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Abstract

Category detection is a lively area of research. While
categorization algorithms tend to agree in using local de-
scriptors, they differ in the choice of the classifier, with
some using generative models and others discriminative ap-
proaches. This paper presents a method for object category
detection which integrates a generative model with a dis-
criminative classifier. For each object category, we generate
an appearance codebook, which becomes a common vocab-
ulary for the generative and discriminative methods. Given
a query image, the generative part of the algorithm finds
a set of hypotheses and estimates their support in location
and scale. Then, the discriminative part verifies each hy-
pothesis on the same codebook activations. The new algo-
rithm exploits the strengths of both original methods, mini-
mizing their weaknesses. Experiments on several databases
show that our new approach performs better than its build-
ing blocks taken separately. Moreover, experiments on two
challenging multi-scale databases show that our new algo-
rithm outperforms previously reported results.

1. Introduction

In recent years object categorization has regained inter-
est and impressive results have been reported on various
databases. Interestingly, while there seems to be a com-
mon consensus on the use of local features, there is much
more variety on the classification methods, where the range
goes from probabilistic models [7, 11] to discriminative ap-
proaches [20, 24, 15].

Generative models are quite appealing for various rea-
sons in the context of object categorization. For exam-
ple those models can be learned incrementally [19], they
can deal with missing data in a principled way, they allow
for modular construction of composed solutions to complex
problems and therefore lend themselves to hierarchical clas-

sifier design. Also, prior knowledge can be easily taken into
account [12]. In practice generative models show consider-
able robustness with respect to partial occlusion and view-
point changes and can tolerate significant intra-class vari-
ation of object appearance [7, 11]. However, the price for
this robustness typically is that they tend to produce a sig-
nificant number of false positives. This is particularly true
for object classes which share a high visual similarity such
as horses and cows.

Discriminative methods enable the construction of flex-
ible decision boundaries, resulting in classification perfor-
mances often superior to those obtained by purely proba-
bilistic or generative models [9, 14]. This allows for ex-
ample to explicitly learn the discriminant features of one
particular class vs. background [25] or between multiple
classes [20, 15]. Object categorization algorithms which
use discriminative methods combined with global and/or
local representations have been shown to perform well in
the presence of clutter, viewpoint changes, partial occlusion
and scale variations. Also, recent work has shown the suit-
ability of discriminative methods for recognition of large
numbers of categories [20].

While so far the object recognition community has cho-
sen one of these two modeling approaches, there has been
an increasing interest in the machine learning community
in developing algorithms which combine the advantages of
discriminative methods with those of probabilistic genera-
tive models [9]; a similar strategy has proven to be benefi-
cial for image parsing into regions and objects [22].

In this paper we integrate two different types of ap-
proaches into a single common framework to fully exploit
their strengths while minimizing their weaknesses. More
specifically, we combine the Implicit Shape Model (ISM,
[11]) based on a codebook representation (which can be
seen as a non-parametric probabilistic model of the appear-
ance of object categories) with an SVM using Local Kernels

1



(LK, [26]), which has proven effective for object categoriza-
tion [15]. The idea to use a generative model inside a kernel
function has been proposed before [9, 10, 23, 21], and it has
been applied to visual recognition tasks like object identifi-
cation [23].

The first main contribution of this paper is a new ap-
proach which tightly integrates a probabilistic with a dis-
criminant approach into a single categorization framework.
This tight integration is made possible by a unified data rep-
resentation used by both approaches. The new integrated
approach is beneficial with respect to ISM, since the new
approach preserves the generalization capabilities of ISM
but increases its accuracy in rejecting false positives. Since
ISM effectively acts as a pre-filter to the discriminant part
of the algorithm the integration is also beneficial with re-
spect to LK by using the discriminant power only where it
is needed, namely on visually similar appearances of object
classes.

The second main contribution are experimental results
which show the superiority of the new integrated approach
with respect to ISM and LK both in terms of detection per-
formance and of a significant reduction of false positives on
challenging databases. The new approach also outperforms
state-of-the-art object categorization methods on challeng-
ing multi-scale data sets.

The third main contribution is that the integrated ap-
proach improves over and extends the original LK approach
[26] in various respects: the new approach is scale invariant,
enables localization of the object in the scene, and allows
cross-instance learning of object category models.

