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Abstract— We present a novel approach for multi-object track-
ing which considers object detection and spacetime trajectory
estimation as a coupled optimization problem. Our approach
is formulated in a Minimum Description Length hypothesis
selection framework, which allows our system to recover from
mismatches and temporarily lost tracks. Building upon a state-
of-the-art object detector, it performs multi-view/multi-category
object recognition to detect cars and pedestrians in the input
images. The 2D object detections are checked for their consistency
with (automatically estimated) scene geometry and are converted
to 3D observations, which are accumulated in a world coordinate
frame. A subsequent trajectory estimation module analyzes the
resulting 3D observations to find physically plausible spacetime
trajectories. Tracking is achieved by performing model selection
after every frame. At each time instant, our approach searches for
the globally optimal set of spacetime trajectories which provides
the best explanation for the current image and for all evidence
collected so far, while satisfying the constraints that no two
objects may occupy the same physical space, nor explain the
same image pixels at any point in time. Successful trajectory
hypotheses are then fed back to guide object detection in future
frames. The optimization procedure is kept efficient through
incremental computation and conservative hypothesis pruning.
We evaluate our approach on several challenging video sequences
and demonstrate its performance on both a surveillance-type
scenario and a scenario where the input videos are taken from
inside a moving vehicle passing through crowded city areas.

Index Terms— Object Detection, Tracking, Model Selection,
MDL, Structure-from-Motion, Mobile Vision

I. INTRODUCTION

Multi-object tracking is a challenging problem with numerous
important applications. The task is to estimate multiple interacting
object trajectories from video input, either in the 2D image plane
or in 3D object space. Typically, tracking is modeled as some
kind of first-order Markov chain, i.e. object locations at a time
step t are predicted from those at the previous time step (t−1) and
then refined by comparing the object models to the current image
data, whereupon the object models are updated and the procedure
is repeated for the next time step. The Markov paradigm implies
that trackers cannot recover from failure, since once they have lost
track, the information handed on to the next time step is wrong.
This is a particular problem in a multi-object scenario, where
object-object interactions and occlusions are likely to occur.

Several approaches have been proposed to work around this
restriction. Classic multi-target trackers such as Multi-Hypothesis
Tracking (MHT) [39] and Joint Probabilistic Data Association
Filters (JPDAFs) [13] jointly consider the data association from
sensor measurements to multiple overlapping tracks. While not
restricted to first-order Markov chains, they can however only
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keep few time steps in memory due to the exponential task com-
plexity. Moreover, originally developed for point targets, those
approaches generally do not take physical exclusion constraints
between object volumes into account.

The other main difficulty is to identify which image parts
correspond to the objects to be tracked. In classic surveillance
settings with static cameras, this task can often be addressed by
background modelling (e.g. [42]). However, this is no longer the
case when large-scale background changes are likely to occur, or
when the camera itself is moving. In order to deal with such cases
and avoid drift, it becomes necessary to combine tracking with
detection.

This has only recently become feasible due to the rapid
progress of object (class) detection [10], [31], [43], [46]. The
idea behind such a combination is to run an object detector,
trained either offline to detect an entire object category or online
to detect specific objects [1], [17]. Its output can then constrain
the trajectory search to promising image regions and serve to
re-initialize in case of failure. Going one step further, one can
directly use the detector output as data source for tracking (instead
of e.g. color information).

In this paper, we will specifically address multi-object tracking
both from static cameras and from a moving, camera-equipped ve-
hicle. Scene analysis of this sort requires multi-viewpoint, multi-
category object detection. Since we cannot control the vehicle’s
path, nor the environment it passes through, the detectors need
to be robust to a large range of lighting variations, noise, clutter,
and partial occlusion. In order to localize the detected objects
in 3D, an accurate estimate of the scene geometry is necessary.
The ability to integrate such measurements over time additionally
requires continuous self-localization and recalibration. In order to
finally make predictions about future states, powerful tracking is
needed that can cope with a changing background.

We address those challenges by integrating recognition, re-
construction, and tracking in a collaborative ensemble. Namely,
we use Structure-from-Motion (SfM) to estimate scene geome-
try at each time step, which greatly helps the other modules.
Recognition picks out objects of interest and separates them from
the dynamically changing background. Tracking adds a temporal
context to individual object detections and provides them with
a history supporting their presence in the current video frame.
Detected object trajectories, finally, are extrapolated to future
frames in order to guide detection there.

In order to improve robustness, we further propose to couple
object detection and tracking in a non-Markovian hypothesis
selection framework. Our approach implements a feedback loop,
which passes on predicted object locations as a prior to influence
detection in future frames, while at the same time choosing
between and reevaluating trajectory hypotheses in the light of
new evidence. In contrast to previous approaches, which optimize
individual trajectories in a temporal window [2], [47] or over



sensor gaps [22], our approach tries to find a globally optimal
combined solution for all detections and trajectories, while incor-
porating real-world physical constraints such that no two objects
can occupy the same physical space, nor explain the same image
pixels at the same time. The task complexity is reduced by only
selecting between a limited set of plausible hypotheses, which
makes the approach computationally feasible.

The paper is structured as follows. After discussing related
work in Section II, Section III describes the Structure-from-
Motion system we use for estimating scene geometry. Section IV
then presents our hypothesis selection framework integrating
object detection and trajectory estimation. Sections V and VI
introduce the baseline systems we employ for each of those
components, after which Section VII presents our coupled for-
mulation as a combined optimization problem. Several important
implementation details are discussed in Section VIII. Section IX
finally presents experimental results.

II. RELATED WORK.

In this paper, we address multi-object tracking in two scenarios.
First, we will demonstrate our approach in a typical surveillance
scenario with a single, static, calibrated camera. Next, we will
apply our method to the challenging task of detecting, localizing,
and tracking other traffic participants from a moving vehicle.

Tracking in such scenarios consists of two subproblems: trajec-
tory initialization and target following. While many approaches
rely on background subtraction from a static camera for the former
(e.g. [2], [26], [42]), several recent approaches have started to
explore the possibilities of combining tracking with detection
[1], [17], [37], [46]. This has been helped by the considerable
progress of object detection over the last few years [10], [31],
[34], [43]–[45], which has resulted in state-of-the-art detectors
that are applicable in complex outdoor scenes.

The second subproblem is typically addressed by classic track-
ing approaches, such as Extended Kalman Filters (EKF) [15],
particle filtering [21], or Mean-Shift tracking [6], which rely
on a Markov assumption and carry the associated danger of
drifting away from the correct target. This danger can be reduced
by optimizing data assignment and considering information over
several time steps, as in MHT [9], [39] and JPDAF [13]. However,
their combinatorial nature limits those approaches to consider
either only few time steps [39] or only single trajectories over
longer time windows [2], [22], [47]. In contrast, our approach
simultaneously optimizes detection and trajectory estimation for
multiple interacting objects and over long time windows by
operating in a hypothesis selection framework.

