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Abstract— We address the problem of vision-based multi-
person tracking in busy inner-city locations using a stereo rig
mounted on a mobile platform. Specifically, we are interested in
the application of such a system for autonomous navigation and
path planning. In such a scenario, semantic information about
the moving scene objects becomes important. In order to esti-
mate this robustly, we combine classical geometric world map-
ping with multi-person detection and tracking. In this paper,
we refine an approach presented in earlier work, which jointly
estimates camera position, stereo depth, object detections, and
trajectories based only on visual information. We analyze the
influence of the trajectory generator, which forms part of any
tracking-by-detection system, and propose a set of measures
to improve its performance. The extensions are experimentally
evaluated on challenging, realistic video sequences recorded at
busy inner-city locations. The results show that the proposed
extensions significantly improve overall system performance,
making the resulting detecting and tracking capabilities an
interesting component of future navigation system for highly
dynamic scenes.

I. INTRODUCTION

Reliable autonomous navigation of robots and cars re-
quires appropriate models of their static and dynamic en-
vironment. While remarkable successes have been achieved
in relatively clean highway traffic situations [3] and other
largely pedestrian-free scenarios such as the DARPA Urban
Challenge [7], scenes with many independently moving
pedestrians, as in busy city centers, still pose significant
challenges. What makes the task so much harder is the large
number of independently moving actors that are frequently
occluding each other. To represent such environments and
make predictions for path planning, semantic information
about the individual moving objects becomes a vital com-
ponent.

Compared to range sensors such as LIDAR or SONAR,
digital cameras offer the advantage that they deliver not
only geometry, but also rich appearance information, which
is more amenable to semantic interpretation. Recent work
has shown that with modern computer vision tools, vision-
based modeling of the environment for robot navigation is
becoming possible [9], [27]. A key ingredient of these visual
modeling approaches is that they partially rely on semantic
object category detection—in the context of autonomous
driving especially detection and tracking of cars and pedes-
trians.

For dynamic path planning, pedestrians need not only be
detected, but should also be tracked over time in order to pre-

Fig. 1. Reliable tracking in busy urban scenarios requires careful design
of trajectory (candidate) generation, accounting for partial occlusions, a
multitude of scales, and measurement uncertainties.

dict their future locations. However the two tasks are closely
related: State-of-the-art approaches for people tracking in
complex environments are based on the tracking-by-detection
paradigm, in which the output of an (appearance based)
object detector is linked between frames to recover pedestrian
trajectories. In this work, we adopt such an approach for
robust multi-person tracking and investigate some important
design choices for improving its performance.

Our system is purely visual, using as input synchronized
video streams from a forward-looking camera pair. Based on
this data, the system continuously performs self-localization
by visual odometry and obstacle detection using stereo depth
and combines the resulting 3D measurements with tracking-
by-detection, in order to follow pedestrians in the scene
over time. Its results can be used directly as input for path
planning algorithms which support dynamic obstacles. Key
steps of our approach are the use of a state-of-the-art object
detector for identifying an obstacle’s category, as well as the
reliance on a robust multi-hypothesis tracking framework to
handle the complex data association problems that arise in
crowded scenes. This allows our system to apply category-
specific motion models for robust tracking and prediction.
Our focus on vision alone does not preclude the use of
other sensors such as LIDAR or GPS/INS—in any practical
robotic system those sensors have their well-deserved place,



and their integration can be expected to further improve
performance.

An important observation is that while each of the system
components is affected by relatively strong noise, feedback
between the components can remedy some of the resulting
errors. Our system therefore has numerous feedback paths:
we jointly estimate the ground surface and supporting ob-
ject detections and let both steps benefit from each other;
detections are transferred into world coordinates with the
help of visual odometry and are grouped into 3D candidate
trajectories by the tracker; selected tracks are then again fed
back to stabilize visual odometry and depth computation
through their predictions; finally, the results are combined
in a dynamic occupancy map such as the one shown in
Fig. 4(right), which allows free space computation for a later
navigation module.

The main contribution of this paper is to investigate design
options for the practical implementation of such a system and
to evaluate their effects on overall performance. After review-
ing related work (Sec. II) and the employed reconstruction
and tracking system (Sec. III), we propose modifications to
the trajectory generator (Sec. IV). The influence of these
changes and of different stereo matching methods for depth
computation are quantitatively evaluated in Sec. V.

