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Abstract

This paper proposes a novel method for integrating multgial cues, i.e. lo-
cal region detectors as well as descriptors, in the contegbject detection.
Rather than to fuse the outputs of several distinct classifiea fixed setup,
our approach implements a highly flexible combination salemiere the con-
tributions of all individual cues are flexibly recombinedpgading on their ex-
planatory power for each new test image. The key idea behindpproach
is to integrate the cues over an estimated top-down segti@ntahich allows
to quantify how much each of them contributed to the objegidilyesis. By
combining those contributions on a per-pixel level, ourrapph ensures that
each cue only contributes to object regions for which it iafient and that
potential correlations between cues are effectively fact@ut. Experimental
results on several benchmark data sets show that the pbpagg-cue combi-
nation scheme significantly increases detection perfocemaompared to any of
its constituent cues alone. Moreover, it provides an irstarg evaluation tool
to analyze the complementarity of local feature detectodsdgescriptors.

1 Introduction

Local feature based approaches have shown consideralhésgeréor dealing with the large
degree of intra-category variation and partial occlusidrerent in real-world categorization
and detection tasks. Consequently, many approaches havedeseloped that use local
features in different ways [1, 6, 4, 10, 12], and considerg@obgress has been made in the
design and understanding of the underlying feature deteetad descriptors [12, 14]. Yet,
each feature descriptor and detector can only capture fdue information contained in the
image, and indeed its value for an application depends oddbeee to which it can distill
exactly the right kind of information for a specific purpoges a consequence, the better a
descriptor or detector is suited to a specific task, the nikedylit is to degenerate when the
task conditions deviate too far from its target scenariartter to be both discriminative and
robust, an application should therefore utilize a combamedf different local cues.

Several recent studies have evaluated the suitability @éwa local features in the con-
text of object identification [14] and categorization tafk3]. However, those studies have
only considered each cue in isolation. For multi-cue irdéign, it is also important to know
how the different cues interact, i.e. how correlated thesponses are and what new infor-
mation an additional cue can contribute. However, thisrimfation is difficult to retrieve, as
different cues are often not directly comparable, both beedhey typically have different
dimensionalities and because they represent informatidifferent ways.

Previous research has therefore mainly focusedlassifier combinationi.e. on the
problem of fusing the outputs of several “black-box” cléiess, possibly with associated
confidence ratings [20, 9, 7, 15]. This approach is valid & thassifiers are independent.
In our application, however, their outputs are often cated, and the degree of correlation



may vary from image to image. Rather than just to fuse theawnés of several classifiers,
we therefore need to explore how the underlying informasind the respective support in
the image can be combined.

In this paper, we present a flexible integration scheme wbarhbines different local
cues in an opportunistic manner depending on their expdayppbwer for the image at hand.
The integration proceeds in two steps. First, the sampletlifes are represented in terms
of their similarity to a set of prototypes, appearance codebopWhich has been learned
for each cue separately. Together with their learned dpdistibutions, those codebook
prototypes convert the activations from matching featimesa probability distribution for
possible object locations and scales. This makes the cusparable. However, their in-
dividual responses might still be correlated. Therefone, second step backprojects the
extracted object hypotheses to the image in order to deterfar each cue separately which
image pixels were responsible for a detection and how much piel contributed to the
cue’s response. By comparing the overlap in their supppénea, our approach can deter-
mine the complementarity between two cues and integratedbetributions more robustly.

This paper makes the following three contributions. Rirétidevelops a robust multi-cue
integration approach that can be applied regardless otheh#te cues are correlated or not.
The proposed scheme is directly interpretable and opensteresting venues for analyzing
the complementarity of local cues. Secondly, it presenedensive evaluation of state-of-
the-art region detectors and descriptors in the contextutfitoue integration. The obtained
results allow us to rank the cues based on their individuebpmances and to formulate
clear usage guidelines for their combination. Last but Basi, experimental results on
several challenging data sets show that the proposed oudtintegration scheme increases
object detection performance significantly. The improveti particularly prominent for
the detection precision and leads to high recognition rateke zero-false-positive level.
The paper is structured as follows. The next section dissusdated work. Section 2 then
reviews the basic recognition approach. Extending this@ah, we derive our proposed
multi-cue integration scheme in Section 3. Section 4 dbessrour experimental setup, and
Section 5 finally presents the results of our evaluation.