The rest of the paper is organized as follows: after a brief
review of the ISM and LK algorithms (Sec. 2), we intro-
duce the new approach, describing in detail how it integrates
ISM and LK and discussing its advantages with respect to
the two previous methods (Sec. 3). Section 4 reports ex-
periments benchmarking our new method with its building
blocks, on several databases of increasing difficulty.

2. Previous Approaches

Our approach is motivated by two recent advances in ob-
ject detection and discrimination.
Object Detection with Implicit Shape Models. Implicit
Shape Models (ISMs) [11] are unique in that they address
object category detection and top-down segmentation at the
same time. They proceed by first collecting the evidence
from local features in a probabilistic Hough voting proce-
dure to determine possible object locations and scales. For
each such hypothesis, they then go back to the image to
determine on a per-pixel level where its support came from,
thus effectively segmenting the object from the background.
The segmentation information can then in turn be used to
improve the accuracy of the detection and resolve ambigu-
ities between overlapping hypotheses [11]. As a result of

this iterative process, ISMs have been shown to yield good
object detection results and considerable robustness to par-
tial occlusion.

The ISM approach provides a flexible representation of
the target category. Since each image patch votes for the ob-
ject center independently of the other patches, the resulting
model can interpolate between local parts seen on differ-
ent training objects. As a result, it can adapt well to novel
objects of the target category and typically achieves high re-
call. However, as a price for this flexibility, it cannot reject
false positives as accurately as a discriminative model.
SVM Classification with Local Kernels. Most current ob-
ject category detection systems are based on local features
in order to reduce the influence of intra-class variations,
noise, and occlusion [7, 2, 25, 24, 13, 11]. Support Vec-
tor Machines (SVMs), on the other hand, have shown im-
pressive learning and recognition performance [17, 16, 8].
As the SVMs’ machinery requires the computation of scalar
products on the feature vectors, [26] introduced a local ker-
nel which formulates the feature matching step as part of
the kernel itself. Despite the claim in [26], this family of
kernels is not a Mercer kernel [4]. Still, it can be shown
that it statistically approximates a Mercer kernel in a way
that makes it a suitable kernel for visual applications. On
the basis of this finding, and of its reported effectiveness for
object categorization [15], we will use this family of kernels
in this paper.

Given two local feature lists Lh and Lk, these local ker-
nels are defined as [26]

K(Lh, Lk) =
1
nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(L

jh

h , Ljk

k )
}

, (1)

where the local feature similarity kernel Kl consists of an
appearance part Ka and a position constraint Kp

Kl(La
h, Lb

k) = Ka(La
h, Lb

k) Kp(pos(La
h), pos(Lb

k)). (2)

Various options have been given for the selection of Ka and
Kp [26], including the following choice

Ka = exp

{
−γ

(
1 − 〈x − µx|y − µy〉

||x − µx||||y − µy||
)}

(3)

As shown by [26, 15], Local SVMs can discriminate
well between different object categories. However, they
contain no localization component and require accurate ini-
tialization in position and scale. In the literature, the stan-
dard solution to this problem is to perform an exhaus-
tive search over all possible object positions and scales
[16, 18, 8, 24, 2, 20]. However, this exhaustive search im-
poses severe constraints, both on the detector’s computa-
tional complexity and on its discriminance, since a large
number of potential false positives need to be excluded. In
this paper, we present a different solution to this problem by
integrating Local SVMs with the ISM approach.
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(a) original image (b) detected hypotheses (c) SVM input (d) accepted hypotheses

Figure 1. Stages of the integrated approach. (a) original image; (b) hypotheses detected by the representative ISM;
(c) input to the SVM stage; (d) verified hypotheses.

3. Integrated Approach

The main contribution of this paper is to integrate
both approaches into a consistent framework (visualized in
Fig. 1). Applied to a novel test image (Fig. 1(a)), the rep-
resentative ISM is first used to find a set of promising hy-
potheses (Fig. 1(b)) and estimate their support in both lo-
cation and scale (Fig. 1(c)). For each of those hypotheses,
the more exact discriminative model is then applied in or-
der to verify them and filter out false positives (Fig. 1(d)).
By using the same internal representation, namely the ap-
pearance codebooks, those two approaches are tightly inte-
grated. The ISM uses these appearance codebooks to gener-
ate hypotheses which are visually consistent and which fol-
low a weak spatial model. The discriminative model on the
other hand uses the same appearance codebooks to find vi-
sually discriminant information for object classes and also
to add a stronger spatial model effectively extracting dis-
criminant spatial codebook distributions. We thus combine
the capabilities of both models in an advantageous manner.

