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Abstract
In this paper, we address the problem of segmentation-

based tracking of multiple articulated persons. We pro-
pose two improvements to current level-set tracking for-
mulations. The first is a localized appearance model that
uses additional level-sets in order to enforce a hierarchi-
cal subdivision of the object shape into multiple connected
regions with distinct appearance models. The second is a
novel mechanism to include detailed object shape informa-
tion in the form of a per-pixel figure/ground probability map
obtained from an object detection process. Both contri-
butions are seamlessly integrated into the level-set frame-
work. Together, they considerably improve the accuracy
of the tracked segmentations. We experimentally evaluate
our proposed approach on two challenging sequences and
demonstrate its good performance in practice.

1. Introduction
Level Sets [7, 10] have gained increasing popularity for

many segmentation and tracking tasks due to their computa-
tional efficiency [20, 3] and their flexibility with respect to
topological changes of the contour (which sets them apart
from active shapes [5, 17]). In this paper, we consider their
use for segmentation-based tracking of articulated objects,
as shown in Fig. 1.

Several approaches have been proposed that are targeted
at level-set tracking of deformable objects [8, 9, 3]. In
particular, the recent formulation by Bibby and Reid has
demonstrated robust tracking performance in a variety of
real-world scenarios [3], including multi-object tracking
from surveillance videos [4] and in busy street scenes [21].
However, while the results obtained there are satisfactory
from a tracking perspective, they typically sacrifice segmen-
tation accuracy in order to provide robust tracking under
strong articulations. Detailed segmentations are however
often required for later processing stages, e.g. for video edit-
ing [1] or to provide detailed input for body pose analysis
and articulated tracking (e.g. [26, 27, 14]). Improvements

Figure 1. Example results of our proposed level-set segmentation
and tracking approach. The combination of localized appearance
models and top-down shape information considerably improves
the accuracy of the tracked contours.

in the way shape and appearance can be represented to cope
with such challenging tasks are therefore of considerable
interest for many applications.

Surprisingly, the appearance models used in level set
tracking have so far been relatively weak, mainly encoding
global object properties such as color, texture, motion, or
3D depth [10]. Indeed, it is difficult to use more powerful
localized appearance models (such as, e.g., HOG features
[11]) in a level-set formalism, since the level-set framework
aims at optimally grouping regions whose pixels have sim-
ilar feature signatures. This makes it difficult for level-set
approaches to reliably segment and track multi-colored, ar-
ticulated objects such as pedestrians in front of complex,
cluttered backgrounds.

Similarly, shape information in the context of level-set
formulations has primarily been considered in the form of
static [19, 28, 23] or dynamic [8, 9] priors. Those try to
constrain the embedding function using the statistics of a set
of training shapes, either by performing the optimization in
a subspace [19, 28] or by bringing in the shape constraints
on the variational level [23]. The problem with such priors
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Figure 2. (Left): The tracked person with the contour C, the fore-
ground and background regions Mfi,Mbj and the warp W (x,p)
representing the position in the image. (Right): The generative
model used in our approach, treating the image as bag of pixels.

for tracking articulated body shapes is that they are both
too weak and too strong. They are too weak, because they
need to encompass the entire intra-category variability, in
addition to the variability in articulation. And they are too
strong, because the priors tend to continue tracking even in
the absence of an object to track (as is also visible in the
results of [8]).

In this paper, we propose two improvements that address
both of the above issues. (1) We propose to use top-down
segmentation information fed back from object detection
[15, 18, 16] in order to incorporate category-specific shape
information that is conditioned on the current image con-
tent. This idea takes advantage of the flexible part layout
employed by state-of-the-art detectors, which can adapt to
different shapes, while still enforcing global consistency. In
addition, our formulation does not place hard constraints
on the object shape, but brings in soft information in the
form of a per-pixel figure/ground probability map that can
be directly integrated into the object model. (2) We propose
a mechanism to include localized appearance information
into the level-set framework. Our approach uses additional
level sets to enforce a hierarchical subdivision of the object
shape into multiple connected regions with distinct appear-
ance models. The advantage of this formulation is that the
separating contour itself can be optimized and tracked to
provide the best fit for each frame. This allows our approach
to automatically adapt to multi-colored pedestrian clothing
and deliver good tracking results in challenging scenarios,
such as the ones shown in Fig. 1.