II. RELATED WORK

A main challenge in traffic scene understanding is to
accurately detect moving objects in the scene. Such objects
can be extracted independent of their category by modeling
the shape of the road surface and treating everything that
does not fit that model as an object (e.g. in [18], [24], [31]).
However, such simple approaches break down in crowded sit-
uations where not enough of the ground may be visible. More
accurate detections can be obtained by applying category-
specific models, either directly on the camera images [6],
[16], [23], [28], on the 3D depth information [1], or both in
combination [10], [14], [25].

Tracking detected objects over time presents additional
challenges due to the complexity of data association in
crowded scenes. Targets are typically followed using classic
tracking approaches such as Extended Kalman Filters (EKF),
where data assignment is optimized using Multi-Hypothesis
Tracking (MHT) [5], [20] or Joint Probabilistic Data Asso-
ciation Filters (JPDAF) [12]. Several robust approaches have
been proposed based on those components either operating
on depth measurements [21], [22], [26] or as tracking-by-
detection approaches from purely visual input [13], [15],
[17], [28], [30]. The approach employed in this paper is
based on our own previous work [17]. It works online and
simultaneously optimizes detection and trajectory estimation
for multiple interacting objects and over long time windows
by operating in a hypothesis selection framework.

III. SYSTEM

Our vision system is designed for a mobile platform
equipped with a pair of forward-looking cameras. From
the synchronized videos, we estimate dense stereo depth,

Fig. 2. Mobile recording platforms used in our experiments. Note that in
this paper we only employ image information from a stereo camera pair
and do not make use of other sensors such as GPS or LIDAR.

ground plane parameters, the platform’s ego-motion, pedes-
trian tracks, and the locations of other (non-pedestrian)
obstacles. Fig. 3(a) gives an overview of the proposed vision
system. For each frame, the blocks are executed as follows.
First, a depth map is calculated and the new frame’s camera
pose is predicted. Then objects are detected together with the
supporting ground surface, taking advantage of appearance,
depth, and previous trajectories. The output of this stage,
along with predictions from the tracker, helps stabilize visual
odometry, which updates the pose estimate for the platform
and the detections, before running the tracker on these
updated detections. As a final step, we use the estimated
trajectories in order to predict future locations for dynamic
objects and fuse this information with a static occupancy
map. The whole system is held entirely causal, i.e. at any
point in time it only uses information from the past and
present.

For the basic tracking-by-detection components, we rely
on the framework described in [8], [9]. The main contribution
of this paper is to propose a set of detailed improvements that
considerably boosts tracking performance, both with respect
to accuracy and speed, as explained in Section IV. The
following subsections briefly review the overall system—see
the above references for a full description.

A. Object Detection and Ground Plane Estimation

Instead of directly using the output of a pedestrian detector
for the tracking stage, we introduce scene knowledge at an
early stage to reduce false positives: a simple scene model
is assumed where all objects of interest reside on a common
ground plane. Instead of using a fixed ground plane, we
allow a set of feasible planes to account for changes in
terrain or tilted cameras due to e.g. braking. As a wrong
estimate of this plane has far-reaching consequences for all
later stages, we try to avoid making hard decisions here and
instead model the coupling between object detections and the
scene geometry probabilistically using a Bayesian network
(see Fig. 3(b)). The network is constructed for each frame
and models the dependencies between object hypotheses oi,
object depth di, and the ground plane π using evidence from
the image I, the depth map D, a stereo self-occlusion map
O, and the ground plane evidence πD in the depth map.
Following standard notation, the plate indicates repetition of
the contained parts for the number of objects n.

An object’s probability depends on its geometric world
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Fig. 3. Flow diagram for our vision system. (see text for details).

position and size, on its correspondence with the depth map,
and on the object likelihood estimated by the object detector.
The likelihood of each candidate ground plane is modeled
by a robust estimator taking into account the uncertainty
of the inlier depth points. The ground plane prior and the
conditional probability tables are learned from training data.