3.1. Generation of an Appearance Codebook

As a common representation, we generate a category-
specific appearance codebook, as described in [11]. For
this, we apply a scale-invariant DoG interest point operator
[13] to all training images and extract image patches with
a radius of 3σ of the detected scale. All extracted patches
are then rescaled to a uniform size (in our case 25× 25 pix-
els) and grouped using an agglomerative clustering scheme.
The resulting clusters form a compact representation of lo-
cal object structure. In the following, we keep only the clus-
ter centers C = (�c1, . . . ,�cR) as codebook entries.

For each codebook entry, we then learn its spatial occur-
rence distribution on the object category. For this, we per-
form a second iteration over all training images, again ex-
tracting patches around interest points, and record for each
�ci all locations where it can be matched to the extracted
patches (where patch similarity is measured by normalized
correlation).

3.2. Initial Hypothesis Generation

In order to generate initial hypotheses about possible
object locations and scales, we use a scale-invariant ver-
sion of the ISM approach from [11]. The approach starts
by applying the same patch extraction procedure as before,
and the local information from sampled patches is collected
in a probabilistic Hough voting procedure. Each patch is
matched to the codebook, and matching codebook entries
cast votes for possible object positions and scales according
to their learned spatial probability distribution.

This is formalized as follows. Let �e be an image patch
observed at location �. Each matching codebook entry �ci

generates probabilistic votes for different object categories
on and locations λ = (λx, λy, λs) according to the follow-
ing marginalization:

P (on, λ|�e, �) =
∑

i

P (on, λ|�ci, �)p(�ci|�e) (4)

where p(�ci|�e) denotes the probability that �e matches to
�ci, and P (on, λ|�ci, �) describes the stored spatial probabil-
ity distribution for the object center relative to an occur-
rence of that codebook entry. For describing the matching
probability, we make the assumption that an image patch
can be approximated by the mean of the closest-matching
codebook entries C∗

�e = {�c∗i |sim(�c∗i , �e) ≥ θ}, thus setting
p(�c∗i |�e) = 1

|C∗
�e
| . Object hypotheses are found as maxima

in the 3D voting space using Mean-Shift Mode Estimation
[5] with a scale-adaptive balloon density estimator [6] and
a uniform ellipsoidal kernel K:

p̂(on, λ) =
1

nh(λ)d

∑
k

∑
j

p(on, λj |�ek, �k)K(
λ − λj

h(λ)
)

Once a hypothesis has been found, the contributing votes
are backprojected to determine which local features and
codebook activations supported it in the image (Fig. 1(c)).
The original ISM approach additionally computes a full top-
down segmentation of the object, which has been shown to
improve the results considerably. In our approach, we also
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apply this segmentation loop to improve the quality of hy-
potheses. However, as this part is of minor relevance to
the understanding of our integrated approach, we refer the
reader to [11] for details.

3.3. Representation in Codebook Coordinates

The result of the ISM stage is a set of object hypothe-
ses h = (on, λ), together with their support in the image
(Fig. 1(c)). This support consists of a list of local features
that contributed to the hypothesis and their corresponding
codebook activations. In order to interpret this information
in the SVM framework, we first have to adapt the kernel
formulation to our codebook representation.

The key idea is that the scalar product 〈�x, �y〉 used in
the SVM Kernel can be expressed in terms of a codebook
matching problem. For this, we project both �x and �y into
the affine space spanned by the codebook entries �ci as ba-
sis vectors. With �x =

∑
i ai�ci and �y =

∑
j bj�cj the scalar

product can be written as

〈�x, �y〉 =
∑

i

∑
j

ai 〈�ci,�cj〉 bj . (5)

This formulation has two advantages. One is its computa-
tional efficiency – both the intra-codebook similarity matrix
〈�ci,�cj〉 and the support vector coefficients bj can be pre-
computed. Only the image-feature coefficients ai need to
be calculated during recognition. The second advantage is
that the data is now expressed in a common format and par-
tial results can be reused by both stages.

