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Abstract— Supplying realistically textured 3D city models at
ground level promises to be useful for pre-visualizing upcoming
traffic situations in car navigation systems. Because this pre-
visualization can be rendered from the expected future viewpoints
of the driver, the required maneuver will be more easily under-
standable. 3D city models can be reconstructed from the imagery
recorded by surveying vehicles. The vastness of image material
gathered by these vehicles, however, puts extreme demands on
vision algorithms to ensure their practical usability. Algorithms
need to be as fast as possible and should result in compact,
memory efficient 3D city models for future ease of distribution
and visualization. For the considered application, these are not
contradictory demands. Simplified geometry assumptions can
speed up vision algorithms while automatically guaranteeing
compact geometry models. In this paper, we present a novel
city modeling framework which builds upon this philosophy to
create 3D content at high speed.

Objects in the environment, such as cars and pedestrians, may
however disturb the reconstruction, as they violate the simplified
geometry assumptions, leading to visually unpleasant artifacts
and degrading the visual realism of the resulting 3D city model.
Unfortunately, such objects are prevalent in urban scenes. We
therefore extend the reconstruction framework by integrating
it with an object recognition module that automatically detects
cars in the input video streams and localizes them in 3D. The
two components of our system are tightly integrated and benefit
from each other’s continuous input. 3D reconstruction delivers
geometric scene context, which greatly helps improve detection
precision. The detected car locations, on the other hand, are
used to instantiate virtual placeholder models which augment
the visual realism of the reconstructed city model.

Index Terms— city modeling, structure from motion, 3D re-
construction, object detection, temporal integration

I. INTRODUCTION

Today, the main assistance modes offered by GPS-based
car navigation modules are speech and/or a display of a
very simplified aerial representation describing the upcoming
traffic situation. Navigation mistakes often arise due to the
difficulty of interpreting this information correctly in the
context of the real visual environment. We aim at simplifying
this interpretation by offering a pre-visualization of a required
traffic maneuver, by rendering a virtual trajectory through a
realistically texture-mapped 3D model of the environment.

Texture-mapped 3D city models can be extracted from
the imagery collected by survey vehicles. These vehicles are
equipped with cameras, GPS/INS units, odometry sensors, etc.
and drive around daily to record new city data which can aid
car navigation. For our envisioned application of illustrating

a driving maneuver, the playback of a recorded survey image
sequence of the exact same driving maneuver would already be
sufficient. However, the number of possible traffic maneuvers
is so enormous that pre-recording and storing such demonstra-
tion sequences is practically impossible. Reconstructing 3D
city models from the survey sequences and rendering virtual
trajectories through them offers a more memory friendly and
flexible solution.

For use in such an application, however, the extracted
3D models must be as simple as possible to keep storage
requirements low and to render them in real-time on car
navigation systems. Furthermore, the time needed to extract
these models from the survey sequences should also be short
to ensure practical usability in light of the vast extent of image
material gathered by survey vehicles.

In addition, movable objects in the environment, such as
cars or pedestrians, present a problem for any reconstruction
system, as they block the view on parts of the scene geometry.
When those objects are moving, they may disturb the system’s
egomotion estimate, which relies on the basic assumption of
a predominantly static scene. When static, they will often end
up as part of the reconstruction, increasing the complexity of
the reconstructed geometry and leading to unpleasant visual
artifacts. It therefore becomes desirable to detect such cases.
However, this is difficult for a purely bottom-up 3D recon-
struction system – a dedicated object recognition module will
be needed for this purpose.

In this paper, we present a ground-level city modeling
framework which integrates both of the above components.
It is based on a highly optimized 3D reconstruction pipeline
that can run in real-time, thereby offering the possibility of
online processing while the survey vehicle is recording. A
realistically textured, compact 3D model of the recorded scene
can already be available when the survey vehicle returns to its
home base. Running in parallel to the reconstruction system,
we apply an object detection pipeline, which detects static and
moving cars and localizes them in the reconstructed world
coordinate system. This second pipeline is not yet able to run
in real-time, but can be expected to become so soon, as more
efficient feature extractors become available. The recognized
car locations are then used to instantiate virtual 3D car models
in place of their real-world counterparts, thereby covering
potential reconstruction artifacts and augmenting the visual
realism of the final city model.

Both components are tightly integrated and benefit from
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Fig. 1. Overview of our system integrating recognition and geometry estimation.

each other’s input. Thus, 3D reconstruction can become easier
and more accurate when we know which kind of object is
being reconstructed. In turn, recognition becomes easier and
more reliable given a geometric scene context that reconstruc-
tion can deliver.