Related Work. Many authors have stressed the need for integrating maulgipbal or local
cues in order to increase robustness of recognition [187]11n practice, multi-cue systems
for object recognition have often been implemented by caimbiclassifiers [20, 9, 7] or
by using cue confidences in a voting scheme [3, 15]. Howelieset approaches are often
static in that they use a fixed confidence rating per cue, agspdon previously observed
performance. As such, they cannot readily adapt to novéhgstwhen a cue’s perfor-
mance characteristics degrade due to changed environneentditions. It has therefore
been argued that cue weights should be adapted dynami&&lly [For tracking scenarios,
cue integration techniques have been proposed which cenchbies probabilistically based
on their estimated likelihood [19]. However, in the conteksingle-frame object detection,
no such mechanism has been known. In this paper, we propos@suechanism based on
the top-down segmentation approach by [10].

2 Recognition Approach

Our multi-cue recognition approach closely builds upon Ithelicit Shape Model (ISM)
formalism by [10, 11], which combines object detection amg-tlown segmentation capa-
bilities. This model represents an object category by a s&tcal appearance clusters (a
codebookand their spatial occurrence distributions. Since a blasawledge of this ap-
proach is necessary to understand our method, we will briefigw its main components.



Training. For training, local features are extracted from the trajrimages and clustered
to form the codebook [1, 10]. In a second run over the traidat, the spatial occurrence
distributions are estimated by recording for each codelsmiy all matching locations on
the training objects. Together with each occurrence, thpeageh stores a local segmentation
mask, which is later used for inferring top-down segmeateti

ISM Recognition. During recognition, local features are extracted from thade and
matched to the codebook. Each matching codebook entry #sts wotes for possible object
locations and scales in a probabilistic extension of the ghowansform [10]. For each
hypothesis, the approach then computes a top-down segimengamd finally selects the
subset of hypotheses that best explain the image conteat thelconstraint that each pixel
can be assigned to at most one hypothesis.

3 Multi-Cue Integration

We now present our novel approach for integrating multipeal cues. In the context of
this paper, we understand this as a combination of diffeleal descriptors, but also of
different region detectors, since their preference fotaieimage structures influences the
characteristics of the sampled information. As alreadytioard before, the question how to
combine local cues has no obvious answer, since they armeatiypnot directly comparable.
We therefore proceed in two stages. The first stage exteedstiognition procedure
to include multiple cues. Its main purpose is to express thes ©n a common basis, so
that their information can be pooled and initial object hyyases can be found. This stage
still ignores cue correlation. Indeed, it has no other chogsince correlation can only be
measured relative to a reference hypothesis, and hypathesenly available after the stage
has been executed. However, the second stage then reveatstélation by backprojecting
hypotheses to the image and computing a top-down segmamnfati each cue. This step
extends the ISM segmentation algorithm to deal with métqples. The obtained segmenta-
tions show on a per-pixel level which image structures wesponsible for a cue’s response.
The correlation between two cues can then be expressed asdHap of their respective
p(figure) probability maps. Once the cue correlation has been idedtithe next question
is how to use this information to improve recognition penfiance. In the last part of this
section, we present three combination criteria that retatifferent strategies for this step.

Initial Recognition Stage. The key to integrating multiple local cues is to express them
on a common basis. We create such a basis by representin¢esafiegtures through their
similarity to stored prototypes. We therefore extend tlegaition approach by keeping a
separate codeboak? for every cueq. Lete be a local descriptor computed at locatin
When matched to the codebook, it may activate several cmﬂmuriesciq with probabili-
tiesp(c%|e). Each matched codebook entry then votes for instances objiet categorp,

at different locations and scal&s= (Ax,Ay,Aq) according to its learned occurrence distribu-
tion P(on,A|c%,¢,q). A feature’s contribution to an object hypothesis can theigxpressed

as P(on,Ale.¢,0) = Y Pon, A, £,0)p(ci'le). (1)

The contributions from all cues are booled in a shared 3-dgiomal voting space, from
which maxima are extracted by Mean Shift Mode Estimationgisi scale-adaptive kernel
K [11], marginalizing over the cueg,
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whereb(A) is the scale-adaptive kernel bandwidgiex, /x|gm) is an indicator variable spec-
ifying which image patches and locations have been sampleghf and p(gm) is a prior
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Figure 1. Visualization of the multi-cue integration stages: (afiatidetection, (b) top-
down segmentation, (¢)(figure) maps obtained bgveragecombination, (d) closeup view
of theargmaxvisualization (cf. eq.(9)) , (e) histogram of relative cumtributions.

determining how much this cue can be trusted. This prior easdi to reflect previously
observed performance. In order to avoid any bias, howeweleave it at a uniform setting.