In addition, we introduce temporal dependencies, indicated
by the dashed arrows in Fig. 3(b). For the ground plane,
we propagate the posterior from the previous frame, which
stabilizes the per-frame information from the depth map. For
the detections, we add a spatial prior for object locations that
are supported by previously tracked candidate trajectories.
As shown in Fig. 3(b), this dependency is not a first-
order Markov chain, but reaches many frames into the past,
as a consequence of the tracking framework explained in
Section III-B.

The advantage of the Bayesian network formulation is that
evidence is propagated in both directions: for a largely empty
scene the ground plane can be reliably estimated from depth
and significantly constrains object detection; in a crowded
situation less of the ground is visible, but a large number of
detected objects provide information about the ground plane.

B. Tracking and Prediction

Object detections from the previous step are placed into
a common world coordinate system using camera positions
estimated from visual odometry. The tracking system then
uses detected object locations (projected onto the ground
plane) as input for a multi-hypotheses tracker, similar to the
one described in [17]: the set of object detections from the
current and past frames is linked to an over-complete set
of trajectory candidates with a holonomic constant-velocity
model. Section IV deals with the careful design of the
linking step—in this step the search space for the final set of

pedestrian trajectories is generated, which obviously makes
it important for system performance.

The set of candidate trajectories is then pruned to a
minimal consistent explanation using model selection, while
simultaneously resolving conflicts between overlapping can-
didates. In a nutshell, the pruning employs quadratic pseudo-
boolean optimization to pick the subset of trajectories with
maximal joint probability, given the observed evidence. This
probability
• increases as the selected trajectories explain more de-

tections and as they better fit the observed 3D locations
and 2D appearance;

• decreases when trajectories would imply that two pedes-
trians occupy the same space at the same time;

• decreases with the number of required trajectories in
order to balance the complexity of the model against
its goodness-of-fit and to avoid over-fitting.

For the mathematical details, we refer to [17]. Important
features of the method are automatic track initialization
(usually, after ≈ 5 detections) and the ability to recover from
temporary track loss and occlusion.

The selected trajectories are then used to provide a spatial
prior for object detection in the next frame. This prediction
has to take place in the world coordinate system, so tracking
critically depends on an accurate ego-motion estimate.

C. Visual Odometry

To allow reasoning about object trajectories in world
coordinates, the camera position for each frame is estimated
using visual odometry. The employed approach builds upon
previous work by [8], [19]. Please refer to those publications
for details. Compared to standard visual odometry, our sys-
tem includes scene knowledge obtained from the tracker to
mask out image regions not showing the static background.
Furthermore it explicitly detects failures by comparing the
estimated position to a Kalman filter prediction. In the
event of failure, the visual odometry is re-initialized to yield
collision-free navigation (at the cost of possible global drift).

D. Static Obstacles

For static obstacles, we construct a stochastic occupancy
map with the method from [2]: incoming depth maps are
projected onto a polar grid on the ground and are fused
with the integrated and transformed map from previous
frames. Free space for driving is then computed with dy-
namic programming. In contrast to the original method, we
filter out pedestrians found during tracking for two reasons:
firstly, integrating non-static objects can result in smeared
occupancy maps. Secondly, we are interested not so much
in the current positions of the pedestrians as in their future
locations. These can be predicted more accurately with a
specific motion model inferred from the tracker.

IV. TRAJECTORY GENERATION

Given space-time detections and a motion model, the
obvious approach to generate putative trajectories is to
continue the candidate trajectories from the previous frame



with an EKF. This method, which we refer to as extension,
works quite robustly in cases without too much interaction
between trajectories. To find newly appearing pedestrians
and alternative explanations which contradict the previous
candidates, one can additionally start an independent EKF
backwards in time for each new detection, which we will
call parallel generation. This basic approach was also used
in our previous work [9], [17].

Here, we describe an ensemble of extensions to the hy-
pothesis generation stage that (i) robustify data assignment,
(ii) can actively handle occlusions from by both static as
dynamic scene parts, and (iii) reduce the set of candidates
and hence the runtime.