The paper is structured as follows. The following section
discusses related work. Section III then introduces the 3D
reconstruction pipeline. After that, Section IV presents the
object recognition system. Section V describes how the recog-
nition results are fed back to improve the reconstructed city
model, and Section VI presents experimental results. A final
discussion concludes the paper.

II. RELATED WORK

City modeling has evolved over the years. In the early days,
it used to be mainly performed on aerial images. Building
types and locations were manually indicated or recognized
using computer vision algorithms and Digital Elevation Maps
supplied by airborne laser scanners [12], [13], [14], [26],
[37], [39], [40]. Much could already be accomplished with
the resulting models, however, they usually lacked a realistic
impression at ground level, since building facades could not
be textured from aerial imagery. Today, we find laser scanners
mounted on mobile survey platforms gathering 3D depths and
textures for building facades throughout cities [10], [11], [18],
[32], [34] filling the gaps where aerial imagery could not reach.
Furthermore, mobile reconstruction systems based on passive
3D vision algorithms are emerging.

The results of laser systems are very detailed and impres-
sive. These models could be used as is or be simplified to
save on memory. To this day, however, laser-equipped survey
vehicles are sparse, and vast amounts of data have already been
gathered by survey vehicles using video-streams annotated
with GPS/INS measurements in order to geo-reference them.
Although it is only a matter of time before laser scanners
will see more wide-spread use, future survey vehicles will still
carry cameras in order to capture texture maps, thus collecting
additional information to draw from. Vision algorithms are
the key to tap into this valuable resource and extract 3D
information from the video streams. In addition to raw 3D
measurements, we however also want to extract semantic infor-
mation about the reconstructed scene from sensor input, such
as the information which local measurements lie on the same
surface and what kinds of objects are being reconstructed.
Such information is more readily accessible from video data,
where additional color and texture cues can be exploited.

Most computer vision city modeling algorithms appearing
today try to extract detailed 3D from video streams using state-
of-the-art dense reconstruction algorithms which incur high
computational cost. However, keeping the final application of
the 3D model in mind, the necessary level of detail is low and
suggests vision algorithms which exploit this property to gain
speed.

In this paper, we describe a ground-level vision-based
3D city modeling framework consisting of two parts: a 3D
reconstruction component capable of generating a compact
city model at video frame rate, and an object recognition com-
ponent capable of reliably detecting cars in the video streams
and localizing them in 3D. The 3D reconstruction part is
based on our previous work [3]. It deploys real-time Structure-
from-Motion (SfM) and real-time dense stereo algorithms to
achieve its goal. An excellent example of previous work on
real-time SfM can be found in [29]. Also recently, real-time
dense reconstruction algorithms which use the graphics card
have emerged, such as [4], [42]. However, the latter still lack
a more global constraint which is needed to disambiguate
between multiple possible matches in the case of repeating
patterns, which often appear on building facades. The dense
stereo algorithm presented in this work fulfills this requirement
by incorporating dynamic programming into real-time dense
reconstruction.

The recognition part of this paper is based on [21], [23]. It
stands in the tradition of several object detection approaches
that have recently become available which are capable of
dealing with scenes of realistic complexity, both for the
detection of single [6], [23], [38], [41] and multiple object
classes [27], [33], [35]. However, those approaches typically
perform an uninformed search over the full image and do not
take advantage of scene geometry yet. [17] have shown that
geometric scene context can greatly help recognition and have
proposed a method to estimate it from a single image. We draw
from the experience of those approaches and also extend the
recognition system with scene geometry information, however
in our case delivered by the SfM and reconstruction modules
[5], [19].

Taken together, the two components of our system imple-
ment a cognitive feedback loop. Object detection informs the
3D modules about objects in the scene which may disturb SfM
calculations or which cannot be accurately modeled by the
reconstruction algorithm. In return, 3D reconstruction informs
object detection about the scene geometry, which greatly helps
to improve detection precision. Previous work by [8] already
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contained part of such a cognitive loop idea, combining recog-
nition of architectural primitives with wide-baseline stereo for
building reconstruction from a set of photographs. In our work,
we extend their ideas to a city modeling application where
recognition and reconstruction interact continually in order to
create a visually realistic city model from continuous video
input.

