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Abstract— In this paper we propose an approach for global
vehicle localization that combines visual odometry with map
information from OpenStreetMaps to provide robust and accu-
rate estimates for the vehicle’s position. The main contribution
of this work comes from the incorporation of the map data as
an additional cue into the observation model of a Monte Carlo
Localization framework. The resulting approach is able to
compensate for the drift that visual odometry accumulates over
time, significantly improving localization quality. As our results
indicate, the proposed approach outperforms current state-of-
the-art visual odometry approaches, indicating in parallel the
potential that map data can bring to the global localization
task.

I. INTRODUCTION

The development of autonomously driving vehicles has
become a very active research area and many systems have
been created towards the goal of self-driving cars over the
last few years (e.g., [1], [2]). Localization is an important
component regarding the stability of such systems and thus
its precision and robustness is of high importance. Cur-
rent localization methods rely mostly on GPS information.
However, GPS signals are not always available (e.g., inside
narrow streets) and are usually only accurate up to a range
of several meters. To overcome this problem, several authors
have proposed to use image information from camera sys-
tems mounted on top of the vehicles.

These vision-based methods can be classified into two
main categories. One line of interesting research has emerged
towards performing image based localization using large geo-
tagged image corpora acquired from specially equipped plat-
forms [3] (e.g., Google Street View data). Their estimation of
the vehicle location is based on matching the image acquired
from the vehicle’s cameras to an image database and finding
the best matches, which will determine also the vehicle’s
position. Although localization results are promising, the
large image databases required for these systems make them
expensive to build up and maintain for real-world applica-
tions. A second category of approaches is based on visual
Simultaneous Localization and Mapping (vSLAM, e.g., [4]).
One of the main problems of the vSLAM framework is
the accumulation of drift that results in poor localization,
especially for long distances. As a remedy, vehicles are
forced to drive in loops and perform loop closures in order to
compensate for possible localization errors, which restricts
the vehicle’s behavior.

In this paper we propose a localization framework which
uses simple internal map data to localize the vehicle, without
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Fig. 1. Our approach incorporates input from a visual odometry component
together with map information from OpenStreetMap (a) to improve the
global localization accuracy of a vehicle. Chamfer matching is used to align
the travelled path to the map of the environment over time. The localization
accuracy greatly improves (c) using the proposed framework and allows the
flow of semantic information from the OpenStreetMap to the vehicle (b).

the restriction of driving loops or the requirement for any
other complicated infrastructure. The basic assumption is
that visual odometry (VO) can be made sufficiently accurate
over short distances. Based on this assumption, which holds
for the majority of the existing VO algorithms, we build a
localization system that takes advantage of publicly available
map data to provide accurate localization over time. Our
framework takes as input a very rough initial GPS position of
the vehicle (the initial GPS can be several hundred meters
off), downloads the corresponding map of the surrounding
area and localizes the vehicle after it has driven a certain
minimum distance. A Monte Carlo Localization framework
(MCL) is then initiated and tracks the vehicle’s position using
VO as input to the motion model and chamfer matching
to evaluate the alignment of the different hypotheses to the
map. As our experimental results indicate, we achieve state-
of-the-art localization performance, overcoming traditional
problems of VO systems, such as drift accumulation.

The paper is structured as follows. The following section
discusses related work. Sections III, IV, V and VI present
a detailed analysis of the individual components, namely
VO estimation, OSM data processing, Chamfer matching
and Monte Carlo Localization. Section VII lays out the
combination of the individual components into a unified
framework and describes the localization algorithm in detail.
Finally, Section VIII demonstrates experimental results.

II. RELATED WORK

Global localization is an essential part of every au-
tonomous driving system and its robust performance is cru-
cial for the stability and robustness of the system. To achieve
this goal, several VO approaches have emerged in recent
years, offering high quality localization performance even at



real-time execution speeds. Most notably, the approaches by
Kitt et al. [5] and more recently by Alcantarilla et al. [6]
are the latest achievements in a long line of research. The
basic pipeline of these methods includes a feature extraction
stage, followed by feature matching, 3D reconstruction of
a sparse point cloud, and finally estimation of the pose of
the vehicle. A windowed bundle adjustment is typically run
at the end. The main drawback of this category of methods
is that drift is accumulated over time. As a result, after the
vehicle has travelled a certain distance, the localization error
becomes significant, making the localization result unusable
over longer distances.