Tracking with a moving camera is a notoriously difficult task
because of the combined effects of egomotion, blur, and rapidly
changing lighting conditions [3], [14]. In addition, the introduc-
tion of a moving camera invalidates many simplifying techniques
we have grown fond of, such as background subtraction and a
constant ground plane assumption. Such techniques have been
routinely used in surveillance and tracking applications from static
cameras (e.g. [2], [24]), but they are no longer applicable here.
While object tracking under such conditions has been demon-
strated in clean highway situations [3], reliable performance in
urban areas is still an open challenge [16], [38].

Clearly, every source of information that can help system
performance under those circumstances constitutes a valuable aid
that should be used. Hoiem et al. [20] have shown that scene

geometry can fill this role and greatly help recognition. They
describe a method how geometric scene context can be auto-
matically estimated from a single image [19] and how it can be
used for improving object detection performance. More recently,
Cornelis et al. have shown how recognition can be combined with
Structure-from-Motion for the purpose of localizing static objects
[8]. In this paper, we extend the framework developed there in
order to also track moving objects.

Our approach integrates geometry estimation and tracking-
by-detection in a combined system that searches for the best
global scene interpretation by joint optimization. Berclaz et al. [2]
also perform trajectory optimization to track up to six mutually
occluding individuals by modelling their positions on a discrete
occupancy grid. However, their approach requires multiple static
cameras, and optimization is performed only for one individual
at a time. In contrast, our approach models object positions
continuously while moving through a 3D world and allows to
find a jointly optimal solution.

III. ONLINE SCENE GEOMETRY ESTIMATION

Our combined tracking-by-detection approach makes the fol-
lowing uses of automatically estimated scene geometry informa-
tion. First, it employs the knowledge about the scene’s ground
plane in order to restrict possible object locations during detec-
tion. Second, a camera calibration allows us to integrate individual
detections over time in a world coordinate frame and group them
into trajectories over a spacetime window. Such a calibration can
be safely assumed to be available when working with a static
camera, as in typical surveillance scenarios. However, this is no
longer the case when the camera itself is moving. In this paper,
we show that 3D tracking is still possible from a moving vehicle
through a close combination with Structure-from-Motion (SfM).
Taking as input two video streams from a calibrated stereo rig
mounted on the vehicle’s roof, our approach uses SfM in order
to continually estimate the camera pose and ground plane for
every frame. This is done as follows.

A. Real-Time Structure-from-Motion (SfM).

Our SfM module is based on the approach by [7], [8], which
is highly optimized and runs at ≈ 30 frames per second. Feature
points are extracted with a simple, but extremely fast interest point
operator, which divides local neighborhoods into four subtiles
and compares their average intensities.The extracted features
are matched between consecutive images and then fed into a
classic SfM pipeline [18], which reconstructs feature tracks and
refines 3D point locations by triangulation. A windowed bundle
adjustment is running in parallel with the main SfM algorithm to
refine camera poses and 3D feature locations for previous frames
and thus reduce drift.

B. Online Ground Plane Estimation.

For each image pair, SfM delivers an updated camera calibra-
tion. In addition, we obtain an online estimate of the ground plane
by fitting trapezoidal patches to the reconstructed wheel contact
points of adjacent frames, and by smoothing their normals over
a larger spatial window (see Fig. 1). Empirically, averaging the
normals over a length of 3m (or roughly the wheel-base of the
vehicle) turned out to be optimal for a variety of cases. Note
that using a constant spatial window automatically adjusts for
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Fig. 1. Visualization of the online ground plane estimation procedure. Using
the camera positions from SfM, we reconstruct trapezoidal road strips between
the car’s wheel contact points of adjacent frames. A ground plane estimate is
obtained by averaging the local normals over a spatial window of about 3m
travel distance.

driving speed: reconstructions are more accurate at low speed,
respectively high frame rate (once the 3D structure has stabilized
after initialization), so that smaller road patches are sufficient for
estimating the normal.

Figure 2 highlights the importance of this continuous reestima-
tion step if later stages are to trust its results. In this example, the
camera vehicle hits a speedbump, causing a massive jolt in camera
perspective. The top row of Fig. 2 shows the resulting detections
when the ground plane estimate from the previous frame is simply
kept fixed. As can be seen, this results in several false positives
at improbable locations and scales. The bottom image displays
the detections when the reestimated ground plane is used instead.
Here, the negative effect is considerably lessened.

IV. APPROACH

A. MDL Hypothesis Selection.

Our basic mathematical tool is a model selection framework
as introduced in [32] and adapted in [28]. We briefly repeat its
general form here and later explain specific versions for object
detection and trajectory estimation.

The intuition of the method is that in order to correctly handle
the interactions between multiple models required to describe a
data set, one cannot fit them sequentially (because interactions
with models which have not yet been estimated would be ne-
glected). Instead, an over-complete set of hypothetical models is
generated, and the best subset is chosen with model selection in
the spirit of the minimum description length (MDL) criterion.

To select the best models, the savings (in coding length) of
each hypothesis h are expressed as

Sh ∼ Sdata − κ1Smodel − κ2Serror , (1)

where Sdata corresponds to the number N of data points, which
are explained by h; Smodel denotes the cost of coding the model
itself; Serror describes the cost for the error committed by the
representation; and κ1, κ2 are constants to weigh the different
factors. If the error term is chosen as the log-likelihood over
all data points x assigned to a hypothesis h, then the following
approximation holds1:

Serror = − log
Y
x∈h

p(x|h) = −
X
x∈h

log p(x|h) (2)

1This approximation improves robustness against outliers by mitigating
the non-linearity of the logarithm near 0, while providing good results for
unambiguous point assignments.
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Fig. 2. Illustration for the importance of a continuous reestimation of scene
geometry. The images show the effect on object detection when the vehicle hits
a speedbump (top) if using an unchanged ground plane estimate; (bottom) if
using the online reestimate.

=
X
x∈h

∞X
n=1

1

n
(1 − p(x|h))n≈N−

X
x∈h

p(x|h).

Substituting eq.(2) into eq.(1) yields an expression for the merit
of model h:

Sh ∼ −κ1Smodel +
X
x∈h

((1 − κ2) + κ2p(x|h)) . (3)

Thus, the merit of a putative model is essentially the sum over
its data assignment likelihoods, regularized with a term which
compensates for unequal sampling of the data.

A data point can only be assigned to one model. Hence,
overlapping hypothetical models compete for data points. This
competition translates to interaction costs, which apply only if
both hypotheses are selected and which are then subtracted from
the score of the hypothesis combination. Leonardis et al. [32] have
shown that if only pairwise interactions are considered2, then the
optimal set of models can be found by solving the Quadratic
Boolean Problem (QBP)

max
n

nTSn , S =

264s11 · · · s1N
...

. . .
...

sN1 · · · sNN

375 . (4)

Here, n = [n1, n2, . . . , nN ]T is a vector of indicator variables,
such that ni =1 if hypothesis hi is accepted, and ni =0 otherwise.
S is an interaction matrix, whose diagonal elements sii are the
merit terms (3) of individual hypotheses, while the off-diagonal
elements (sij + sji) express the interaction costs between two
hypotheses hi and hj .