III. THE CITY MODELING FRAMEWORK

Figure 1 shows an overview of our proposed system setup.
Our input data are two video streams, recorded by a cali-
brated stereo rig mounted on top of a survey vehicle and
annotated with GPS/INS measurements. From this data, an
SfM algorithm first computes a camera pose for each image.
Subsequently, these poses are used to generate a compact 3D
city model with textures extracted from the image material
using a fast dense-stereo algorithm [3]. Both of those stages
are highly optimized and run at video frame rate. In parallel,
an object detection module is applied to both camera images
in order to detect cars in the scene. The three modules are
integrated in a cognitive loop. For each image, the object de-
tection module receives scene geometry information from the
two other modules and feeds back information about detected
objects to them. Thus, the modules exchange information
that helps compensate for their individual failure modes and
improves overall system performance.

The following sections explain the 3D reconstruction
pipeline in detail. Due to the extent of the inner-workings
of the framework and the limited space available here, we
refrain from explaining in detail the workings of well-known
algorithms such as Structure-from-Motion pipelines [16] and
dense stereo [31], but limit the discussion to the specific
changes which were made to allow for high processing speeds
and a compact 3D model representation.

A. Structure-from-Motion

First of all, the following straightforward techniques are
used to decrease the computational complexity of the problem.
We assume the camera internals and relative pose of the
stereo pair to be known beforehand. In addition, we restrict
camera pose computations to one video-stream only and use
the known stereo configuration to deduce the poses for the
other camera. Finally, we limit processing to the green color
channel of the images.

To further increase the processing speed, a Structure-from-
Motion framework was conceived consisting of two comple-
mentary modules, able to run in parallel. The first module
focuses on processing every new incoming image: it matches
features with the previous image, deduces new 3D point
reconstructions and retrieves the camera pose of the new
image. This module continuously writes out computed camera
poses and 3D reconstructions to the hard disk. Whenever
a block containing a fixed number of N images has been
processed, it is made available to the second module, which
performs a windowed bundle-adjustment on the block in order
to refine pose and point reconstructions. Therefore, the second
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Fig. 2. Top: The measure used to detect image features. Bottom, Left: For
straight edges the measure value is low, Middle: For corners of this type (I)
the measure value is high, Right: For corners of this type (II) the measure
value is low. In city survey sequences, type (I) corners are more prevalent than
type (II) due to the building architecture. Furthermore, in survey sequences
corners of type (I) do not change over time into corners of type (II) because
the camera typically does not rotate around the optical axis.

module has a delay of exactly one block with respect to the
first module.

The first module determines feature matches between the
previous and the incoming image and uses their 3D-2D
correspondences to compute the camera pose (RANSAC [9]
and iteratively re-weighted least squares optimization [15]). As
a result, the epipolar geometry between current and previous
image can be computed and be used to limit and speed up
the search for extra feature matches. A feature track is first
reconstructed when the number of images through which it
was matched exceeds a threshold. Sufficient baseline for an
initial 3D reconstruction is guaranteed by only processing
new images when the GPS or odometry signals sufficient
movement. Reconstruction is performed by calculating the
midpoint of the shortest line segment which connects the lines
of sight of the start and the end of the feature track. Every
time a feature track is extended, its 3D point is refined by
re-triangulation using only the start and the new end of the
feature track. The re-triangulation is only accepted when the
current triangulation angle is closer to 90 degrees than ever
before, to avoid a decrease in reconstruction accuracy.

The most time-consuming step in the aforementioned
methodology is feature matching. For this reason, we de-
veloped a real-time feature detector based on extracting the
local maxima of a very simple feature measure, as shown in
Figure 2:

score = |(AI 1 + AI 4) − (AI 2 + AI 3)|, (1)

where AI i denote the average intensities of the 2 × 2 image
regions. Both its simplicity and the fact that it exploits the
way that image data is laid out in computer memory (us-
ing integral images techniques [36]), lead to a fast, single-
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Fig. 4. Left and middle: Rectified stereo pair with example of a best match, based on the similarity measure. Right: Computed similarity map with optimal
path resulting from dynamic programming (white line).

Fig. 3. Examples of non-conventional buildings of which the outer walls
can be modeled as ruled surfaces, which have more flexibility than piecewise
planar approximations.

pass feature extraction algorithm which takes advantage of
image caching. The extracted features are matched between
consecutive images based on a fast sum of absolute intensity
differences.

While the first module determines the camera pose for each
new incoming image, the second module refines the camera
poses and 3D feature points for each block of N images which
have been processed. It uses a windowed bundle adjustment
routine that is iteratively performed on each block of N camera
poses and 3D points in order to be able to load the data
efficiently into memory and avoid congestion. The use of
windowed bundle adjustment on blocks limits the effect that
long feature tracks straddling block boundaries might have on
drift reduction. For this particular application, however, this is
not so disastrous, since the GPS/INS image annotations help
us to overcome drift by registering the final result without drift
in a common world frame.