In parallel to the VO approaches, there are a number of
methods that perform vSLAM [4], [7]. The vSLAM pipeline
is similar to the VO one, with the difference that in the
former the reconstructed 3D points are used as landmarks and
their position is optimized together with the camera pose. To
alleviate the problem of drift accumulation, the vehicles are
either forced to drive in loops, or another vehicle needs to
have mapped the same street before, so that the algorithm can
recognize the same landmarks and thus compensate for errors
in localization. However, driving in loops severely limits the
vehicle’s freedom of movement, and a pre-computed map of
landmark image features requires extensive storage.

On the other hand, there has been research towards using
map information that is already available in the form of
2D (e.g., Google Maps, OpenStreetMaps) or 3D road maps
(e.g., Google Maps 3D) for localization. Hentschel et al.
[8] propose the use of OpenStreetMap maps to facilitate
robot localization and navigation. A cadastral map with
the building footprints is extracted and the GPS position
of the robot is used in an MCL framework to provide
localization for the robot. Recently, Senlet et al. [9], [10]
have presented a system that uses Google Static Maps to
perform global localization. In particular, they perform a
local reconstruction of the scene, using stereo depth maps,
which they later on compare with the 2D map. Both of the
aforementioned approaches show the potential that the use of
map information can bring to the localization task. However,
their systems require a manual initial localization and have
only been tested in suburban areas where the environment is
relatively simple and the paths they have travelled are short
in length. In addition, these systems become overly complex
by performing stereo depth estimation and local 3D recon-
structions, thus increasing their computational complexity.

In this work, we propose a novel global localization ap-
proach that brings together the advantages of VO algorithms
with useful map information in the form of street graphs.
Our system requires only a very rough initial GPS estimate
to automatically localize the initial position of the vehicle in
a map with a radius of ∼ 1 km. An MCL stage then performs
the global localization task using Chamfer Matching to align
the different location hypotheses to the street map.

Our approach extends the classical VO pipeline by incor-
porating additional map information from OpenStreetMaps.
The system is structured as an MCL framework, where VO
estimates the motion of the vehicle on a frame-to-frame
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Fig. 2. Visual odometry pipeline. Features are extracted from the images
and are then matched and triangulated to form a sparse 3D reconstruction.
The camera pose is then estimated using a RANSAC framework and is
tracked over time using a Kalman filter.

basis. The output of VO is then fed into the motion model of
the particle filtering algorithm, which produces a number of
hypotheses (particles). Each particle, representing a different
possible location of the vehicle, is then evaluated according
to its alignment to the map. In the next chapters, we will
present the individual components and their combination to
form a unified framework and we will provide implementa-
tion details.

III. VISUAL ODOMETRY (VO)

In the front-end of the VO component, feature extrac-
tion is run on the input images. Harris corners [11] are
extracted from both the left and the right camera images. We
chose this specific type of feature for three reasons. Firstly,
Harris corners are reported to have high response stability
and repeatability [12] under different image transformations.
Secondly, they can be implemented very efficiently and they
are therefore suitable for real-time applications. Finally, since
no loop-closure is involved in our system, there is no need
for more elaborate descriptors to account for scale invariance.
We follow the approach of Nister et al. [13] and subdivide
the images using a 10×10 grid, applying relative thresholds
to each of the 100 resulting buckets, which imposes uniform
feature coverage over the entire image.

For each of the detected Harris corners, an 11×11 pixel
patch descriptor is computed. The descriptors of the left
and the right image are then matched with each other and
with the corresponding left and right images of the previous
stereo frame using normalized cross-correlation. A match is
considered as valid only if the features are mutual nearest
neighbors [13]. The valid matches are then triangulated and
the corresponding 3D points are generated.