Multi-Cue Segmentation. Once a hypothesik = (0y,A) has been found, its top-down
segmentation can be inferred by backprojecting the sujmgprbtes to the image and com-
bining them with the local patch segmentation magks=fig.|on, A, ¢%,¢) that have been
stored for each recorded codebook occurrence during tigairAs shown in [10], the per-
pixel probabilities of each pixel containifiggureor groundcan then be obtained by a double
marginalization, first over sampled features, then oveebodk entries. We adapt this for-
mulation here to compute a separate segmentation for each cu

p(p:f|g|0n,}\,q) = Z zp(p:fig.|0n,)\,e,Ciq,f,q)p(e,Ciq,é,q|0n,)\) (3)
pe(el) |
— Z Zp(p:flg|0n A C.q f) p(on,)\|c‘iq,€,q)p(ciq|e)p(e,ﬁ) (4)
pe(Ed)T B p(on,A)

Based on these results, the final segmentation is computedilayng the likelihood ratio
betweerfigureandgroundprobabilities.

Segmentation-Based Cue Combination. Now we can proceed to combining the contribu-
tions of different cues on the pixellevel. For this, we adbptidea of formulating hypothesis
selection as a Quadratic Boolean Optimization Problem iMBh framework [11]. Each
hypothesis is evaluated in terms of thevingsthat can be obtained in the description of an
image by explaining part of it blg. The silvings o{ each hypothesis are expressed as
Si=-k1+(1 KZ)AG + KonpESZeqh)f (p,h,Q) (5)

whereN is the number of pixels that can be explainedhbg is its expected areat scaleg,
K2 is a weighting factor to balance out the influence of a hypgifeearea versus its support
in the image (left at a fixed value in our experiments), and the parameter over which the
final performance curves are plotted. If multiple hypotlsaseerlap, their respective savings
terms interact, since each pixel can only be assigned taykediypothesis.

Depending on the definition df, we can achieve different effects. The canonical way of
combining the different cues would be to simply ignore plolestorrelations and marginalize
over the cuesy. This can be expressed by the followisigmcriterion:

fsum(p,h, Q) = % p(p = figurgh, dm) p(dm). (6)

m
However, this marginalization has the problem that it magfogce local misclassifications
if the cues are correlated. An opposite strategy is to coralyleemove correlation by only
trusting the strongest cue. This leads tonmexcriterion:
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Figure 2. Some detections and the corresponding relative cue catioits.

fmax(p, h, Q) = maxp(p = figurefh, dm) p(am)- 7

However, this criterion is also problematic, since it rel@n the assumption that all cues
are well-behaved. If one or more cues respond too stronghatixground structures, the
whole system may become biased and additional false pesithay be generated. For this
reason, we also propose a third criterion, which is a contiinaf the two extremes. It
builds the per-pixehverageover all cues that are sufficiently confident, i.e. whp(p =

figurgh, qm) > p(p = groundh, gm).
favg(p,h, Q) = a¥gp(p = figurefh, gm) p(dm) (8)

These criteria implement a highly flexible combination &gy. Instead of weighting each
cue just by a fixed prior, they can decide for each image pixehawhich cues to consider,
where the decision is made based on the cues’ own confideticetss. At the same time,
egs. (6) and (8) avoid putting all trust into a single cue thaght bias the results negatively.
Figure 1 summarizes the final cue combination procedure.syksem first generates a set
of hypotheses (Fig. 1(a)) by pooling the information frorhales. For each hypothesis,
it then computes a top-down segmentation per cue (Fig. ,Mif)¢reupon the verification
criterion from eq. (3) is executed in order to fuse the indiivl cues’p(figure) probability
maps (Fig. 1(c)) into a common system response.