B. Object Detection.

For object detection, we use the Implicit Shape Model (ISM)
detector of [28], [31], which utilizes the model selection frame-
work explained above. It uses a voting scheme based on multi-
scale interest points to generate a large number of hypothetical
detections. From this redundant set, the subset with the highest
joint likelihood is selected by maximizing nTSn: the binary
vector n indicates which detection hypotheses shall be used to
explain the image observations and which ones can be discarded.
The interaction matrix S contains the hypotheses’ individual

2Considering only interactions between pairs of hypotheses is a good
approximation, because their cost dominates the total interaction cost. Fur-
thermore, neglecting higher order interactions always increases interaction
costs, yielding a desirable bias against hypotheses with very little evidence.



savings, as well as their interaction costs, which encode the
constraint that each image pixel is counted only as part of at most
one detection. This module is described in detail in Section V.

C. Trajectory estimation.

In [27], a similar formalism is also applied to estimate object
trajectories over the ground plane. Object detections in a 3D
spacetime volume are linked to hypothetical trajectories with
a simple dynamic model, and the best set of trajectories is
selected from those hypotheses by solving another maximization
problem mTQm, where the interaction matrix Q again contains
the individual savings and the interaction costs which arise if two
hypotheses compete to fill the same part of the spacetime volume
(see Section VI).

D. Coupled Detection and Trajectory estimation.

Thus, both object detection and trajectory estimation can be
formulated as individual QBPs. However, as shown in [30], the
two tasks are closely coupled, and their results can mutually
reinforce each other. In Section VII, we therefore propose a
combined formulation that integrates both components into a
coupled optimization problem. This joint optimization searches
for the best explanation of the current image and all previous
observations, while allowing bidirectional interactions between
those two parts. As our experiments in Section IX will show,
the resulting feedback from tracking to detection improves total
system performance and yields more stable tracks.

V. OBJECT DETECTION

The recognition system is based on a battery of single-view,
single-category ISM detectors [31]. This approach lets local
features, extracted around interest regions, vote for the object
center in a 3-dimensional Hough space, followed by a top-down
segmentation and verification step. For our application, we use the
robust multi-cue extension from [29], which integrates multiple
local cues, in our case local Shape Context descriptors [35]
computed at Harris-Laplace, Hessian-Laplace, and DoG interest
regions [33], [35].

In order to capture different viewpoints of cars, our system uses
a set of 5 single-view detectors trained for the viewpoints shown
in Fig. 3(top) (for training efficiency we run mirrored versions
of the two semi-profile detectors for the symmetric viewpoints).
In addition, we use a pedestrian detector trained on both frontal
and side views of pedestrians. The detection module does not
differentiate between pedestrians and bicyclists here, as those two
categories are often indistinguishable from a distance and our
detector responds well to both of them. We start by running all
detectors on both camera images and collect their hypotheses.For
each such hypothesis h, we compute two per-pixel probability
maps p(p = figure |h) and p(p = ground |h), as described in
[31]. The rest of this section describes how the different detector
outputs are fused and how scene geometry is integrated into the
recognition system.

A. Integration of Scene Geometry Constraints

The integration with scene geometry follows the framework
described in [8], [27]. With the help of a camera calibration,
the 2D detections h are converted to 3D object locations H on

the ground plane. This allows us to evaluate each hypothesis
under a 3D location prior p(H). The location prior is split up
into a uniform distance prior for the detector’s target range
and a Gaussian prior for typical pedestrian sizes p(Hsize) ∼
N (1.7, 0.22) [meters], similar to [20].

This effective coupling between object distance and size
through the use of a ground plane has several beneficial effects.
First, it significantly reduces the search volume during voting to
a corridor in Hough space (Fig. 3(bottom left)). In addition, the
Gaussian size prior serves to “pull” object hypotheses towards the
correct locations, thus improving also recognition quality.

B. Multi-Detector Integration

In contrast to [8], we fuse the outputs of the different single-
view detectors already at this stage. This is done by expressing the
per-pixel support probabilities p(p=fig .|H) by a marginalization
over all image-plane hypotheses that are consistent with the same
3D object H .

p(p=fig .|H) =
X

j

p(p=fig .|hj)p(hj |H). (5)

The new factor p(hj |H) is a 2D/3D transfer function, which
relates the image-plane hypotheses hj to the 3D object hypothesis
H . We implement this factor by modeling the object location and
main orientation of H with an oriented 3D Gaussian, as shown
in Fig. 3(bottom right). Thus, multiple single-view detections can
contribute to the same 3D object if they refer to a similar 3D
location and orientation.

This step effectively makes use of symmetries in the different
single-view detectors in order to increase overall system robust-
ness. For example, the frontal and rear-view car detectors often
respond to the same image structures because of symmetries in
the car views. Similarly, a slightly oblique car view may lead to
responses from both the frontal and a semi-profile detector. Rather
than to have those hypotheses compete, our system lets them
reinforce each other as long as they lead to the same interpretation
of the underlying scene.

Finally, we express the score of each hypothesis in terms of
the pixels it occupies. Let I be the image and Seg(H) be the
support region of H , as defined by the fused detections (i.e. the
pixels for which p(p = figure |H) > p(p = ground |H)). Then

p(H |I) ∼ p(I |H)p(H) (6)

= p(H)
Y
p∈I

p(p|H) = p(H)
Y

p∈Seg(H)

p(p=fig .|H).

The updated hypotheses are then passed on to the following
hypothesis selection stage.

C. Multi-Category Hypothesis Selection.

In order to obtain the final interpretation for the current image
pair, we search for the combination of hypotheses that together
best explain the observed evidence. This is done by adopting the
MDL formulation from eq. (1), similar to [28], [31]. In contrast to
that previous work, however, we perform the hypothesis selection
not over image-plane hypotheses hi, but over their corresponding
world hypotheses Hi.

For notational convenience, we define the pseudo-likelihood

p∗(H |I)=
1

As,v

X
p∈Seg(H)

((1−κ2) + κ2p(p=fig .|H))+ log p(H) , (7)
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Fig. 3. (top) Training viewpoints used for cars and pedestrians. (bottom
left) The estimated ground plane significantly reduces the search volume for
object detection. A Gaussian size prior additionally “pulls” object hypotheses
towards the right locations. (bottom right) The responses of multiple detectors
are combined if they refer to the same scene object

where As,v acts as a normalization factor expressing the expected
area of an object hypothesis at its detected scale and aspect. The
term p(p=fig .|H) integrates all consistent single-view detections,
as described in the previous section.

Two detections Hi and Hj interact if they overlap and compete
for the same image pixels. In this case, we assume that the
hypothesis Hk∈ H̆i, Hj̄ that is farther away from the camera
is occluded. Thus, the cost term subtracts Hk’s support in the
overlapping image area, thereby ensuring that only this area’s con-
tribution to the front hypothesis survives. With the approximation
from eq. (2), we thus obtain the following merit and interaction
terms for the object detection matrix S:

sii = −κ1 + p∗(Hi|I) (8)

sij =− 1

2As,v

X
p∈Seg(Hi∩Hj)

((1−κ2) + κ2p(p=fig .|Hk)) − 1

2
log p(Hk).