Remains the problem how to select the coefficients ai

and bj . The smallest reconstruction error would be obtained
by a least-squares solution, but this solution is typically not
sparse. In order to arrive at a sparse representation, we again
consider only the closest-matching codebook entries C∗

�x =
{�c∗i |sim(�c∗i , �x) ≥ θ} and approximate the vectors �x and �y
by the mean of those “activated” codebooks. Thus, with
n = |C∗

�x |, m = |C∗
�y |, we arrive at

〈�x, �y〉 ≈ 〈�µx, �µy〉 = <
1
n

n∑
i=1

�c∗i ,
1
m

m∑
j=1

�c∗j > (6)

=
n∑

i=1

m∑
j=1

1
n

〈
�c∗i ,�c

∗
j

〉 1
m

. (7)

This approximation is justified under the assumption that
the codebook entries sufficiently cover the relevant “object”
region of the appearance space. We have verified the va-
lidity of this assumption in a series of control experiments.
The results indicate that the difference in reconstruction er-
ror between the least-squares solution and our sparse ap-
proximation is only modest and subsumes to an average er-
ror of approximately one gray level per pixel on a recon-
structed patch. As a result, we get a problem-specific repre-
sentation which expresses the data in a common vocabulary

Figure 2. A look inside the LK verification stage.
Each support vector specifies a configuration of local
features, corresponding to a particular training exam-
ple. When evaluating a hypothesis, the kernel K first
searches for the k best feature correspondences, con-
sidering both appearance and relative position, and
uses them to judge the quality of the match.

and is used throughout both stages of our approach. In par-
ticular, this representation allows us to reuse the results of
the initial codebook matching stage for the SVM model.

3.4. SVM Verification with Local Kernels

Let X = {(x1, λ1), . . . , (xN , λN )} be a set of local fea-
tures (with appearance and relative location) supporting hy-
pothesis h, and A = {A1, . . . , AN} , Ai = (a1, . . . , aR) be
their corresponding codebook activations. The ISM pro-
cedure guarantees that each feature in the supporting set
is consistent in appearance and location with at least one
training example. However, as only local consistency is en-
forced, this reference example may be a different one for
each feature. In the next step, we therefore want to verify
that the global feature configuration is also consistent.

Figure 2 visualizes the chosen verification procedure. In
the remainder of this section, we will define the Local Ker-
nel in a way that each support vector corresponds to a dis-
tinct configuration of local features. When evaluating a hy-
pothesis, it is successively compared to each support vec-
tor. For each such match, correspondences are established
between visually similar features occurring in the same rel-
ative locations (with a small tolerance σ), and the quality
of the resulting global configuration fit is measured. Thus,
the kernel enforces strong spatial constraints to verify the
hypothesis.

This is done as follows. Let Y =
{(y1, λ1), . . . , (yM , λM )} be the features observed on
a training image with corresponding codebook activations
B = {B1, . . . , BM} , Bj = (b1, . . . , bR). In order to
compare the feature configurations of X and Y , we first try
to find a set of correspondences between their features. For
each pair of features (�x, λx) and (�y, λy), the quality of a
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match is expressed by the local similarity kernel Kl:

Kl((�x, λx), (�y, λy)) = Ka(�x, �y) Kp(λx, λy), (8)

where Ka is measuring the appearance similarity and Kp

is imposing a position constraint in the manner of a penalty
function. For Ka and Kp we stick to the choices made in
[26], but replace the correlation coefficient by the approxi-
mation from eq. (5):

Ka(�x, �y) = exp (−γ (1 − 〈�x, �y〉)) (9)

≈ exp(−γ(1 −
∑

i

∑
j

ai 〈�ci,�cj〉 bj))

Kp(λx, λy) = exp
(
− (λx − λy)2

2σ2

)
. (10)

In order to allow for some flexibility in the part arrange-
ment, we do not enforce complete correspondence, but only
match a subset of the features by searching for the k best
correspondences. This is done using a greedy selection
strategy on the feature similarity matrix Kl(X, Y ). Let
Φ ∈ πN

1 , Ψ ∈ πM
1 be permutations of the local features

to reflect this greedy assignment. According to [26], the
corresponding Local Kernel is then defined as

K(X, Y ) = (11)

1
k

max
Φ,Ψ

k∑
j=1

Kl

(
(�xΦ(j), λx,Φ(j)), (�yΨ(j), λy,Ψ(j))

)
.

Note that the resulting kernel does not need to consider the
original features anymore, but only operates on the code-
book activations passed from the previous stage. It thus
requires very little computation and imposes only a small
overhead on the total execution time. In all experiments
presented in this paper, we set k to 50 and determine the
remaining parameters using cross-validation on the training
set.

