. This step tries to resolve the conflicts between overlapping trajectories.
For details of the mathematical formulation we refer to [14].
ROI-based Tracking. In contrast to [14], we set a fixed time budget for the detector by
verifying only k small regions of interest. Hence, some of the measurements will be missed
that are required for extending the existing trajectories. To cope with this problem, we addi-
tionally use the ROI candidates for generating measurements (observations) required for the
EKF updating step. This is done in the following way (see Fig. 1 (right)). For frame tn+1, we
sample for each detection in frame tn a number of M = 20 points randomly from the regions
of interest in frame tn+1 that are within a certain uncertainty region around the detection.
These points are back-projected to the image, generating possible detection bounding boxes.
Next, we compute the appearance similarity based on RGB color histograms of the generated
bounding boxes with the detection in frame tn, employing the Bhattacharyya distance. The
final detection is the mean of all sampled points weighted by the appearance similarity.

In some cases, due to noisy depth information, the new sampled detection is not correctly
aligned to the pedestrian, causing the tracker to drift. By using the non-homogeneous Pois-
son process for each existing track, as described in Section 4, the drifting is detected through
the appearance change. Thus, the urgency for a detector verification increases rapidly, re-
sulting in the detector to be triggered for this area and the track to be revised. This is a
crucial step in our tracking system, since we require at least three successive measurements
for starting a trajectory, but once a ROI is evaluated, the urgency for that ROI is set to zero
and as a consequence it will not be verified by the detector in the next frames.
ROI Propagation. In each frame, the newly extracted ROIs need to be associated with
the ROIs from the last frame. To this end, we define a gating covariance that depends on the
maximum velocity of a pedestrian. We assume that a pedestrian moves with at most 1.38m/s.
Then given a new ROI and the covariance matrix Σ = (0.42/(fps), 0;0, 1.382/(fps)), we
associate only ROIs within the 0.95 confidence region. In case more than one ROI is inside
the uncertainty region, we associate the new ROI with the closest one.
Occlusion Handling. For correct association of a person reappearing after a person-to-
person occlusion, it is helpful to detect imminent occlusions first. To this end, we project the
3D prediction of the EKF of each tracked person into the image, computing the bounding
box overlap. For persons with an overlap above 0.5, the occlusion is likely to occur and the
person farther from the camera is marked as occluded. For the next 15 frames, we check
whether the person is likely to reappear by performing the same bounding box check on its
extrapolated EKF prediction. When a reappearance is likely, we create a virtual ROI at the
predicted location with the urgency umax, forcing the detector to evaluate this region. This
virtual ROI generation is necessary, since it is likely that no valid depth data will be available
for the reappearing person due to stereo shadowing from the previously occluding person.
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Figure 3: (first row) Capability to continue tracking close to the camera and/or the image
borders. (second row) Example results on the test sequence BAHNHOF.

6 Experimental Results
In order to evaluate our approach, we applied it to two challenging sequences from the
Zurich Mobile Pedestrian corpus generously provided by the authors of [7]. Both sequences,
BAHNHOF and SUNNY DAY, were acquired with a stereo rig (13-14fps, 640×480) mounted
on a child-stroller. The BAHNHOF sequence was acquired on a crowded sidewalk on a
clouded day and contains 999 frames with 5193 annotated pedestrians. The sequence SUNNY
DAY was captured on a sunny day and contains 999 frames, 354 of which are annotated with
1867 annotations. For both sequences, there are stereo depth maps, structure-from-motion
localization and ground plane estimates available, provided by [7].
Tracking Performance. We use the evaluation criteria from [7]. Tracking quality is mea-
sured by the intersection-over-union of tracked person bounding boxes and ground truth an-
notations in every frame. Matches with an overlap > 0.5 are accepted as correct. Fig. 4(a),(b)
presents the performance curves in terms of recall vs. false positives per image (fppi) for dif-
ferent numbers of detection verifications k per frame for both sequences. As can be seen,
our approach achieves good performance even when verifying only three ROIs per frame.
For comparison, we also provide the curves reported by [7] (only BAHNHOF) and [1, 2, 16]
(both sequences). In both cases, our approach achieves higher recall at 0.5 fppi, showing the
advantage of depth-based track propagation. At higher precision levels, the performance is
only slightly worse than [16], even when only using three detector verifications per frame.
The weighting parameters of the Poisson process wtr and wd were set to 0.7 and 10.