A. Clustering detections

When using detections from both cameras of a stereo pair,
the same world object often generates one detection in each
camera. Keeping two such detections separate increases the
number of generated candidate trajectories, which increases
the runtime, and can also affect the actual selection process.
Hence, we propose to carry out a conservative clustering
on detections from both cameras using world and appear-
ance distance. This effectively replaces two measurements—
originating from different views of the same object—by
a single measurement for the physical 3D object. In our
experiments, this reduces the number of candidates to ≈ 50–
60% and the tracking time to ≈ 70% of the original figures.

B. Greedy assignment

When generating/extending the candidate trajectories
independently of each other, they cannot compete for
measurements—the competition is left to the final selection
algorithm. In difficult crowded cases, candidates will there-
fore include wrong measurements of other nearby objects.
We have devised a simple strategy to remedy this behaviour:
the clustering described above ensures that there is only one
measurement per object. Hence, only the detection closest
to the EKF’s predicted location is used to update the state,
rather than using all nearby detections weighted by the
distance. In order to solve conflicts which arise when a
measurement is the closest one for two or more candidate
trajectories, the extension step is carried out simultaneously
for all existing candidates, greedily assigning each detection
to the trajectory candidate with the closest prediction. Can-
didates which do not manage to claim any detection during
this process are merely extended through extrapolation. In
the same way, only the best candidate at each time step is
also chosen during parallel generation.

The effect of the competitive hard assignment of detections
is twofold. Firstly, it avoids unwanted attraction between
candidates and better separates closely interacting pedestri-
ans. (When using soft assignment, the same measurement
can influence several nearby trajectory candidates, pulling
them closer together). Secondly, the set of candidates tends
to be more compact, because each measurement can only
support a single candidate in a crowded region, making weak
candidates more prone to attrition.

Fig. 4. From the image data (left) we infer occlusion regions (right) due to
both static obstacles (black, casting blue umbra) and the previous frame’s
object predictions (red umbra). This information is used to correctly treat
occluded candidate tracks.

C. Occlusion handling

Due to the camera placement on our vehicle, pedestrians
frequently occlude each other, but are also often occluded
by unmodeled scene objects. We therefore opt to explicitly
model occlusion, rather than treat it as yet another case of
missing detections. To this end, we generate an occlusion
map on the ground plane, again discretized to a polar grid
like the occupancy map in Section III-D. An example is
shown in Fig. 4. The map contains the regions occluded
by both pedestrians and static obstacles. To compute the
map, pedestrian locations are estimated by extrapolating the
previous tracker state to the current frame, whereas static
obstacles are read out of the occupancy map.

As long as a candidate trajectory remains in an occluded
region, it is kept alive and its state is extrapolated. Here
the uncertainty modeling of the EKF becomes important:
continued extrapolation without measurements leads to pro-
gressively larger location uncertainties and hence larger
search regions for supporting detections. This increases the
chances of finding the object once it becomes visible again.
The greedy assignment described above meanwhile makes
sure that such a candidate does not steal detections from less
uncertain competitors. As a result, we obtain longer people
tracks, which better support path planning [9].

V. RESULTS

In order to evaluate our vision system, we applied it to
two test sequences, showing strolls and drives through busy
pedestrian zones. The sequences were acquired with the
platforms seen in Fig. 2.1 The first test sequence (“Seq. A”),
recorded with platform (a) at considerably worse image con-
trast, contains 5’193 pedestrian annotations in 999 frames.
The second test sequence (“Seq. B”) consists of 800 frames
and was recorded from a car passing through a crowded city
center, where it had to stop a few times to let people pass.
We annotated pedestrians in every fourth frame, resulting in
960 annotations for this sequence.

For a quantitative evaluation, we measure bounding box
overlap in each frame and plot recall over false positives
per image for three stages of our system. The results of
this experiment are shown in Table I. We compare the raw

1Data and videos are available on http://www.vision.ee.ethz.
ch/˜aess/icra2009/.



detector output, the intermediate output of the Bayesian
network, and the final tracking output. As can be seen,
discarding detections that are not in accordance with the
scene by the Bayesian network almost always increases recall
at the same number of false positives. The tracking stage
additionally improves the results and in most cases achieves a
higher performance than the raw detector. It should be noted,
though, that a single-frame comparison is not entirely fair
here, since the tracker requires some detections to initialize
(losing recall) and reports tracking results through occlusions
(losing precision if the occluded persons are not annotated).
However, the tracking stage provides the necessary temporal
information that makes the entire motion prediction system
at all possible. The line “Tracker (orig)” denotes the tracking
performance of the system of [9] without the improvements
described here. As can be seen, our new method consistently
outperforms the original one. When only considering the
immediate range up to 15m distance (which is suitable for
a speed of 30 km/h in inner-city scenarios), performance is
considerably better, as indicated by the second part of Table I.