In the final stage, the pose of the camera system is
estimated from the triplets of reconstructed points [14]. A
hypothesis for the camera pose is created from each of the
triplets and is then fed into a RANSAC framework, which
evaluates them based on the back-projection error measure,
and the best hypothesis is selected. Since our VO component
is feature-based, it is strongly affected by the presence of
other moving objects in the scene. To alleviate the influence
of these effects, a constant-velocity Kalman filter tracks the
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Fig. 3. OpenStreetMap representation. OSM map is shown at the
left side, as it appears in the corresponding website with all the semantic
information that it contains. The street graph extracted from the OSM map
is shown at the right side.

camera position, extrapolating the camera path whenever the
pose estimation algorithm output is inconsistent [15].

IV. OPENSTREETMAP DATA REPRESENTATION

OpenStreetMap (OSM) data can be accessed via the
corresponding website, and the user can download the map
of an area of interest by specifying a bounding box b in terms
of longitude and latitude, b = (latmin, lonmin, latmax, lonmax).
The map is given in XML format and is structured using
three basic entities: nodes, ways and relations [16].

The node n represents a point element in the map and
is defined by its GPS coordinates, longitude and latitude
n = (lat, lon). Linear and area elements are represented by
ways w, which are formed as a collection of nodes w =
{ni}i=1...k. The relations r are used to represent relationships
between the aforementioned geometric entities to form more
complicated structures.

The most interesting map structures such as streets and
buildings are modeled as ways and can be extracted from
the XML data in order to form the street graph of the area.
This representation is very convenient for later processing
and in particular for the shape matching component that we
introduce in the next section.

V. CHAMFER MATCHING

Chamfer matching (CM) [17] is a popular algorithm to
match a query edge map Q = {qi} to a template edge map
T = {ti} by finding the homogeneous transformation H =
(θ , tx, ty), H ∈ SE(2) which aligns the two edge maps. The
objective can be formalized as the following minimization
problem:

Ĥ = arg min
H∈SE(2)

dCM(W(Q;H),T ), (1)

where W(Q;H) and dCM(Q,T ) are defined as

W(Q;H) = H ·Q, (2)

dCM(Q,T ) =
1
|Q| ∑

qi∈Q
min
t j∈T
|qi− t j|. (3)

The CM algorithm has two basic advantages. Firstly, it is
robust to small misalignments and deformations by finding
the best matching alignment even if this does not exactly fit
the query to the template. Secondly, the matching cost can be
computed very efficiently with the use of distance transform
images. In particular, the computation of the distance trans-
form requires two passes over the image [18] and makes
the evaluation of (3) feasible in linear complexity O(n).
Several approaches [19], [20] try to increase the robustness
of Chamfer matching by incorporating information from
edge orientations. To realize that, they either quantize the
edges into several orientation planes, evaluated separately,
or they augment the matching cost function to include
an additional orientation term. Although these approaches
improve the results, this improvement comes with additional
computational cost.

Recently, Liu et al. introduced Fast Directional Chamfer
Matching (FDCM) [21], an algorithm which produces state-
of-the-art results by incorporating edge orientation infor-
mation, being at the same time 45× faster than the other
Chamfer matching alternatives. The power of this algorithm
comes from the fact that the edge maps are converted from
a set of 2D points to a collection of line segments. This
conversion reduces the cardinality of the edge set from n
points to m line segments, where m� n. The edge orientation
information is added to the matching cost function and a 3D
distance transform is computed to make the evaluation of the
matching cost functions faster.

FDCM has a number of properties that render it suitable
for our application. Firstly, FDCM takes as input a set
of line segments, which exactly matches the street graph
representation of the OSM data. Thus, no extra representation
conversion is required. Secondly, FDCM is very efficient,
allowing for matching local VO paths to OSM maps of a
large area (which correspond to edge maps of ∼ 5MPixel).

VI. STANDARD MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) [22] or the particle
filter algorithm estimates the vehicle’s pose xt at time t
recursively from a set of M particles Xt = {x[1]t ,x[2]t , ...,x[M]

t }.
The algorithm samples from a motion model, having the
current particles as initial points. Each of the sampled
particles is then evaluated under the observation model and
an importance weight is assigned to it. The last step includes
a re-sampling of the particles according to their weights and a
weight normalization. A single location hypothesis is finally
extracted by taking a weighted average of the particles. In
this specific application, the vehicle pose x=(x,y,θ) consists
of the position and the orientation of the vehicle in the
2D map. The standard odometry model [22] is used as a
motion model, whereas the measurement model is given by
an exponential distribution over the Chamfer matching cost
function as follows:

w[m] = λ exp−λ ·d[m]
CM , m ∈ 1...M. (4)

The distribution parameter λ is determined experimentally.
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Fig. 4. (a) Visualization of the initial particle distribution. Chamfer
matching is exhaustively run over the entire street graph and the particles
are positioned at the most prominent matches. (b) Illustration of the MCL
propagation stage. Each particle (green) holds a local history of the previous
VO estimates (red).