Both contributions are seamlessly integrated into the
level-set tracking framework. Together, they considerably
improve the accuracy of the tracked segmentations, as our
experimental results will demonstrate.

Related Work. Even though level sets do not provide a
globally optimal solution (in contrast to, e.g., [25]), they
are still widely used in practice because of their efficiency
and other advantages [10]. Consequently, many approaches
have been proposed that use them for segmentation or track-
ing. In the following, we only focus on those approaches

x Pixel’s coordinates inside reference frame
y Pixel’s color
p Reference frame position
h Shape model

W (x,p) Warp with parameters p
Mf1,Mf2 Foreground regions
Mb1,Mb2 Background regions
P (y|Mk) Appearance models

Φ Level set embedding function
{Φc,Φf ,Φb} Embeddings for person and fore/background

Ck Contour represented by the zero level set
Hε(z) Smoothed Heaviside step function
δε(z) Smoothed Dirac delta function

Table 1. Notation used in this paper

most closely related to our contributions.
[29] and [6] propose multiphase level set formulations

composed ofN distinct level set functions to represent com-
plex boundaries between up to 2N regions. Our appearance
modeling approach is similar to this idea in that we also
consider an overlay of several level set functions, but our
motivation is to create a hierarchical subdivision capturing
the detailed appearance of e.g. pedestrian clothing, while
still preserving the outer silhouette as a single contour.

Schmaltz et al. [24] propose a Localized Mixture Model
(LMM) for object segmentation and 3D model-based track-
ing with non-uniform backgrounds. Their approach parti-
tions the fore- and background into several subregions that
are modeled with their own PDFs. In principle, such an ap-
pearance model could also be used here. However, the main
issue in this case is how to localize the foreground subre-
gions with respect to the moving, articulated person. For
this step, [24] apply a model-based tracking approach that
employs a 3D person model with limb-specific appearance
distributions, which is not available for our task. Instead,
our approach estimates and tracks the subregions automati-
cally, while staying inside the level-set framework.

Niebles et al. [22] combine top-down shape priors and
bottom up appearance and optical flow based segmentation
for person segmentation in YouTube videos. In contrast to
our approach, their method performs a joint optimization on
the entire video sequence and is thus not suitable for online
analysis.

The rest of the paper is structured as follows. The next
section introduces the basic level set tracking framework
our approach operates in. Section 3 presents our localized
appearance model and Section 4 adds the top-down shape
information. Section 5 discusses how all components are
combined. Finally, Section 6 presents experimental results.

2. Level Set Segmentation and Tracking
We use a probabilistic level-set framework to perform a

segmentation of the target object and track it through the
following frames, similar to [3]. Fig. 2 shows the genera-
tive model that is the foundation of our proposed framework



and Table 1 summarizes the notation. The tracked object is
represented by its contour C (represented with level sets
Φ) and its position p in the image. It consists of pixels at
coordinates x with color y. Foreground and background re-
gionsM are distinguished by appearance models consisting
of color histograms and we additionally incorporate a class
specific shape model h. Thus, given an initialization for
x,y,h, and M , the task is to infer shape Φ and position p.
The joint distribution for one pixel given by the model is

P (xi,yi,hi,Φ,p,M) = (1)
P (xi|Φ,p,M)P (yi|M)P (hi|M)P (M)P (Φ)P (p)

Conditioning on xi,yi,hi and marginalizing overM yields

P (Φ,p|xi,yi,hi) =
1

P (xi)

∑
k

{
P (xi|Φ,p,Mk)

P (yi|Mk)P (Mk)∑
l P (yi|Ml)P (Ml)