Discussion and Analysis. It is important to emphasize the difference of the proposed c
integration scheme to the far simpler approach of runnirgre¢ region detectors in parallel
and pooling their features in a common codebook (as useihd4j). If only a single kind
of region descriptors is used, such an approach would béasitaiour integration using the
sumcriterion. However, as soon as several different regiocriig®rs shall be employed, a
combination into a common codebook is no longer possibheesihe different descriptors
are not comparable. Our proposed approach, on the other readlly scales to this case
and allows to combine the different cue contributions onxlile per-pixel basis, which is
something no other current approach can achieve.

The proposed cue integration scheme was motivated by tleamatof different local
cues to complement each other by interpreting the imagerirdgtion in different ways. In
order to visualize that this can positively affect recogmitperformance, we introduce the
following argmaxcriterion as an analysis tool.

fargmax(P, h, Q) = argmaxp(p = figureth, am) p(cm) ©)

This criterion selects for each hypothesis pixel the indegkhe most confident cue. Fig. 1(d)
shows the resulting maps for the two example images, whetesrede of gray corresponds
to one of the five descripto&FT, GLOH, PCA-SIFT Shape ContexandPatch(c.f. Sec. 4).
These images are readily interpretable. For instance,corbes evident that in the top
example, the outer rim of the front wheel is best capturedShgpe Contexdlescriptors,
while the wheel’s hub is better represented@yOH. In the bottom example, on the other
hand, changed contrast to the background has modified thgeiowntent sufficiently, such
that similar structures on the rear wheel are better captaySIFT.

We can further quantify the relative importance of each owearticular hypothesksby
building up a histogram of their individual contributiortsg. 1(e) shows the corresponding
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Figure 3 Single-cue EER performances for all detector/descr:pmntmnatlons on the
TUD motorbikes. The plots show the performance gradatioamthe clustering/matching
threshold is varied. In all following experiments, we uséydhe best-performing parameter
setting for each cue.

cue importance histograms. As can be seen, the relativertemue of the cues changes also
guantitatively. Some more examples for different test iesagre shown in Fig. 2, further
corroborating this observation.

4 Experimental Setup

In the rest of the paper, we evaluate our proposed multivtiegiation method on real-world
detection tasks. We first describe the selection of cues vl iyoon and the test data sets.

Interest Region Detectors. We compare three different scale-invariant interest regie-
tectors. TheHarris-LaplaceandHessian-Laplaceletectors look for scale-adapted maxima
of the Harris function and Hessian determinant, respdgt[ld], where the locations along
the scale dimension are found by the Laplacian-of-Gaus§iae DoG detector [12] finds
regions at 3D scale-space extrema of the Difference-ofs&@an.

Region Descriptors.  In addition, we evaluate five different region descriptoBFT de-
scriptors [12] are 3D histograms of gradient locations anéntations with 4x 4 location
and 8 orientation bins. The resulting descriptor has 128dsions. GLOH descriptors
[14] are an extension @IFT. They use 17 location and 16 orientation bins organized in a
log-polar grid. PCA is used to reduce the dimensionality28.PCA-SIFT[8] are vectors
of image gradients im andy direction sampled within the support region and reducedto 3
dimensions with PCAShape ConteXSQC) [2, 14] descriptors are histograms of gradient ori-
entations sampled at edge points in a log-polar grid witlc@tion and 4 orientation bins and
thus 36 dimensions. For comparison, we includex2% pixelPatcheg1, 10], which lead to

a descriptor of length 625. This set of descriptors was ektlglichosen to sample different
sources of informatiorSIFT, GLOH, andPCA-SIFTare based on gradient informatid®¢
descriptors are based on edges; BRatthedake the full image region into account.