As a result of this procedure, we obtain a set of world
hypotheses {Hi}, together with their supporting segmentations in
the image. At the same time, the hypothesis selection procedure
naturally integrates the contributions from the different single-
view, single-category detectors.

VI. SPACETIME TRAJECTORY ESTIMATION

In order to present our trajectory estimation approach, we
introduce the concept of event cones. The event cone of an
observation Hi,t ={xi,t, vi,t, θi,t} is the spacetime volume it can
physically influence from its current position given its maximal
velocity and turn rate. Figure 4 shows an illustration for several
cases of this concept. If an object is static at time t and its
orientation is unknown, all motion directions are equally probable,
and the affected spacetime volume is a simple double cone
reaching both forwards and backwards in time (Fig. 4(a)). If
the object moves holonomically, i.e. without external constraints
linking its speed and turn rate, the event cone becomes tilted in the
motion direction (Fig. 4(b)). An example for this case would be
a pedestrian at low speeds. In the case of nonholonomic motion,
as in a car which can only move along its main axis and only

t

(a) (b) (c)

Fig. 4. Visualization of example event cones for (a) a static object with un-
known orientation; (b) a holonomically moving object; (c) a non-holonomically
moving object.

Fig. 5. Detections and corresponding top-down segmentations used to learn
the object-specific color model.

turn while moving, the event cones get additionally deformed
according to those (often nonlinear) constraints (Fig. 4(c)).

We thus search for plausible trajectories through the spacetime
observation volume by linking up event cones, as shown in Fig. 6.
Starting from an observation Hi,t, we follow its event cone up
and down the timeline and collect all observations that fall inside
this volume in the adjoining time steps. Since we do not know the
starting velocity vi,t yet, we begin with the case in Fig. 4(a). In
all subsequent time steps, however, we can reestimate the object
state from the new evidence and adapt the growing trajectory
accordingly.

It is important to point out that an individual event cone is
not more powerful in its descriptive abilities than a bidirectional
Extended Kalman Filter, since it is based on essentially the same
equations. However, our approach goes beyond Kalman Filters in
several important respects. First of all, we are no longer bound
by a Markov assumption. When reestimating the object state,
we can take several previous time steps into account. In our
approach, we aggregate the information from all previous time
steps, weighted with a temporal discount λ. In addition, we are
not restricted to tracking a single hypothesis. Instead, we start
independent trajectory searches from all available observations
(at all time steps) and collect the corresponding hypotheses. The
final scene interpretation is then obtained by a global optimization
stage which selects the combination of trajectory hypotheses that
best explains the observed data under the constraints that each
observation may only belong to a single object and no two objects
may occupy the same physical space at the same time. The
following sections explain those steps in more detail.

A. Color Model.

For each observation, we compute an object-specific color
model ai, using the top-down segmentations provided by the
previous stage. Figure 5 shows an example of this input. For each
detection Hi,t, we build an 8 × 8 × 8 RGB color histogram ai

over the segmentation area, weighted by the per-pixel confidenceP
k p(p = fig .|hk)p(hk|Hi,t) in this segmentation. The appear-

ance model A is defined as the trajectory’s color histogram. It
is initialized with the first detection’s color histogram and then



evolves as a weighted mean of all inlier detections as the trajectory
progresses. Similar to [36], we compare color models by their
Bhattacharyya coefficient

p(ai|A) ∼
X

q

p
ai(q)A(q) . (9)

B. Dynamic Model.

Given a partially grown trajectory Ht0:t, we first select the
subset of observations which fall inside its event cone. Using the
following simple motion models

ẋ = v cos θ

ẏ = v sin θ

θ̇ = Kc

and
ẋ = v cos θ

ẏ = v sin θ

θ̇ = Kcv

(10)

for holonomic pedestrian and nonholonomic car motion on the
ground plane, respectively, we compute predicted positions

xp
t+1 = xt + vΔt cos θ

yp
t+1 = yt + vΔt sin θ

θp
t+1 = θt + KcΔt

and
xp

t+1 = xt + vΔt cos θ

yp
t+1 = yt + vΔt sin θ

θp
t+1 = θt + KcvΔt

(11)

and approximate the positional uncertainty by an oriented Gaus-
sian to arrive at the dynamic model D

D :
p

„»
xt+1

yt+1

–«
∼ N

 »
xp

t+1

yp
t+1

–
, ΓT

»
σ2
mov 0

0 σ2
turn

–
Γ

!
p(θt+1) ∼ N (θp

t+1, σ2
steer)

. (12)

Here, Γ is the rotation matrix, Kc the path curvature, and
the nonholonomic constraint is approximated by adapting the
rotational uncertainty σturn as a function of v.

C. Spacetime Trajectory Search for Moving Objects.

Each candidate observation Hi,t+1 is then evaluated under the
covariance of D and compared to the trajectory’s appearance
model A (its mean color histogram), yielding

p(Hi,t+1|Ht0:t) = p(Hi,t+1|At)p(Hi,t+1|Dt). (13)

After this, the trajectory is updated by the weighted mean of its
predicted position and the supporting observations:

xt+1=
1

Z

 
p(Ht:t+1|Ht0:t)x

p
t+1 +

X
i

p(Hi,t+1|Ht0:t)xi

!
, (14)

with p(Ht:t+1|Ht0:t) = e−λ and normalization factor Z. Velocity,
rotation, and appearance model are updated in the same fashion.
This process is iterated both forward and backward in time
(Fig. 6(b)), and the resulting hypotheses are collected (Fig. 6(c)).

D. Temporal Accumulation for Static Objects.

Static objects are treated as a special case, since their sequence
of prediction cones collapses to a spacetime cylinder with constant
radius. For such a case, a more accurate localization estimate can
be obtained by aggregating observations over a temporal window,
which also helps to avoid localization jitter from inaccurate
detections. Note that we do not have to make a decision whether
an object is static or dynamic at this point. Instead, our system
will typically create candidate hypotheses for both cases, leaving
it to the model selection framework to select the one that better
explains the data.

This is especially important for parked cars, since our
appearance-based detectors provide a too coarse orientation to
estimate a precise 3D bounding box. We therefore employ the
method described in [8] for localization: the ground-plane loca-
tions of all detections within a time window are accumulated, and
Mean-Shift mode estimation [5] is applied to accurately localize
the hypothesis. For cars, we additionally estimate the orientation
by fusing the orientation estimates from the single-view detectors
with the principal axis of the cluster in a weighted average.