P (Mk|hi)
}
P (Φ)P (p) (2)

where the Mk denote the different (foreground and back-
ground) regions. We use P (xi|Φ,p,yi,hi) as shorthand
notation for the sum in (2) and fuse the pixels i in a loga-
rithmic opinion pool, which yields:

P (Φ,p|x,y,h) =

N∏
i=1

P (xi|Φ,p,yi,hi)P (Φ)P (p) (3)

We use the term P (Φ) to specify some desired internal
properties of the contour: First, a geometric prior that re-
wards a signed distance function (eliminating the need for
periodic re-initializations [20, 3]) and second, a prior for the
length of the contour [10], rewarding a smoother contour.

P (Φ)=

N∏
i=1

1

σ
√

2π
exp
(
− (|∇Φ|−1)2

2σ2

)
exp
(
−λ|∇Hε(Φ)|

)
(4)

where σ and λ are the weights of the priors. Maximizing the
posterior is equivalent to minimizing its negative logarithm:

E(Φ)=−log(P (Φ,p|x,y,h))

∝−
N∑
i=1

{
log(P (xi|Φ,p,yi,hi))−

(|∇Φ| − 1)2

2σ2

−λ|∇Hε(Φ)|
}

+N log

(
1

σ
√

2π

)
+log(P (p)) (5)

This equation gives us the probability for the desired val-
ues Φ and p. In order to optimize both, we first optimize
the shape and keep the position constant (the segmentation
step), then optimize the position while keeping the shape
constant (resulting in a rigid registration step).

Segmentation. For segmentation, we optimize (5) w.r.t Φ
while keeping p constant, using the Euler-Lagrange equa-

tion which minimizes E(Φ) [10]:

∂Φk

∂t
= −∂E(Φ)

∂Φk
=

∂
∂Φk

P (x|Φ,p,y,h)

P (x|Φ,p,y,h)
+ (6)

1

σ2

[
∇2(Φk)−div

(
∇Φk
|∇Φk|

)]
+λδε(Φk)div

(
∇Φk
|∇Φk|

)
The gradient flow (6) consists of three terms: The first
term penalizes the deviation from the appearance models
and from the shape model. The second term penalizes the
deviation from a signed distance function and thus makes
the embedding function numerically stable without the need
for periodic re-initializations. The third term penalizes the
length of the contour, thus smoothing it. This is particularly
useful in cluttered scenes, since the background can contain
many scattered pixels with foreground appearance, which
would otherwise lead to a very uneven contour.

We will specify P (x|Φ,p,y,h) later; at this point it is
sufficient to know that the contour evolves such that it en-
closes pixels with foreground appearance and high figure
probability.

Rigid Registration. Having obtained the target object’s
shape, we track it through the following frames by perform-
ing a rigid registration. The new position of Φ is described
with a warp p, which can be any transformation that forms a
group. [3] use translation+scale+rotation, but since we want
to track pedestrians, we only use translation+scale here. For
this, we introduce the warp W(xi,∆p) with parameters p.
P (p) is dropped here and is handled with drift correction,
as in [3]:

log(P (Φ,p|x,y,h))∝
N∑
i=1

log
{
P (W(xi,∆p)|Φ,p,yi,hi)

}
(7)

We maximize this equation w.r.t p:

p = arg max
p

{ N∑
i=1

logP (W(xi,∆p)|Φ,p,yi,hi)
}

(8)

Optimization is performed using a second-order Newton
optimization scheme, as in [4]. With the short-hand nota-
tion P (...) = P (W(xi,∆p)|Φ,p,yi,hi), we obtain

∆p =
[ N∑
i=1

(
∂P (...)
∂p

)2
P (...)

]−1 N∑
i=1

∂P (...)

∂p
(9)

Keeping the shape Φ constant, the position p is optimized
by incrementally warping it with ∆p.