B. Facade Reconstruction

Reconstruction of building facades by means of passive
stereo techniques is a very difficult problem. The typical
imagery captured by the survey vehicle in urban environments
raises a number of well-known difficulties when performing

disparity estimation on a set of stereo images. First of all,
the homogeneous texture of the road surface and repetitive
patterns on the facades make it hard to disambiguate between
various depths where the per-pixel similarity values are high.
Furthermore, the presence of lens flares in the cameras and
the specular reflections of windows within the facades add an
additional level of difficulty to the disparity estimation process.

1) Geometric Constraint: Many passive techniques have
already been developed to compute dense disparity maps
from stereo images. However, due to their computational
complexity, they are not suited for real-time processing of vast
amounts of data. Needless to say, large-scale city modeling
covers large areas and will therefore result in vast amounts
of data to be stored on disk for further use. Compared to
storing the results of per-pixel disparity estimations, one can
reduce the amount of data to be stored by limiting the search
space to geometrical primitives such as planes. Therefore, we
have developed an adapted dense stereo algorithm which in-
corporates the assumption of simple output geometry, namely
that building facades are approximately ruled surfaces parallel
to the direction of gravity �g. This allows us to gain speed
while keeping the amount of geometrical data to be stored to
a minimum. The ruled-surface approximation of the building
facades also adds more flexibility in that it allows for the
efficient modeling of the outer walls of non-conventional
buildings such as the ones displayed in Figure 3.

2) Stereo Camera Rectification: SfM results in camera
parameters for each incoming stereo image pair. The gravity
vector �g can be found by looking at the vanishing points in the
images. For the time being, we will assume that the baseline
of each stereo set is perpendicular to �g, enabling us to rectify
each stereo pair such that the up direction of the rectified
cameras equals �g. A general rectification approach is discussed
in section III-B.6.

3) Similarity Measure: As mentioned before, the ambigui-
ties caused by the presence of homogeneous areas, repetitive
patterns and specular reflections limit the use of algorithms
which are based on per-pixel similarity values. To overcome
these problems, there is a need for a more global optimization
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Fig. 5. Left: Illustration of how previously generated similarity maps are used to guide the optimal path search in the right direction by means of a blending
operation. Right: (a) Similarity map without inter frame smoothing. (b) With inter frame smoothing which extrapolates the original similarity map (white
circle). (c) Extracted optimal path (white line).

approach, which usually comes at the expense of increased
computational complexity. The similarity measure defined in
this section, together with the line selection algorithm in
section III-B.4, introduce a way of incorporating such a
global optimization which efficiently resolves ambiguities with
minimal impact on processing speed.

Once a stereo pair is transformed into a standard stereo
setup with image size w × h (columns × rows), we can
define a discrete disparity search range [0, dmax]. Because the
up direction after rectification equals �g, it can be shown that
for fixed values of x ∈ [0, w − 1] and d ∈ [0, dmax], the
corresponding 3D points for all y ∈ [0, h− 1] form a straight
line parallel to �g.

Using the assumption that facades are also parallel to �g, we
can derive a robust line-based similarity measure by summing
the per-pixel similarity values along the y direction in image
space. This results in a two-dimensional similarity map S of
size w × dmax where:

Sx,d =
h−1∑
y=0

min(SSDmax, SSDx,y,d) (2)

with

SSDx,y,d = SSD(imrightx,y, imleftx+d,y) (3)

where SSDmax is a saturation value of the Sum of Squared
Differences, introduced to limit the influence of possible
outliers, and imright and imleft are the rectified images. The
left and middle images in Figure 4 illustrate the use of the
similarity measure, while the right image shows the similarity
map S, computed for that stereo pair.

In order to gain speed, we apply the GPU to compute the
similarity maps. This is done in a single pass by drawing a
full-screen rectangle to a window of size w × dmax while
executing a GPU program with a for-loop that iterates over the
discrete values of y. For an implementation on the graphics
card, where colors are represented by floating point values in
the range [0.0, 1.0], we applied a value of 0.05 for SSDmax.
Once the similarity map is computed, its data is offloaded from
the GPU to the CPU to serve as input to the line selection step
of the algorithm.