We also compare the effect of using different methods
for depth-map generation in Table II. This is of special
interest, since nowadays a plethora of stereo algorithms of
varying quality and runtime is available. Specifically, we
compare the originally used belief-propagation-based stereo
algorithm [11] (BP) with a fast GPU-based plane sweeping
technique [4] (GPU), and a high-quality global-optimization
approach [29]. Example depth maps are shown in Fig. 5. On
the one hand, computationally intensive algorithms indeed
yield an improvement in both scene analysis and tracking
performance, but come at the cost of considerably higher
runtime (20ms for GPU vs. 30s for the others). On the
other hand, we are using robust statistics on the estimated
depth values, hence top-of-the-line stereo matching does
not yield noticeable improvements in system performance,
despite producing visibly better depth maps.

Fig. 6 shows results for Seq. A. The bounding boxes are
color coded to show the tracked identities; darker boxes
indicate objects in occlusion (due to the limited palette,
some color labels repeat). Note that both adults and children
are identified and tracked correctly even though they differ
considerably in their appearance.

Fig. 7 demonstrates the system in an automotive applica-
tion. Compared to the previous sequences, the viewpoint is
quite different, and faster scene changes result in fewer data
points for creating trajectories. Still, stable tracking perfor-
mance can be obtained even for quite distant pedestrians.

VI. CONCLUSION

In this paper, we have presented a mobile vision system
which combines classical geometric localization and map-
ping with tracking-by-detection of relevant object categories
(in our case pedestrians). In this way, not only a geomet-
ric map of the world, but also tracks of dynamic objects
of interest are available for subsequent path planning and
decision making. Since object category detection inherently
delivers the semantic information which type of object is

Recall Seq. A Seq. B
FP 0.5 FP 1.0 FP 0.5 FP 1.0

Detector 0.57 0.65 0.61 0.67
Bayesian Net 0.65 0.67 0.63 0.66
Tracker (orig) [9] 0.60 0.74 0.52 0.60
Tracker (new) 0.64 0.73 0.55 0.65

Restricted to 15m
Detector 0.51 0.62 0.76 0.78
Bayesian Net 0.66 0.66 0.74 0.74
Tracker (orig) [9] 0.72 0.74 0.70 0.70
Tracker (new) 0.73 0.77 0.80 0.80

Table I. Detection rates for two test sequences from different platforms.
The Bayesian network consistently improves the detector. The tracker with
the improvements proposed here also outperforms the original implementa-
tion [9]. Performance in the near range approaches a level where it becomes
interesting for navigation.

No depth GPU BP Zach
FP 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
BN - - 0.63 0.68 0.65 0.67 0.65 0.67
Tr. 0.19 0.29 0.60 0.70 0.64 0.73 0.64 0.73

Restricted to 15m
BN - - 0.66 0.67 0.66 0.66 0.67 0.67
Tr. 0.32 0.47 0.66 0.74 0.73 0.77 0.73 0.78

Table II. Detection rates for Seq. A with different stereo matching methods.
Better depth maps improve localization, and hence also tracking, in the near
field. Fast GPU methods come at the expense of slightly worse performance.
Since we use robust statistics on depth, elaborate stereo algorithms bring
little improvement.

tracked, customized motion models can be used for tracking
and prediction.

The method relies on closely coupling the modules (detec-
tion, tracking, visual odometry, depth estimation). To resolve
the complex interactions that occur between pedestrians
in urban scenarios, a multi-hypothesis tracking approach
is employed. The presented paper has focused on careful
design of the hypothesis generation step, which turns out to
be an important factor for improving system performance.
The resulting system can handle very challenging scenes
and delivers accurate predictions for many simultaneously
tracked objects.
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