E. Global Trajectory Selection.

Taken together, the steps above result in a set of trajectory
hypotheses for static and moving objects. It is important to point
out that we do not prefer any of those hypotheses a priori. Instead,
we let them compete in a hypothesis selection procedure in order
to find the globally optimal explanation for the observed data.
To this end, we express the support (or utility) S of a trajectory
Ht0:t reaching from time t0 to t by the evidence collected from
the images It0:t during that time span:

S(Ht0:t|It0:t) =
X

i

S(Ht0:t|Hi,ti
)p(Hi,ti

|Iti)

= p(Ht0:t)
X

i

S(Hi,ti
|Ht0:t)

p(Hi,ti
)

p(Hi,ti
|Iti)

∼ p(Ht0:t)
X

i

S(Hi,ti
|Ht0:t)p(Hi,ti

|Iti), (15)

where p(Hi,ti
) is a normalization factor that can be omitted, since

the later QBP stage enforces that each detection can only be
assigned to a single trajectory. Further, we define

S(Hi,ti
|Ht0:t) = S(Hti |Ht0:t)p(Hi,ti

|Hti) (16)

= e−λ(t−ti)p(Hi,ti
|Ati )p(Hi,ti

|Dti) ,

that is, we express the contribution of an observation Hi,ti
to

trajectory Ht0:t =(A,D)t0:t by evaluating it under the trajectory’s
appearance and dynamic model at that time, weighted with a
temporal discount.

In order to find the combination of trajectory hypotheses that
together best explain the observed evidence, we again solve a
Quadratic Boolean Problem maxm mTQm with the additional
constraint that no two objects may occupy the same space at
the same time. With a similar derivation as in Section IV-A, we
arrive at

qii = −ε1c(Hi,t0:t) +
X

Hk,tk
∈Hi

`
(1−ε2) + ε2 gk,i

´
qij = −1

2

X
Hk,tk

∈Hi∩Hj

`
(1−ε2) + ε2 gk,� + ε3 Oij

´
(17)

gk,i = p∗(Hk,tk
|Itk) + log p(Hk,tk

|Hi),

where H� ∈
˘Hi,Hj

¯
denotes the weaker of the two trajectory

hypotheses; c(Ht0:t)∼#holes is a model cost that penalizes holes
in the trajectory; and the additional penalty term Oij measures
the physical overlap between the spacetime trajectory volumes of
Hi and Hj given average object dimensions.

Thus, two overlapping trajectory hypotheses compete both for
supporting observations and for the physical space they occupy
during their lifetime. This makes it possible to model complex
object-object interactions, such that two pedestrians cannot walk
through each other or that one needs to yield if the other shoves.
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Fig. 6. Visualization of the trajectory growing procedure. (a) Starting from an observation, we collect all detections that fall inside its event cone in the adjoining
time steps and evaluate them under the trajectory model. (b) We adapt the trajectory based on inlier points and iterate the process both forward and backward in
time. (c) This results in a set of candidate trajectories, which are passed to the hypothesis selection stage. (d) For efficiency reasons, trajectories are not built up
from scratch at each time step, but are grown incrementally.

The hypothesis selection procedure always searches for the best
explanation of the current world state given all evidence available
up to now. It is not guaranteed that this explanation is consistent
with the one we got for the previous frame. However, as soon
as it is selected, it explains the whole past, as if it had always
existed. We can thus follow a trajectory back in time to determine
where a pedestrian came from when he first stepped into view,
even though no hypothesis was selected for him back then. Fig. 7
visualizes the estimated spacetime trajectories for such a case.

Although attractive in principle, this scheme needs to be made
more efficient for practical applications, as explained next.

F. Efficiency Considerations.

The main computational cost in this stage comes from three
factors: the cost to find trajectories, to build the quadratic in-
teraction matrix Q, and to solve the final optimization problem.
However, the first two steps can reuse information from previous
time steps.

Thus, instead of building up trajectories from scratch at each
time step t, we merely check for each of the existing hypotheses
Ht0:t−k if it can be extended by the new observations using
eqs. (13) and (14). In addition, we start new trajectory searches
down the time line from each new observation Hi,t−k+1:t, as
visualized in Fig. 6(d). Note that this procedure does not require
a detection in every frame; its time horizon can be set to tolerate
large temporal gaps. Dynamic model propagation is unidirec-
tional. After finding new evidence, the already existing part of
the trajectory is not re-adjusted. However, in order to reduce the
effect of localization errors, inevitably introduced by limitations
of the object detector, the final trajectory hypothesis is smoothed
by local averaging, and its score (15) is recomputed. Also note
that most entries of the previous interaction matrix Qt−1 can be
reused and just need to be weighted with the temporal discount
e−λ.

The optimization problem in general is NP-hard. In practice,
the time required to find a good local maximum depends on the
connectedness of the matrix Q, i.e. on the number of non-zero
interactions between hypotheses. This number is typically very
low for static objects, since only few hypotheses overlap. For
pedestrian trajectories, the number of interactions may however
grow quite large.

We use the multibranch gradient ascent method of [41], a
simple local optimizer specifically designed for problems with
high connectivity, but moderate number of variables and sparse
solutions. In our experiments, it consistently outperforms not only

simple greedy and Taboo search, but also the LP-relaxation of [4]
(in computer vision also known as QPBO [40]), while branch-
and-bound with the LP-relaxation as convex under-estimator has
unacceptable computation times. Alternatives, which we have not
tested but which we expect to perform similar to QPBO, are
relaxations based on SDP and SOCP [23], [25].

VII. COUPLED DETECTION & TRAJECTORY ESTIMATION.

As shown above, both object detection and trajectory estimation
can be formulated as individual QBPs. However, the two tasks
are closely coupled: the merit of a putative trajectory depends on
the number and strength of the underlying detections {ni = 1},
while the merit of a putative detection depends on the current
object trajectories {mi = 1}, which impose a prior on object
locations. These dependencies lead to further interactions between
detections and trajectories. In this section, we therefore jointly
optimize both detections and trajectories by coupling them in a
combined QBP.

However, we have to keep in mind that the relationship between
detections and trajectories is not symmetric: trajectories ultimately
rely on detections to be propagated, but new detections can
occur without a trajectory to assign them to (e.g. when a new
object enters the scene). In addition to the index vectors m for
trajectories and n for detections, we therefore need to introduce a
list of virtual trajectories v, one for each detection in the current
image, to enable detections to survive without contributing to an
actual trajectory. The effect of those virtual trajectories will be
explained in detail in Sec. VII-A. We thus obtain the following
joint optimization problem

max
m,v,n

h
mT vT nT

i264 eQ U V

UT R W

V T W T eS
375
24m

v

n

35 , (18)

where the elements of V, W model the interactions between
detections and real and virtual trajectories, respectively, and
U models the mutual exclusion between the two groups. The
solution of (18) jointly optimizes both the detection results for
the current frame, given the trajectories of the tracked objects,
and the trajectories across frames, given the detections.