3.5. Discussion

It is important to emphasize that through the integration,
the SVM stage is solving a simpler problem than the previ-
ous LK approach. Not only is it initialized with an estimate
of the object position and scale, but it directly obtains also
the supporting image features as input. It can thus optimize
its decision surface on the failure cases of the ISM stage
and learn a stronger discriminative model. In addition, the
discriminative model makes it possible to achieve a better
separation from background constellations, whose complex
distributions are notoriously hard to express in a probabilis-
tic framework.

The matching to a common codebook enables both
stages to make use of “across-instance” learning which is

essential when dealing with limited training set sizes. In ad-
dition, the Local Kernel stage complements the ISM’s weak
spatial model with stronger spatial constraints.

As a side benefit, the output confidence of the SVM stage
(i.e. the distance to the hyperplane) becomes comparable
for different object categories. This is the case because the
Local Kernel bases its computation on a fixed number of k
correspondences.

4. Experiments

In this section, we show that our new approach benefits
from the integrated representative and discriminative rep-
resentation (in the following termed IRD). We present our
results in three steps. First, we compare our new approach
to the original ISM and LK approaches. Section 4.2 then
reports results on a multi-category detection/discrimination
task. Finally, we evaluate our approach on two difficult data
sets containing large scale changes and partial occlusion.
Data. In order to evaluate our approach, we apply it to a
test set containing objects of four categories, namely cars,
cows, horses, and motorbikes. The pairs cars/motobikes
and cows/horses were especially chosen to measure cross-
category confusions, since they share similar visual fea-
tures. The data is mostly taken from the PASCAL database
collection [1]. For cars we use the UIUC single-scale test
set; for motorbikes the CalTech motorbike set (with the
same training/test split as in [7]); and for cows the TUD
cow database (supplemented with 556 test images) . For
the background set, we use 450 CalTech background im-
ages. The horse images are taken from the Weizmann horse
database [3] and split into 79 training and 164 test images.
This is the first time detection results are reported on this
database, as it was previously only used for segmentation
tasks.

4.1. Comparison with Original Approaches

We start the experimental part with a comparison of our
new IRD approach with the approaches it originates from
– namely the Local Kernels and the ISM. To provide a
fair comparison with the LK approach, which is not de-
signed to be scale invariant or perform a detection task in
the first place, we report results of object present/absent ex-
periments. The test is performed on images of each category
vs. 450 novel background images.

Tabel 1 summarizes the equal error rate (EER) perfor-
mances for this experiment. As can be seen from the ta-
ble, the integrated approach achieves superior performance
compared to its building blocks.

4.2. Multi-Category Discrimination

Detection Task and Evaluation. Our main experiments
are performed on a detection task, where the detector has
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LK ISM IRD
car 61.0 % 94.7 % 99.4%
cow 95.3 % 96.1 % 97.1%

horse 77.8 % 88.5 % 88.5%
motorbike 87.6 % 93.8 % 96.5%

Table 1. Equal error rate performances achieved by
the Local Kernel (LK), Implicit Shape Model (ISM),
and our integrated approach (IRD) on present/absent
tasks.

to localize image regions in which an instance of the cate-
gory of interest is present. For evaluating the car detections,
we use exactly the same acceptance criterion and evaluation
software as in [2]. However, as this criterion is only well-
defined for fixed-size bounding boxes (and thus not directly
applicable to the cow and horse categories), we apply an ex-
tended criterion for the other three categories. We inscribe
an ellipse in the ground truth bounding box and measure the
distance dr between the bounding box centers relative to the
ellipse’s radius at the corresponding angle. A hypothesis is
accepted if dr ≤ 0.5 and the ground truth and hypothesis
bounding boxes cover one another by at least 50%. In ac-
cordance to [2], only one hypothesis per object is accepted
as correct – any additional hypothesis on the same object is
counted as false positive.
Detection Results. Figure 3 shows the results of this eval-
uation in the form of Recall-Precision curves (RPCs). To
vary the strictness of the local kernel SVM in our new IRD
approach without retraining, we used the distance to the de-
cision boundary as a confidence measure. Although the
ISM by itself performs already quite well on all four cat-
egories, our new IRD approach improves the EER perfor-
mance for cars from 87.6% to 88.6%, for cows from 92.5%
to 93.2% and for motorbikes from 80.0% to 84.0%. For
horses, the performance stays at the same level. Besides
the gain in EER performance, cars, cows and motorbikes
profit from the added discriminance in terms of increased
precision of the final detector, which shifts the precision-
recall curves to the left. Especially the relatively rigid car
and motorbike categories profit from the stronger structured
constraint of the local kernel. Figure 4 displays some exam-
ple detections of our approach which illustrate the general-
ization capabilities over large intra-category variations, in-
cluding different articulations, and its robustness to partial
occlusion.
Discrimination Results. Given these detectors operating
at their equal error rate, we now investigate the produced
confusions. Table 2 displays the false detections each of the
detectors produces per image on all four object categories.
The left number reports the false positives detected by the
ISM. It can be seen that the ISM performs well for the car
model, but still produces a relatively large number of false
positives for the other categories. The larger number of con-