VII. LOCALIZATION USING MAP INFORMATION

While VO approaches localize a mobile platform with
high accuracy over short distances, they typically accumulate
drift over time, which can result in very large localization
errors after a couple of kilometers have been travelled by
the vehicle. The proposed approach takes as input a rough
GPS position of the vehicle and downloads a map from
the OSM website which is centered at that position (see
Fig. 3(a)). Once the map has been downloaded, the street
graph is extracted and is converted to a set of line segments,
as illustrated in Fig. 3(b). This set of line segments will
form the template edge map for the Chamfer matching that
will take place in the later steps. For this reason, the line
segments are quantized into 60 different orientation channels
and the distance transforms are pre-computed prior to the
initialization of the vehicle pose tracking. This computation
is done only once in the beginning of the algorithm; later on,
we use these distance transforms to evaluate the matching
functions for the different path queries.

The algorithm starts by running VO to track the pose of
the vehicle over a specific travelled distance of k meters, so
that an initial path is created. After the vehicle has travelled
at least k meters and has also accumulated a minimum
turning angle θmin along its path, a first localization of the
path is performed on the map. For this, the travelled path
is transformed into a set of line segments, which connect
the subsequent vehicle positions to form the query edge
map. The query edge map is then matched exhaustively over
all possible positions and orientations against the template
edge map using FCDM, and a set of possible localization
hypotheses is computed (see Fig. 4(a)). These hypotheses
are then used to initialize the MCL module by spreading the
particles according to the hypothesis weights. The different
particles correspond to different possible locations of the
vehicle and each of them keeps a path history of the d
previous positions of the vehicle. This local path is used
to help the evaluation of each of the particles under the
observation model. At this point, MCL starts its iterations
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Fig. 5. Average localization error over all 11 test sequences. The red curve
shows the error of the standard VO and the blue curve show the localization
error of the proposed localization algorithm. The horizontal lines illustrate
the average error over the travelled distance for each of the approaches.

and samples a new position for each particle based on the
local VO estimate and the particle’s current position. The
particles move to their new positions and each of them is
evaluated based on its chamfer matching cost to the map,
using the measurement model of (4). This way, particles that
are not well aligned to the map are weighted with low scores
and particles which conform to the map are weighted higher.
The re-sampling step then moves the mode of the particle
distribution towards the most prominent particle positions
and the scheme is iterated (see Fig. 4(b)).

VIII. EXPERIMENTAL RESULTS

A. Dataset

We evaluate our method on the KITTI vision benchmark
suite [23]. The dataset consists of 22 stereo sequences,
captured at 10Hz with a resolution of 1392 × 512 pixels
over a driving distance of 39.2 km. Ground truth poses are
given from a GPS/IMU localization unit for the first 11
sequences. We have augmented the dataset by downloading
the corresponding OSM maps which include the area of ∼ 1
km radius around the starting position of the vehicle. These
maps are used for extracting the street graphs used by our
algorithm.

B. Comparison to Standard VO

In a first round of quantitative experiments, we evaluate
the performance improvement that our proposed system
yields in comparison to a (manually initialized) standard
VO algorithm. In particular, we compare a baseline system
which implements the VO pipeline as described in Sec. III
to the MCL system of Sec. VII, where map information is
used to compensate for possible drifts of the VO algorithm.
Except where noted otherwise, we initialize the particle filter
algorithm after the vehicle has travelled a minimum distance
of k = 400 m and has accumulated a turning angle θmin = π .
The temporal window that each of the particles keeps as a
local history has a length of d = 250 frames and we sample
500 particles in the MCL framework. Finally, the parameter
λ is set to 0.01.
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Fig. 6. Quantitative and qualitative results for Sequence 00 and 02 of KITTI. The first row shows the results for Sequence 00. (From left to right)
The estimated path of the standard VO, the estimated path of our algorithm and the localization error comparison between the two methods. In the second
row the same plots for Sequence 02 are illustrated.