Equations (6) and (15) define the support that is used to build
up our coupled optimization problem. This support is split up
between the original matrices Q, S and the coupling matrices
U, V, W as follows. The modified interaction matrix eQ for the
real trajectories keeps the form from (17), with the exception that
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Fig. 7. (left) Online 3D localization and trajectory estimation results of our system obtained from inside a moving vehicle. (The different bounding box intensities
encode our system’s confidence). (right) Visualizations of the corresponding spacetime trajectory estimates for this scene. Blue dots show pedestrian observations;
red dots correspond to car observations.

only the support from previous frames is entered into eQ:

eqii = −ε1c(Hi,t0:t) +
X

Hk,tk
∈Hi,t0:t−1

`
(1−ε2) + ε2 gk,i

´
(19)

eqij = −1

2

X
Hk,tk

∈(Hi∩Hj)t0:t−1

`
(1−ε2) + ε2 gk,� + ε3 Oij

´
. (20)

The matrix R for the virtual trajectories contains simply the
entries rii =ε, rij =0, with ε a very small constant. The matrix U

for the interaction between real and virtual trajectories has entries
uik that are computed similar to the real trajectory interactions
qij

uik = −1

2

`
(1−ε2) + ε2 gk,i + ε3 Oik

´
. (21)

The modified object detection matrix eS contains as diagonal
entries only the base cost of a detection, and as off-diagonal
elements the full interaction cost between detections,

esii = −κ1ε2 − (1 − ε2), esij = sij . (22)

Finally, the interaction matrices V, W between trajectories and
detections have as entries the evidence a new detection contributes
towards explaining the image data (which is the same as its
contribution to a trajectory),

vij =
1

2

`
(1 − ε2) + ε2p∗(Hj |It) + ε2 log p(Hj |Hi)

´
(23)

wjj = max
i

[vij ]. (24)

Note that R, S, and W are all quadratic and of the same size
N ×N and that R and W are diagonal matrices. As can be easily
verified, the elements of the submatrices indeed add up to the
correct objective function. Figure 8 visualizes the structure of the
coupled optimization matrix.

A. Discussion.

To illustrate this definition, we describe the most important
features of the coupled optimization problem in words: 1) A
trajectory is selected if its score outweighs the base cost in eqii.
2) If trajectory Hi is selected, and a compatible detection Hj is
also selected, then Hj contributes to the trajectory score through
vij . 3) If a detection Hj is not part of any trajectory, but its
score outweighs the base cost in esjj , then it is still selected,
with the help of its virtual trajectory and the contribution wjj .
4) If a detection is part of any selected trajectory, then its virtual
trajectory will not be selected, due to the interaction costs uij

and the fact that the merit rjj of a virtual trajectory is less than
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Fig. 8. Structure of the coupled optimization matrix (eq. (18)).

that of any real trajectory. 5) Finally, while all this happens, the
detections compete for pixels in the image plane through the
interaction costs esij , and the trajectories compete for space in
the object coordinate system through eqij .

Recapitulating the above, coupling has the following effects.
First, it supports novel object detections that are consistent with
existing trajectories. Eq. (23) states that existing trajectories
impose a prior p(Hj |Hi) on certain object locations which raises
the chance of generating novel detections there above the uniform
background level U . We model this prior as a Gaussian around the
projected object position using the trajectory’s dynamic model D,
so that p(Hj |{Hi})=max[U , maxi[N (xp

i , σ2
pred)]]. Fig. 9 shows

the prior for a frame from one of our test sequences. Second, the
evidence from novel detections aids trajectories with which those
detections are consistent by allowing them to account the new
information as support.

B. Iterative Optimization.

Optimizing eq. (18) directly is difficult, since quadratic boolean
optimization in its general form is NP hard. However, many
QBPs obey additional simplifying constraints. In particular, the
hypothesis selection problems for Q and S described earlier
are submodular3, and the expected solution is sparse (only few
hypotheses will be selected), which allows one to find strong
local maxima, as shown in [41]. However, the new QBP (18) is
no longer submodular, since the interaction matrices V and W

have positive entries.
We therefore resort to an EM-style iterative solution, which

lends itself to the incremental nature of tracking: at each time

3Intuitively, submodularity is something like a discrete equivalent of con-
vexity and means that the benefit of adding a certain element to a set can
only decrease, but never increase, as the set grows.



Fig. 9. Influence of past trajectories on object detection. Left: 25th frame
of sequence 2, and detected pedestrians. Right: Illustration of the detection
prior for the 26th frame. Top view showing trajectories estimated in the last
frame, predicted positions, and detection prior (brighter color means higher
probability).

step t, object detection is solved using the trajectories from the
previous frame (t− 1) as prior. In the above formulation, this
corresponds to fixing the vector m. As an immediate consequence,
we can split the detection hypotheses into two groups: those which
are supported by a trajectory, and those which are not. We will
denote the former by another binary index vector n+, and the
latter by its complement n−. Since for fixed m the term mTQm=

const ., selecting detections amounts to solving

max
v,n

"h
vT nT

i» R W

W T S

–»
v

n

–
+ 2mT ˆU V

»̃
v

n

–#
=

max
v,n

h
vT nT

i"R+2 diag(UTm) W

W T S+2 diag(V Tm)

#»
v

n

–
.

(25)

The interactions UTm by construction only serve to suppress the
virtual trajectories for the n+. In contrast, V Tm adds the detection
support from the n+ to their score, while the diagonal interaction
matrix W does the same for the n−, which do not get their support
through matrix V . We can hence further simplify to

max
n

h
nT
“
R+S+2 diag(V Tm)+2 diag(WTn−)

”
n
i
. (26)

The support W is only applied if no support comes from the
trajectories and if in turn the interaction cost UTm can be
dropped, which only served to make sure W is outweighed for any
n+. The solution bn of (26) is the complete set of detections for the
new frame; the corresponding virtual trajectories are v = bn∩n−.

With the detection results from this step, the set of optimal
trajectories is updated. This time, the detection results [vTnT] are
fixed, and the optimization reduces to

max
m

h
mT (Q + 2 diag(V n) + 2 diag(Uv)) m

i
. (27)

The third term can be dropped, since virtual trajectories are
now superseded by newly formed real trajectories. The second
term is the contribution which the new detections make to the
trajectory scores. The two reduced problems (26) and (27) are
again submodular and can be solved with the multibranch ascent
method of [41].

VIII. IMPLEMENTATION DETAILS

The previous sections described the core components of our
combined detection and tracking approach. However, as is often
the case, several additional steps are required to guarantee good
performance in practical applications.

A. Hypothesis Pruning.

Continually extending the existing hypotheses (while generat-
ing new ones) leads to an ever-growing hypothesis set, which
would quickly become intractable. A conservative pruning proce-
dure is used to control the number of hypotheses to be evaluated:
candidates extrapolated through time for too long without finding
any new evidence are removed. Similarly, candidates which have
been in the hypothesis set for too long without having ever been
selected are discontinued (these are mostly weaker hypotheses,
which are always outmatched by others in the competition for
space). Importantly, the pruning step only removes hypotheses
which have been unsuccessful over a long period of time. All
other hypotheses, including those not selected during optimiza-
tion, are still propagated and are thus given a chance to find new
support at a later point in time. This allows the tracker to recover
from failure and retrospectively correct tracking errors.