Summary. The contour of the foreground object is de-
scribed by the zero level set of a level set embedding func-
tion Φc. Starting from some initialization, the contour is
evolved to maximize its probability given the image, the



(a)

(b)

Figure 3. Results obtained with a level set tracker as in [3]:
(a) With 1 segmentation iteration after rigid registration, the con-
tours lose highly articulated parts such as the legs. (b) With
more iterations, the results become very inaccurate due to cluttered
background containing the same colors as the foreground regions.

learned appearance models, and the shape model. The ap-
pearance models (in our case L*a*b color histograms) are
rebuilt in each of the n1 iterations. In the following frame,
the new position of the shape is registered and afterwards
the contour is adapted by performing n2 segmentation iter-
ations. In this case, the appearance models are not rebuilt,
but only slightly adapted for greater robustness, as in [3].
In the following two sections we will now describe the used
appearance models and shape models in more detail.

3. Localized Appearance Models
[3] use a simple appearance model consisting of two

color histograms, one for the foreground region and one for
the background region. While this has proven to be robust
to viewpoint changes and changes occurring in the back-
ground due to a moving camera, we found that this model
is too weak if the goal is detailed segmentation in addition
to robust tracking. Persons are highly articulated and thus
their shapes undergo significant changes between frames,
which cannot be traced with only one segmentation itera-
tion (c.f . Fig. 3(a)). The shape can of course be adapted by
performing more segmentation iterations to account for the
shape changes. However, a weak appearance model is not
able to handle cluttered background that may contain the
same colors as the foreground region, which itself already
contains a number of different colors. In this case, fore-
ground and background are hard to distinguish by two color
histograms, leading to a dramatically decreased robustness
to similar background regions. In consequence, the contour
can easily bleed out into background regions, while some
foreground regions may be lost (c.f . Fig. 3(b)). Consider the
case shown in Fig. 4(a). Here, the tracked person’s trousers
have the same color as the background region behind his
head. The two regions do not adjoin and yet it is difficult to
distinguish them with a single appearance models.

(a)

(b)

Figure 4. (a): Failure case of the level set tracker as in [3] with
more segmentation iterations: the background of the head has the
same color as the trousers resulting in the contour to drift into the
background and away from the legs. (b): Results obtained with
our Localized Appearance Models: foreground and background
regions are distinguished much more accurately.

Hence, we propose to incorporate spatial information
into the appearance models. For pedestrians, this is very
intuitive for the lower and upper body with different cloth-
ing. The background can also be separated into different
regions, for example at the horizon. One option would thus
be to track lower and upper body independently with two
different contours. However, this strategy does not make
use of the information that the two parts belong together
and would lead to problems, since the two regions could
overlap or diverge. Another option would be a fixed grid
subdivision, where every grid cell has its own appearance
model. The problem is that narrow-band techniques then
become difficult to use, since the contour can evolve into
previously empty cells. Moreover, this could have negative
effects for small regions that are part of a larger region and
only partially lie in one cell. Instead, we propose to use a
subdivision that is specific to the target object by optimizing
the subdivision with the contour.

To this end, we use two additional level set embedding
functions Φf and Φb for two additional contours that sep-
arate foreground and background into two regions, respec-
tively. Consequently, we use four color histograms to de-
scribe these four regions. The person’s shape is still de-
scribed by Φc, but Φf and Φb are used to determine which
appearance model to use. Fig. 5(a) shows the four regions
with the four color histograms. Fig. 5(b) depicts the level
set embedding function Φc and the person’s contour at the
zero level. Φf , whose zero level describes the foreground’s
additional separating contour, is shown in Fig. 5(c).

In order to formally define this model, we now specify
the term P (x|Φ,p,y,h) from Sec. 2. Using a smoothed
Heaviside step function Hε to select the respective regions
and a smoothed Dirac function δε to select the contours
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Figure 5. (a) Four appearance models for four regions. (b) 3D vi-
sualization of level set embedding function Φc, contour in blue,
note the legs at the lower left. (c) 3D visualization of Φf , fore-
ground division line in green.