The evaluation is performed with an own implementation eflloG detector (denoted
eDoGin the figures) andPatchdescriptor. For all other detectors and descriptors, wd use
the implementations publicly available at [16]. Patcheseneompared usinglormalized
Correlation; all other descriptors were compared using Euclidean nlists

Training and Test Data. We first evaluate the different stages of our approach onthe T
motorbike set, which is part of the PASCAL collection [5].i¥ldata set consists of 115 im-
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Figure 4: Cue combination performances on the TUD motorbikes: (ajlsioue perfor-
mance; (b) performance of the different combination styigeusing all 5 descriptors with
the same detector; (c) cue combination performance whesatime descriptors are applied
to different detectors.

ages containing a total of 125 motorbikes at different scated with clutter and occlusion.
Training is done on 153 motorbike side views from the CalTeaming set [6] which are
shown in front of uniform backgrounds allowing for easy segmtation. We then show that
the results generalize also to other scenarios by applimgpproach to two more challeng-
ing data sets using the same parameter settings. The fife @C motorbikeg est 2
set, which has been used as a localization benchmark in e RASCAL Challenge [5].
This data set consists of 202 images containing a total oih2@orbikes at different scales
and seen from different viewpoints. Only about 37% of thosgarbikes are shown in side
views, though, thus limiting the maximally achievable deéar our system. Finally, we
apply our method to the pedestrian test set from [11]. It me®f 209 images containing
crowded scenes with a total of 595 pedestrians, mostly sliwside views but with signif-
icant overlap and occlusion. Training for this test is done€2@6 side views of pedestrians
for which a segmentation mask was available, using the saraneter settings as for the
motorbike experiments. In all three cases, the task is ®atland localize the objects in the
test images and determine their correct bounding boxesduke evaluation criterion from
[11] for the first and third test set, and the criterion frorpff the second test set).

5 Results

Single-Cue Performance. In order to obtain an unbiased estimate of the cues’ polsntia
it is important to ensure that they are evaluated at theintsetting. As a first step, we
therefore evaluate each cue separately and try to find ifsppesince optimum.

In our formulation of the approach, there is one open parantkat has to be adjusted
for each cue, namely the question how much the clusteripgssteuld compress the training
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Figure 5: Performance comparison on the TUD motorbikes (left), theewtifficult VOC
motorbiket est 2 set (middle), and the pedestrian test set (right). The reigttit is rotated
90 to make it consistent with the ones in [5]. Please note thalevaur detector is exclu-
sively trained on side views, only 39% of the motorbikes ia YOC set are shown in side
views, thus limiting the maximally achievable recall.

features during codebook generation. When using aggldiveidustering, this translates
to the question how compact the codebook clusters shouldrtapfimal performance. One
option is to define aninimum similarityafter which clustering should be stopped. Another
option is to fix a certaircluster compression rati¢#featureg#clustery. Previous evalua-
tions [13] have favored the latter option, but it is not gurieed that this choice is optimal.

In order to analyze the clustering/matching thresholdlénce on recognition perfor-
mance, we applied all 15 detector/descriptor combinatiortke TUD motorbikes set and
compared their equal error rate (EER) detection performé&mrcs—7 different threshold set-
tings. Figure 3 shows the results of this experiment, bofiaisted per descriptor and per
detector. We can make two observations. First, when comgaescriptors across different
detectors, a clear performance optimum can be found ataicsimilarity forSIFT, GLOH,
PCA-SIFT andSC The cluster compression ratio, on the other hand, doeseat $0 have
a consistent influence. We can therefore formulate the rewamdation to use the cluster
similarity as a criterion for selecting the clustering lefer those descriptors. Second, the
results allow to rank the detector/descriptor combinatibased on their single-cue perfor-
mance. For the descriptoiS|FT andSCperform consistently best over all three detectors.
For the detectordilessian-LaplacendDoG perform best in all but one case. In terms of
combinationsPoG+SIFT andDoG+SCobtain the best performance with 87% EER.

Combining Different Descriptors. Next, we examine cue combination in a maximally cor-
related setting. For this, we apply all five region descripto the output of the same interest
point detector and compare the performance of the threeopespcombination strategies.
The results of this experiment can be seen in Fig. 4(a,b) Haoris-LaplaceandHessian-
Laplace there is a significant difference between the three peidoaa curves, witlsum
combination performing worst, thenaxcombination, anéveragecombination performing
best. This confirms our expectations from Section 3. Contptr¢he best single-cue per-
formance withSIFT or SCdescriptorsaveragecombination achieves a small performance
increase from 77.6% to 80.0%lé&rris-Laplace and from 82.4% to 85.6% EERigssian-
Laplace, respectively. FoboG, a significant performance increase from 87.2% to 91.2%
EER can be shown if all descriptors exc&iA-SIFTare combined. Includin§CA-SIFT
degrades overall performance to 85.6%, suggesting thaettlescriptors are not as infor-
mative as the others, perhaps because of their projectimreogeneral-purpose PCA basis.