B. Identity Management.

The hypothesis selection framework helps to ensure that all
available information is used at each time step. However, it
delivers an independent explanation at each time step and hence
does not by itself keep track of object identities. Frame-to-frame
propagation of tracked object identities is a crucial capability of
tracking (as opposed to frame-by-frame detection).

Propagating identity is trivial in the case where a trajectory has
been generated by extending one from the previous frame. In that
case, the hypothesis ID is simply passed on, as in a recursive
tracker. However, one of the core strengths of the presented
approach is that it does not rely on stepwise trajectory extension
alone. If at any time a newly generated hypothesis provides a
better explanation for the observed evidence than an extended
one, it will replace the older version. However, in this situation
the new trajectory should inherit the old identity, in order to avoid
an identity switch.

The problem can be solved with a simple strategy based on the
associated data points: the identities of all selected trajectories
are written into a buffer, together with the corresponding set
of explained detections. This set is continuously updated as the
trajectories grow. Each time a new trajectory is selected for
the first time, it is compared to the buffer, and if its set of
explained detections EH = {Hi|Hi ∈ H} is similar to an entry
EHk

in the buffer, it is identified as the new representative of
that ID, replacing the older entry. If it does not match any known
trajectory, it is added to the buffer with a new ID. For comparing
the trajectory support, we use the following criterion:

|EH ∩ EHk
|

min(|EH|, |EHk
|) > θ and k = arg max

j
|EH ∩ EHj

|. (28)

C. Trajectory Initialization and Termination.

Object detection, together with the virtual trajectories intro-
duced above, yields fully automatic track initialization. Given a
new sequence, the system accumulates pedestrian detections in
each new frame and tries to link them to detections from previous
frames to obtain plausible spacetime trajectories, which are then
fed into the selection procedure. After a few frames, the merit of
a correct trajectory exceeds its cost, and an object track is started.
Although several frames are required as evidence for a new track,
the trajectory is in hindsight recovered from its beginning.



Fig. 10. Example tracking results visualizing the non-Markovian nature of our approach. At the beginning of the sequence, both pedestrians walk close together
and only one trajectory is initialized. However, when they separate sufficiently, a second trajectory is added that reaches back to the moment when both were first
observed, while the first trajectory is automatically adjusted to make room for it.

Algorithm 1 High-level overview of the tracking algorithm.
Hprev ← ∅ // (all H without index i denote sets of trajectories)
repeat

Read current frame I , compute geometry G. (Sec. III)

// Create detection hypotheses (Sec. V)
Compute location priors p(H), p(H|Hprev). (Sec. V-A,VII-A)
{Hi} ← getDetections(I, G, p(H), p(H|Hprev)) (Sec. V-B)
Build matrices R, S, V, W using {Hi} and Hprev. (Sec. VII)
{Hi,t} ← solve QBP(R, S, V, W ) from eq. (26).

// Create trajectory hypotheses (Sec. VI)
Hextd ← extendTrajectories(Hprev , {Hi,t}) (Sec. VI-F)
Hstat ← growStaticTrajectories({Hi,t0 :t}) (Sec. VI-C)
Hdyn ← growDynamicTrajectories({Hi,t0 :t}) (Sec. VI-D)
Hall ← {Hend, prune(Hextd,Hstat,Hdyn)} (Sec. VIII-A)
Build matrices Q, U, V using {Hi,t} and Hall. (Sec. VII)
Hacc ← solve QBP(Q, U, V ) from eq. (27).

// Identity Management (Sec. VIII-B)
for all trajectories Hi ∈ Hacc do

Compare Hi with stored trajectories {Hj} and assign identity.

// Check Termination (Sec. VIII-C)
for all trajectories Hi ∈ Hacc do

Check if Hi entered exit zone; if yes, move Hi to Hend.

// Propagate trajectories to next frame
Hprev ← Hall \ Hend.

until end of sequence.

The automatic initialization however means that trajectory
termination needs to be handled explicitly: if an object leaves the
scene, the detections along its track still exist and may prompt
unwanted re-initializations. To control this behavior, exit zones are
defined in 3D space along the image borders and are constantly
monitored. When an object’s trajectory enters the exit zone from
within the image, the object is labeled as terminated, and its
final trajectory is stored in a list of terminated tracks. To keep
the tracker from re-using the underlying data, all trajectories
from the termination list are added to the trajectory set and
are always selected (inside a certain temporal window), thus
preventing re-initializations based on the same detections through
their interaction costs. The list of terminated tracks effectively
serves as a memory, which ensures that the constraint that no
two objects can occupy the same physical space at the same
time survives after a hypothesis’ termination. An overview of the
complete tracking algorithm is shown in Alg. 1.

IX. EXPERIMENTAL RESULTS

In the following, we evaluate our integrated approach on
two challenging application scenarios. The first is a classical
surveillance setting with a single camera monitoring a pedestrian
crossing. Here, the task is to detect and track multiple pedestrians
over long time frames and through occlusions.
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Fig. 11. Performance comparison of our coupled detection+tracking system
compared to various baselines.

The second application scenario addresses the task of detecting
and tracking other traffic participants from a moving vehicle. This
task is considerably more difficult because of the combined effects
of egomotion and a dynamically changing scene. On the other
hand, each object will typically persist in the vehicle’s field of
view only for a few seconds. It is thus not as important to uniquely
track a person’s identity as in classic surveillance scenarios.

A. Tracking from a Static Surveillance Camera.

For tracking from a static surveillance camera, we demonstrate
our approach on 3 test sequences. All sequences were recorded
with a public webcam at 15fps, 320×240 pixels resolution, and
contain severe MPEG compression artifacts. Note that a camera
calibration is available for this setup, as the camera is static. In
all result figures, line width denotes confidence of the recovered
tracks: trajectories rendered with thin lines have lower scores.

Fig. 10 visualizes our approach’s behavior on a short test
sequence of two pedestrians crossing a street. At the beginning,
they walk close together and the object detector often yields only
a single detection. Thus, the support only suffices for a single
trajectory to be initialized. However, as soon as the pedestrians
separate, a second trajectory is instantiated that reaches back
to the point at which both pedestrians were first observed.
Together, the two trajectories provide a better explanation for the
accumulated evidence and are therefore preferred by the model
selection framework. As part of our optimization, both tracks are
automatically adjusted such that their spacetime volumes do not
intersect.

A more challenging case is displayed in Fig. 12. Here, multiple
people cross the street at the same time, meeting in the middle. It



Fig. 12. Tracking results on a pedestrian crossing scenario with occlusions and background changes.

Fig. 13. Results on a challenging sequence with many static pedestrians, frequent occlusions, and large-scale background changes.

can be seen that, caused by the occlusion, our system temporarily
loses track of two pedestrians, resulting in identity switches.
However, it automatically recovers after few frames and returns
to the correct identities. Again, this is something that classical
Markovian tracking approaches are unable to do. In addition, our
approach is able to detect and track the sitting person in the lower
right corner which is indistinguishable from a static background.
Relying on an object detector for input, we are however limited
by the quality of the detections the latter can provide. Thus,
our system will hypothesize wrong tracks in locations where the
detector consistently produces false alarms.