Hc = Hε(Φc(xi)), H̃c = 1−Hε(Φc(xi)) (10)
Hf = Hε(Φf (xi)), H̃f = 1−Hε(Φf (xi))

Hb = Hε(Φb(xi)), H̃b = 1−Hε(Φb(xi))

δc = δε(Φc(xi)), δf = δε(Φf (xi)), δb = δε(Φb(xi))

we can write the number of pixels in the four regions as
follows:

N=
∑

ηk, ηf1 =

N∑
i=1

HcHf , ηf2 =

N∑
i=1

HcH̃f , (11)

ηb1 =

N∑
i=1

H̃cHb, ηb2 =

N∑
i=1

H̃cH̃b .

This way, we can express the terms

P (Mk) =
ηk
N
, k ∈ {f1, f2, b1, b2}, (12)

P (xi|Φ,p,Mf1)=
HcHf
ηf1

, P (xi|Φ,p,Mf2) =
HcH̃f
ηf2

,

P (xi|Φ,p,Mb1)=
H̃cHb

ηb1
, P (xi|Φ,p,Mb2) =

H̃cH̃b

ηb2
.

Having specified all these terms, we obtain

P (xi|Φ,p,yi,hi) =

HcHfPf1 +HcH̃fPf2 + H̃cHbPb1 + H̃cH̃bPb2 (13)
where

Pk =
P (yi|Mk)P (Mk|hi)∑

l ηlP (yi|Ml)
, k, l ∈{f1, f2, b1, b2}. (14)

The segmentation gradient flow is thus:

∂P (Φ,p|x,y,h)

∂Φk
=
δk

(
HfPf1+H̃fPf2−HbPb1−H̃bPb2

)
P (x|Φ,p,y,h)

+
1

σ2

[
∇2(Φk)−div

(
∇Φk
|∇Φk|

)]
+λδε(Φk)div

(
∇Φk
|∇Φk|

)
(15)

We initialize the additional contours with horizontal
lines at 50% of the bounding box height for the foreground

and 60% for the background. We evolve the two additional
level set functions interleaved with the original level set
function Φc. In this way, the four appearance models are
optimized at the same time, which leads to more robust and
accurate segmentation results (c.f . Fig. 4(b)).

Φf and Φb’s contours are only optimized where they are
“visible”, i.e. inside or outside the person’s contour, respec-
tively. This means that only these visible parts are mean-
ingful and when the person’s contour grows or shrinks, it
reveals parts of Φf and Φb that were meaningless before.
However, as described in Section 2, the level set embedding
functions are kept in a numerically stable form and the con-
tour is smoothed slightly, thus the newly appearing regions
are handled implicitly.

This hierarchical subdivision could easily be extended to
even more than four regions by dividing foreground and/or
background into multiple regions as, e.g., in [29] (n level
set embedding functions for 2n regions), each with its own
color histogram.

We can now also specify the rigid registration:

∂P(...)

∂p
=
(
JcHf+HcJf

)
Pf1+

(
JcH̃f−HcJf

)
Pf2−JcHbPb1−JcH̃bPb2

=Jc
(
HfPf1+H̃fPf2−HbPb1−H̃bPb2

)
+Jf
(
HcPf1−HcPf2

)
(16)

with the Jacobians of the warp

Jk=
∂Hk

∂Φk

∂Φk

∂x

∂W

∂∆p
= δε(Φk(xi))∇Φk(xi)

∂W

∂∆p
. (17)

We assume that the background does not move with the
foreground, thus Hε(Φb(xi)) is constant w.r.t the deriva-
tion ∂

∂p . Eq. (16) illustrates that both the person’s con-
tour and the division line of the foreground contribute to
the warp, whereas the division line of the background does
not contribute: Jk contain the factor δε(Φk), the Dirac delta
function of the respective level set function, which is only
greater than zero in a narrow band around the contour (with
width 2ε), and Jb does not occur in (17).