As can be seen in Fig. 5, the proposed framework outper-
forms the standard VO algorithm, producing a consistently
lower localization error. In particular, the proposed MCL
framework yields an average error of 5.19 m in comparison
to 10.65 m of the standard VO algorithm. This demonstrates
that localization accuracy can increase significantly with the
use of map information and its incorporation into the MCL
system. In order to further underline the improvement that
our system brings to localization performance, we illustrate
in Fig. 6 quantitative and qualitative results from two longer
sequences of the dataset, where the vehicle has driven 3.7 km
and 5.1 km, respectively. The path visualizations show that
our system is capable of compensating for the drift that the
visual odometry locally accumulates by assessing the quality
of the fit that the travelled path has with the underlying map.
In addition, it should be noted that our initial assumption also
holds that standard VO can produce high-quality results for
short-range distances. Over longer distances, however, even
though standard VO is able to reconstruct the topology of the
traversed path, it often gives significant localization errors
due to the accumulated drift. Our algorithm, on the other
hand, is able to keep the localization error consistently in a
low range, making the whole system more robust and stable.
It is interesting to note that the proposed method can run
on top of any visual odometry algorithm, providing further

localization accuracy improvements. Another advantage of
the method is that the uncertainty of the particle filter can
be used as a confidence metric in cases where the street
graph includes self-similarities (e.g., Manhattan-like streets,
highways, etc.). In such cases, a global re-localization can
be afforded to run in parallel at a lower frequency to
recover from spurious local minima during the localization
procedure.

C. Comparison to Other Localization Methods

Although the KITTI benchmark provides an evaluation
procedure for VO algorithms, the evaluation metrics used
in that benchmark are not suitable for evaluating the global
localization task. In particular, evaluation is performed in a
windowed fashion, measuring rotation and translation errors
at a fixed distance. Therefore, this evaluation places more
emphasis on whether the topology of the actual path is
recovered, rather than on the actual global position of the
vehicle at a specific point in time. However, in order to
demonstrate the improvement that our method brings in
comparison even to the best performing algorithms of this
benchmark, we present a qualitative comparison of one of
the leading algorithms [24] to our method on a challenging
sequence from the KITTI test set. Fig. 7 illustrates that
our method can improve upon the state-of-the-art regarding
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Fig. 7. Qualitative comparison to [24]. The left plot shows the result
of [24] for the Sequence 13 of KITTI. Our result for the same sequence is
shown on the right.

localization accuracy and that the use of additional map
information significantly reduces drift.

D. Run-time Efficiency

Our system is composed of several components, each of
them contributing to the run-time of the whole pipeline.
In detail, the VO framework of Sec. III takes 0.24 s per
frame on average to give out a new pose estimate. The
computation of the distance transforms, which is done once
when downloading the map (in parallel to the time the
vehicle needs to cover the required initial distance), takes
11.5 s on average. The initial vehicle localization (also done
only once) takes 15.6 s on average. The evaluation of the
particles inside the MCL framework takes only 0.02 s, adding
only a minimal cost on top of the VO execution time. The
approach has been implemented in C++ and runs on a single
processor core. With careful optimization and parallelization
of the implementation, we are confident it can be made real-
time capable.

IX. CONCLUSIONS AND FUTURE RESEARCH

We have presented a novel approach for globally localizing
a vehicle’s position. Our approach combines a classical visual
odometry pipeline with map data from OpenStreetMaps
in a unified framework, achieving improved performance
on a set of challenging sequences. We have described the
algorithmic and implementation details of our method and we
have thoroughly evaluated it using data from a demanding
benchmark. Our results show that the proposed system is
able to provide fully automatic global localization at a low
infrastructural cost (only street graphs are necessary) and that
it is able to stabilize odometry against drift over long travel
distances.

In the future we plan to further investigate the use of maps
to facilitate several other tasks, such as understanding of
the environment and benefiting from the large amount of
additional information that is stored in such maps.
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