Figure 6. Example multi-cue detections of our approach on difficutagras from the VOC
motorbikes and the pedestrian set (at the EER).

Combining Different Detectors. The opposite experiment is to apply the same descriptors
to three different region detectors and compare the cordipeeformances. This is shown

in Fig. 4(c). As there are only small differences betweernpdormance of the three com-
bination strategies, we just display the curve é&meragecombination in order to reduce
clutter. The most remarkable observation from this expeninis the improvement of over
10% EER obtained by th&LOH descriptors from 76.0% to 86.4%. Apparently, this de-
scriptor benefits most from additional samples in the imdgecontrast,SIFT shows only

a small improvement to 88.8% EER. The best absolute perfocens achieved by th8C
combination with 92.8% EER. ThRCA-SIFTandPatchdescriptors, finally, do not profit
from the evaluated combination.

Full Multi-Cue Combination. Finally, we present results combining multiple detectors a
multiple descriptors at the same time. Fig. 5(left) compahe performance dIFT+SC
andSIFT+GLOH+SCwith all three detectors. Although those combinations ddmeyease
EER performance any more, further improvement can be obdémterms of precision. In
particular, recall at the zero-false-positive level isregased from 50% (onl$pC) over 62%
(SIFT+SQ to 75% (all three descriptors). This is an important resittce high precision is
a prerequisite for many real-world applications.

In order to ensure that the results generalize also to diftesettings, we apply our
multi-cue approach to the more challenging VOC motorbilesising the same parameter
settings as for the first experiments. Fig. 5(middle) shdwesésults of this experiment. As
can be seen from the plot, the combination of multiple cuaesreighproves performance and
increases the detection precision considerably. As a casgpawith [5] shows, it is the best
result reported for this data set so far. The best combinafi&IFT+SCachieves 21% recall
with zero false positives and scales up to 30% recall at 9G2¢igion. Considering that the
test set contains only about 39% side views, this is an exualesult. Fig. 6 visualizes the
range of motorbike appearances that are still reliablyaeteby our approach. Although the
system has only been trained on a single viewpoint, the @& robustness from multi-cue
integration makes it possible to compensate for a certael & out-of-plane rotation.

Last but not least, we apply our multi-cue approach to theepiihn test set from [11]
using the same clustering/matching thresholds as for theniges. The results are shown
in Fig. 5(right). Again, the combination of multiple cuesirases performance significantly
from 80% EER for the best single cues to 84.7%3S@with all three detectors and to 82.6%
with HesLapwith SIFT+GLOH+SC In comparison, we show the results from [11], which
are clearly outperformed by our multi-cue system.



6 Discussion & Conclusion

In conclusion, we have proposed a robust and flexible mukiintegration scheme that op-
erates even when the cues are highly correlated. It has beamgo improve performance
consistently on three different data sets and for two diffiéicategories. The improvement
is particularly visible in terms of recognition precisiond for the motorbike test sets, high
recall values at the zero-false-positive level. Compapexidanonical cue combination strat-
egy of simply adding the weighted cue responses, our prapagproach can react more
flexibly to varying cue performance and adapt itself autaca#ly. This advantage could
also be verified quantitatively in cases where the cues weyegly correlated.

In order to further evaluate its performance we have coredlah extensive study, com-
paring 3 state-of-the-art interest region detectors andférent descriptors in the context
of multi-cue integration. The results of this evaluatiolowl to rank the cues both based
on their individual performance and their suitability fottegration. In addition, we can
draw several interesting conclusions. When set to the ditstering level SIFT andSC
features performed consistently better than all otherrgf@ses in this evaluation. In addi-
tion, feature combinations with eith8Cdescriptors and several different region detectors or
DoG/Hessian-Laplaceegions with several different descriptors achieved tighést overal
performance level. These two extremes thus provide an botgavhich the set of cues can
be varied depending on implementation tradeoffs (i.e eeidampling more points or using
the sampled information more efficiently).
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