Even with more exact appearance models, the initial
segmentation still poses problems, since it is not possible
to distinguish foreground regions from same-colored back-
ground regions. Therefore we incorporate class specific
information to be able to distinguish persons from similar
looking background, as described in the next section.

4. Detection-Based Top-Down Segmentation
In order to achieve robust tracking performance, we

want to make use of the information that we track objects
of a certain category (e.g., pedestrians). This is also the
motivation behind work on category-specific shape priors
[19, 28, 23, 8]. However, such priors do not take into ac-
count image-specific information and have difficulties mod-
eling the dynamic shape of strongly articulated objects. In-
stead, we propose to use top-down segmentation informa-
tion fed back from object detection.



For this, we build upon class-specific Hough Forest de-
tectors [13], which have been shown to reach state-of-the-
art detection performance on several benchmark datasets.
This approach uses a random forest structure to efficiently
match densely sampled input patches to a discriminatively
trained visual vocabulary represented by the trees’ leaf
nodes. It then takes up the voting idea of Implicit Shape
Models (ISM) [18] in order to let each activated leaf node
vote for possible locations of the object center using a
learned spatial occurrence distribution. The votes are col-
lected in a Hough voting space. Local maxima in this space
correspond to object hypotheses, which are passed to a final
non-maximum suppression stage. The advantage of Hough
Forests is that they can be evaluated very fast, so that they
are suitable for processing densely sampled image patches.

As shown in [18], the votes corresponding to a local
maximum in the Hough space can be backprojected to the
image in order to infer top-down segmentation information.
Intuitively, this step derives a local figure-ground label for
the patch X = {xk} conditioned on the patch appearance
and the detected object location. As each vote vj originat-
ing from patch X hypothesizes a relative object location, it
can be augmented with a figure-ground label (of the size of
the patch and learned from training data) Seg(vj) consis-
tent with that location. When a Hough-space maximum is
selected and its constituent votes are backprojected, the ef-
fect is that only consistent segmentation labels survive. The
resulting patch segmentation label can then be inferred by
summing the backprojected figure-ground labels, weighted
by the weight of the corresponding vote wvj . The figure-
ground probability of a pixel x is obtained by averaging
over all patches Xi containing this pixel:

P (Mf |h) =
1

z

∑
Xi(x)

1

|Xi|
∑

vj∈votes(Xi)

wvjSeg(vj) (18)

P (Mb|h) =
1

z

∑
Xi(x)

1

|Xi|
∑

vj∈votes(Xi)

wvj (1− Seg(vj))

z =
∑

Xi(x)

∑
vj∈votes(Xi)

wvj

Fig. 6 visualizes the figure and ground probability maps for
an example detection.

The resulting procedure provides an object-specific fig-
ure and ground probability for every pixel and integrates
naturally into the level-set formulation. Moreover we use
the top down segmentation as initialization for the level set
segmentation. The foreground region is given by all pixels
x with

θP (Mf |h)

θP (Mf |h) + P (Mb|h)
≥ 0.5 . (19)

We initialize Φc with a signed distance function of the ob-
tained contour. The factor θ can be used to shrink or enlarge
the obtained contour. We use θ = 0.9 to increase precision.

(a) (b) (c) (d) (e)
Figure 6. Visualization of the top-down segmentation information
used in our approach: (a) p(Mf |h) and (b) p(Mb|h) probabil-
ity maps. (c) Resulting contour just based on this information.
(d)(e) Two more examples for the detector’s segmentations.