Furthermore, we evaluated whether modeling the ROI selection with a Poisson process
really pays off. To this end, we randomly sampled k ROI candidates in every frame, instead
of using the Poisson model, and evaluated them by the detector. As can be seen in Fig. 4(c),
the Poisson process model indeed results in better performance (3.5% at 0.5 fppi for five
evaluations per frame and 4.8% for three evaluations per frame). The utility factor brings
0.5− 1%. For a practical application, the benefit is however larger than this number sug-
gests, since the utility factor helps the system focus on tracking close-by persons, which are
important for collision avoidance.

In addition, Fig. 4(c) compares our approach’s performance to the one of a pure tracking-
by-detection system, where the detector slides over the entire image (640x480) and all 27
scales in each frame. The poor performance of the latter can be explained by the fact that we
use the same detector setup as in [4] with a 64x128 pixel detection window that constrains
the smallest possible detection to this size. However the annotations contain pedestrians that
are much smaller than 128 pixels. In contrast, our approach scales ROIs to the appropriate
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Figure 4: Quantitative tracking performance of our approach compared to different baselines
on the BAHNHOF and SUNNY DAY sequences from [7].

# ROIs eval. per
frame

(all (∅
12.5))

10 5 3 1 pure tracking by
detection 640x480

pure tracking by
detection 1280x960

Runtime for 1000
frames (sec.)

101.4 92.4 78.5 64.5 49.6 69.05 220.02

fps 9.86 10.82 12.74 15.50 20.16 14.48 4.54
Table 1: Runtime for the overall system for 1000 frames on the BAHNHOF sequence.

detection size based on the measured distance to the ROI, permitting upscaling of ROIs by
up to a factor of 2. This allows us to also detect pedestrians that are farther away from the
camera without additional cost. For achieving equivalent performance with a sliding-window
detector, we would need to process a 1280× 960 image, for which the GPU detector alone
requires 180ms per frame (without any tracking), which is far away from the 15fps (Tab. 1).
Computational Performance. The main single computational cost item in a pure tracking-
by-detection approach is still the computationally expensive detector. With our approach, we
can reduce the detector computation time significantly by attending only to a fixed number
of small regions. Evaluating a full 640× 480 image with our detector implementation re-
quires 44ms, compared to 2ms for a single region of interest. Overall, our system, including
ROI candidate generation, object detection, and tracking runs at more than 15 frames per
second (Table 1) on a machine with an Intel Core2 Quad Q9550 @ 2.83GHz, 8GB RAM,
and an NVidia GTX 280 graphics card. This does not include stereo computation. However,
dedicated hardware solutions [18] and depth sensors (e.g. Kinect) are in the meantime avail-
able that could take over this job. Also the odometry data is assumed given, which is not a
restriction since odometry/SLAM components are standard in mobile robotic systems.
Qualitative Evaluation. Similar to [16], our approach can continue tracking pedestrians
that are close to the camera or that are partially occluded by the image boundaries (see
Fig. 3). This is an advantage compared to pure tracking-by-detection approaches [7], which
cannot continue such tracks robustly due to missing detections. This problem could also be
overcome in a pure tracking-by-detection framework by employing a detector with partial
occlusion handling, such as the one from [6].

Fig. 3 presents results of our tracker on both test sequences, verifying k = 5 regions in
each frame. In addition to the tracker bounding boxes, we visualize the depth information
that was used for computing the ROIs. As can be seen, our system is able to track most of
the visible pedestrians correctly in a very busy environment with many occlusions.

7 Conclusion
We have presented a robust system for mobile street-level multi-person tracking. The core of
our system is formed by a stochastic Poisson process that models an optimal ROI candidate
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selection given a fixed time budget for the object detector. As our experiments have shown,
the approach runs at more than 15 frames per second and reaches state-of-the-art perfor-
mance, while requiring the verification of only 3−5 ROIs in every frame. Our results open
several interesting research perspectives. By integrating the depth information over time,
one can distinguish between moving and static objects and consequently employ Poisson
processes with higher rates for moving objects, since those objects are likely to be pedes-
trians. In future work, we plan to explore multi-class object tracking including cars and
bicyclist and to investigate how the Poisson process model could be adapted for different
object classes reaching robust tracking performance.
Acknowledgments. This project has been funded, in parts, by the EU project EUROPA
(ICT-2008-231888) and the cluster of excellence UMIC (DFG EXC 89).
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