For a quantitative assessment, we annotated every 4th frame
of this sequence manually. We marked all image locations with
2D bounding boxes in which a person was visible. We then
derived similar bounding boxes from the tracked 3D volumes

and compared them to the annotations. Following recent object
detection evaluations, we consider a box as correct if it overlaps
with the ground-truth annotation by more than 50% using the
intersection-over-union criterion [12]. Only one bounding box per
annotation is counted as correct; every additional one is counted
as a false positive. Note that this compares only localization
accuracy, not person identities. Fig. 11 shows the result of our
coupled system, compared to the baselines delivered by the object
detector before and after QBP optimization (just matrix S) and to
the baseline from a tracker based on fixed detections (decoupled
matrices Q and S). Our approach improves on all three baselines
and results in increased localization precision.

Finally, Fig. 13 presents results on a very challenging sequence
with large-scale background changes from an incoming tram,
many static pedestrians, and frequent occlusions. As can be seen



from the result images, our system can track many of the pedes-
trians correctly over long periods despite these difficulties. Note
especially the group of persons in the upper right image corner,
which is correctly resolved throughout most of the sequence, as
well as the pedestrian crossing the entire image width (shown in
blue). The results confirm that our approach can deal with those
difficulties and track its targets over long periods.

B. Tracking from a Moving Vehicle.

For this task, we evaluate our approach on two challenging
video sequences. The first test sequence consists of 1175 image
pairs recorded at 25fps and a resolution of 360×288 pixels over
a distance of about 500m. It contains a total of 77 (sufficiently
visible) static cars parked on both sides of the street, 4 moving
cars, but almost no pedestrians at sufficiently high resolutions.
The main difficulties for object detection here lie in the rela-
tively low resolution, strong partial occlusion between parked
cars, frequently encountered motion blur, and extreme contrast
changes between brightly lit areas and dark shadows. Only the
car detectors are used for this sequence.

The second sequence consists of 290 image pairs captured
over the course of about 400m at the very sparse frame rate of
3fps and a resolution of 384×288 pixels. This very challenging
sequence shows a vehicle passage through a crowded city center,
with parked cars and bicycles on both street sides, numerous
pedestrians and bicyclists travelling on the side walks and crossing
the street, and several speed bumps. Apart from the difficulties
mentioned above, this sequence poses the additional challenge of
detecting and separating many mutually occluding pedestrians at
very low resolutions while simultaneously limiting the number
of false positives on background clutter. In addition, temporal
integration is further complicated by the low frame rate.

In the following sections, we present experimental results for
object detection and tracking performance on both sequences.
However, it would clearly be unrealistic to expect perfect de-
tection and tracking results under such difficult conditions, which
may make the quantitative results hard to interpret. We therefore
also provide the result videos at http://www.vision.ethz.
ch/bleibe/pami08.

1) Object Detection Performance: Figure 14 displays example
detection results of our system on difficult images from the
two test sequences. All images have been processed at their
original resolution by SfM and bilinearly interpolated to twice
their initial size for object detection. For a quantitative evaluation
we annotated one video stream for each sequence and marked
all objects that were within 50m distance and visible by at least
30-50%. It is important to note that this includes many cases
with partial visibility. Fig 15(left) shows the resulting detection
performance with and without ground plane constraints. As can be
seen from the plots, both recall and precision are greatly improved
by the inclusion of scene geometry, up to an operating point of
0.34 fp/frame at 46-47% recall for cars and 1.65 fp/frame at 42%
recall for pedestrians.

In order to put those results into perspective, Fig. 15(right)
shows a detailed evaluation of the recognition performance as a
function of the object distance (as obtained from the groundplane
estimate). As can be seen from those plots, both the car and
pedestrian detectors perform best up to a distance of 25-30m,
after which recall drops off. Consequently, both precision and

recall are notably improved when only considering objects up to
a distance of 25m (as again shown in Fig. 15(left)).

For cars, the distribution of false positives over dis-
tances follows the distribution of available objects (shown in
Fig. 15(middle)), indicating that most false positives are indeed
caused by car structures (which is also consistent with our visual
impression). For pedestrians, it can be observed that most false
positives occur at closer scales. This can be explained by the
presence of extremely cluttered regions (e.g. bike racks) in the
second sequence and by the fact that many closer pedestrians are
only partially visible behind parked cars.

2) Tracking Performance: Figure 16 shows online tracking
results of our system (using only detections from previous frames)
for both sequences. As can be seen, our system manages to
localize and track other traffic participants despite significant
egomotion and dynamic scene changes. The 3D localization and
orientation estimates typically converge at a distance of 15-30m
and lead to accurate 3D bounding boxes for cars and pedestrians.
A major challenge for sequence #2 is to filter out false positives
from incorrect detections. At 3fps, this is not always possible.
However, false positives typically get only low confidence ratings
and quickly fade out again as they fail to get continuous support.

X. CONCLUSION

In this paper, we have presented a novel approach for multi-
object tracking that couples object detection and trajectory estima-
tion in a combined model selection framework. Our approach does
not rely on a Markov assumption, but can integrate information
over long time periods to revise its decision and recover from
mistakes in the light of new evidence. As our approach is based on
continuous detection, it can operate with both static and moving
cameras and cope with large-scale background changes.

We have applied this method to build an integrated system
for dynamic 3D scene analysis from a moving platform. The
resulting system fuses the output of multiple single-view object
detectors and integrates continuously reestimated scene geometry
constraints. Together with an online calibration from SfM, it
aggregates detections over time to accurately localize and track a
large and variable number of objects in difficult scenes. As our
experiments demonstrate, the proposed approach is able to obtain
an accurate analysis of dynamic scenes, even at low frame rates.

A current limitation is the overall run-time of the approach.
Although many of the presented steps run at several frames per
second, the system as a whole is not yet capable of real-time
performance in our current implementation. We are currently
working on speedups to remedy this issue. Also, since the tracking
framework operates in 3D, it is constrained to scenarios where
either a camera calibration or SfM can be robustly obtained.

In this paper, we have focused on tracking pedestrians and
cars. This can be extended to other object categories for which
reliable object detectors are available [12]. Also, we want to point
out that our approach is not restricted to the ISM detector. It
can be applied based on any detector that performs sufficiently
well, such as e.g. the detectors by [45] or [10] (in the latter case
taking an approximation for the top-down segmentation). Other
possible extensions include the integration of additional cues such
as stereo depth [11], or the combination with adaptive background
modeling for static cameras.
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Fig. 14. Example car and pedestrian detections of our system on difficult images from the two test sequences.
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Fig. 15. (left) Quantitative comparison of the detection performance with and without scene geometry constraints (the crosses mark the operating point for
tracking). (middle) Absolute and average number of annotated objects as a function of their distance. (right) Detection performance as a function of the object
distance.
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