Note that eq. (14) contains P (Mk|h) for four regions,
but the detector only provides probabilities for two regions:
foreground and background. However, (13) selects one re-
gion by use of H , Hf and Hb. Therefore the following
always holds: Either P (Mf |h) = P (Mf1|h) or P (Mf |h) =
P (Mf2|h) and ditto for P (Mb|h)

5. Combined Model
We demonstrate our approach with a simple pedestrian

tracker. The combined model can be summarized as fol-
lows: The Hough Forest detector is used to initialize tracks
for newly appearing persons. These are first segmented
using four color histograms in our Localized Appearance
Model framework and using figure and ground probabili-
ties provided by the detector by performing n1 = 100 seg-
mentation iterations. In subsequent frames, the persons are
tracked and the new object positions are determined with
a simple Kalman Filter using the new detection as obser-
vation. The shape is adapted to the new image and figure-
ground probabilities by performing n2 = 100 segmentation
iterations. If there is no detection for a tracked person in
a particular frame, P (M |h) does not exist. In this case,
we consider the generative model without h, which in prac-
tice means P (M |h) is omitted in the equation. Tracklets
are discarded if there are no new detections for a specified
number of frames.

All persons are tracked independently, their level set em-
bedding functions do not interact directly. We do however
infer an approximate depth ordering by comparing the y-
positions of the bounding boxes. This approach does not
need any further information (as, e.g., a ground plane or
depth maps), but it is restricted to simple occlusion cases.
It cannot propagate identities through occlusions, but one
could apply a high-level tracker as in [21] to achieve this.

6. Experimental Results
We evaluate our approach on two challenging and very

different datasets. The TUD CROSSING dataset [2] consists
of 201 frames with walking persons mainly seen from the
side and was taken with a stationary camera on a cloudy



recall IOU prec
BR box init 57.5% 51.5% 83.1%
LS box init 60.0% 55.6% 88.4%
LS hf init 64.1% 58.6% 87.3%
LAM box init 64.5% 58.1% 85.5%
LAM hf init 65.1% 59.8% 88.0%
LS+HF 64.5% 61.4% 92.7%
LAM+HF 68.8% 65.0% 92.1%
HF 65.7% 61.3% 90.1%

Figure 7. (Left): Segmentation performance for TUD Crossing for different combinations of our approaches. BR: level set tracker as
in [3], LS: the level set tracker with 2 appearance models, LAM: with our localized appearance models, HF: Hough Forest detector. Box
init: initialization with detector bounding box, hf init: initialization with segmentation, +HF: initialization and optimization with shape
probability maps. (Right): Segmentation performance for TUD Crossing for different initializations of LS and LAM.

day. We annotated pixel-wise segmentations of the persons
in 21 frames (every 10th frame). The ETH SUNNY DAY
sequence [12] was taken with a moving camera on a sunny
day and contains persons walking towards the camera. This
dataset consists of 354 frames and also provides a ground
plane estimate which we use to reject detections that are
inconsistent with the ground plane.

Qualitative results. Fig. 8 shows our results for both test
sequences. In comparison with the baseline results in Fig. 3,
it becomes clear that our segmentation results are more ac-
curate.

Segmentation Performance.
In Fig. 7 (left), we compare the segmentation perfor-

mance of the Hough Forest detector top-down segmenta-
tion, the level set tracker as in [3], and different combina-
tions of our proposed approaches. It can be seen that all
parts contribute to improve the segmentation results. The
full model without the localized appearance models or with-
out the Hough Forest top-down segmentation both do not
reach the performance of the full model, proving that both
are necessary to achieve this improvement.

Fig. 7 (right) shows how the segmentation performance
of the raw Hough Forest detector (red line) is improved
through the integration of the level set tracker with the prob-
abilistic shape models and our localized appearance mod-
els (green crosses) for different detector thresholds (as in-
dicated by the gray lines). As can be seen, the localized
appearance models improve performance on top of the inte-
gration with the probabilistic shape models (blue crosses).

7. Conclusion
In conclusion, we have presented a level set framework

for segmentation and tracking of multiple articulated per-
sons. We have shown how to use a hierarchical subdi-
vision of the segmented regions, that is optimized within

the framework, to use more distinctive localized appearance
models. Furthermore we have demonstrated how to incor-
porate detailed class specific information obtained from an
object detector. As our experiments have shown both of
those approaches contribute to an increased segmentation
performance.
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