fusions on the car images can be explained by the fact that
those images are about twice as large as the other images.
The right number reports the false positives detected by our
new IRD approach processing all detectors in parallel and
acting as a single unified detector. Ambiguous detections
are eliminated using the local SVM output as a confidence
measure. We can observe a drastic reduction of false pos-
itives down to (or even below) the 0.1 level for almost all
combinations. In particular, these results show that in our
new IRD approach the SVM output is well suited as a confi-
dence measure for comparing hypotheses across categories.

4.3. Discriminant Category Detection

In this section, we evaluate our approach on two more
challenging databases that include large scale changes and
significant partial occlusion. We use the UIUC multi-scale
cars and the TUD motorbikes, which are also both part of
the PASCAL collection [1]. For the multi-scale cars, we
again use the acceptance criterion from [2]; for the mo-
torbikes we use the criterion described in Section 4.2 for
the reasons given there. Figure 5 shows the result of this
evaluation. The black line corresponds to the performance
reported by [2], with an EER performance of about 45%.
In contrast, our IRD approach achieves 87.8% EER – an
improvement of over 40%! Interestingly, our method ob-
tains up to 64% recall before generating any false positives.
On the motorbike test set, our approach achieves an EER
performance of 81%. Compared to ISM, there is a consis-
tent improvement in precision. The difficulty of the task
is illustrated by Figure 6, which shows example detections
of our IRD approach documenting the performance under
occlusion, extreme illumination conditions and large scale
changes.

5. Summary and Conclusions

Summarizing our approach, we integrated a representa-
tive object detection method with a discriminative verifica-
tion stage for the generated hypotheses. Both stages oper-
ate on a common codebook representation. They share and
reuse the same information from sampled image patches,
but interpret it in different ways. The ISM hypothesis gen-
eration stage searches for agglomerations of image patches
that are locally consistent with a common object center.
Treating each sampled patch independently, it can inter-
polate between different training examples and adapt to
novel objects and changed articulations. The SVM ver-
ification stage, on the other hand, enforces stronger spa-
tial constraints and verifies the global feature configura-
tion. At the same time, its discriminative capabilities ob-
viate the need for a dedicated background model, which
is difficult to estimate reliably in a probabilistical frame-
work. Finally, the tight integration with the output of the
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Figure 3: Recall-Precision curves for the car, cow, horse and motor-
bike model on a detection task.

ISM IRD car cow horse motorbike
#170 #557 #164 #400

car - 0.07 0.00 0.02 0.01 0.18 0.03
cow 1.00 0.49 - 0.18 0.11 1.05 0.05

horse 0.71 0.16 0.53 0.08 - 0.68 0.05
motorbike 1.07 0.08 0.29 0.09 0.22 0.00 -

Table 2: Cross-category confusions (false positives per test image) for
the ISM and our new IRD approach on a detection task.

Figure 4: Example detections on the
car, cow, horse, and motorbike test
sets.

ISM stage removes the influences of translation and scale
changes, which greatly simplifies the discrimination prob-
lem.

Together, both stages manage to reduce the number of
false positives and cross-category confusions significantly
and perform considerably better than either stage alone. In
our experiments, we have shown this improvement both for
a four-class detection/discrimination task and for object de-
tection on two challenging data sets containing large scale
changes and partial occlusion. In particular these last re-
sults show a considerable improvement on the state-of-the-
-art with over 40% difference in EER performance for the
UIUC multi-scale car database.
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