4) Line Selection: As noted earlier, each entry in S cor-
responds to a 3D line parallel to �g. So by selecting a d
value for each x and interconnecting them, one is able to
reconstruct a ruled surface of the facades. Selecting for each
x the disparity d where Sx,d is minimal would result in a fair
amount of artifacts due to occlusions, etc. Looking at Figure 4,
however, one can see that it is reasonable to apply a more
global ordering constraint, imposing that vertical lines in the
left image and their corresponding lines in the right image
should appear in the same order. This type of constraint is
justified by the fact that the majority of the scene we are
trying to model consists of planes, which inherently satisfy the
ordering constraint due to their non-self-occluding property.
This ordering constraint can also be implemented efficiently
with dynamic programming which extracts a minimal cost
path from S that satisfies the ordering constraint, as shown
in Figure 4.

5) Inter-Frame Smoothing: When performing disparity es-
timation on a pair of images, one needs to take special care of
boundary artifacts. In a standard stereo setup, the pixels on the
left side of the left image are very unlikely to be seen by the
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Fig. 6. (a) Example of a ground truth topographical map. (b) Polygon
extracted for a single stereo set. (c) Voted carving. (d) Resulting topographical
map from silhouette extraction. (e) Tessellation of a single carving polygon
by means of a triangle fan.

other camera. The same goes for the right pixels of the right
image. Similarly, for dynamic programming, it is difficult to
determine the start and end point of the optimal path. This
section introduces an inter-frame smoothness criterion which
uses previously computed optimal paths to guide the dynamic
programming in the right direction, thereby reducing the effect
of the edge artifacts.

With a forward motion along the optical axis of the camera,
which is the most common scenario for survey vehicles, static
objects such as facades move away from the center of the
image in subsequent frames. This means that, for the stereo
set under consideration, the objects situated near the edges of
the image were situated more towards the center in previously
processed images where they had a better chance of being
reconstructed correctly. This leads to the possibility of reusing
previously generated data to guide the optimal path search of
the current stereo set in the right direction.

Each pixel in the similarity map S corresponds to a 3D
line parallel to the gravity vector �g. Furthermore, the vector
�g remains the same for each similarity map, leading to the
conclusion that all computed similarity maps belong to the
same two-dimensional space (perpendicular to �g) and can
therefore be mapped onto each other. Figure 5 shows how
this mapping is used to achieve inter frame smoothing.

The left side of Figure 5 illustrates how blending is used
to compute the new similarity maps S

′
i, where i indicates the

stereo set index. If we define Sw
′
i to be the area of S

′
i warped

into the search space of Si+1, the new similarity maps are
generated sequentially according to the following formula:

S
′
i+1 = (1 − α) × Si+1 + α × Sw

′
i (4)

where the blending factor α ∈ [0, 1). Initially, the value of S
′
0

is set to S0.
The right-hand side of Figure 5 shows how the value

of α affects the new similarity maps. The top right image
corresponds to a value of α = 0, which completely disables
inter-frame smoothing. The middle image corresponds to a
high α value. It shows how the previously computed similarity
map is blended onto the current one, thereby enforcing smooth
transitions between subsequent similarity maps. Notice how
the new similarity map extrapolates the original one to the left

and to right. This extrapolation is used to guide the optimal
path search algorithm in the right direction near the edges
of the image (white circle). When comparing the top and
middle image, one can also see that the blending does not only
extrapolate but also reduces the matching ambiguities. The
new similarity map can actually be seen as a weighted set of
pairwise similarity values introduced in Section III-B.3, which
increases robustness. Finally, only the part of the optimal path
which is visible in the current stereo set is selected for further
processing, as indicated by the white line in the bottom right
image.

6) General Stereo Camera Rectification: In section III-
B.2, we assumed that the baseline of each stereo set is
perpendicular to �g, enabling us to rectify each stereo pair such
that the up direction of the rectified cameras equals �g. In the
presence of tilted roads we are still able to rectify each stereo
pair such that this constraint is satisfied and the image plane is
parallel to the baseline. This results in an epipolar geometry
between the two cameras that is slightly different from that
of a standard stereo setup. For this case, it can be shown that
the projection of a vertical line from one image into the other
image results in a vertical offset which is dependent on the
disparity that is being checked and equation 3 becomes

SSDx,y,d = SSD(imrightx,y, imleftx+d,y+V O(d)) (5)

where V O(d) represents the disparity dependent vertical off-
set. Also note that there exists a theoretical displacement for
either the left or right camera center along �g such that the
new baseline is perpendicular to �g. In practice, we do not
have control over this displacement, but because the search
space is limited to ruled surfaces parallel to �g, these ruled
surfaces are non self-occluding when displacing along the
vector �g. Therefore, the results for tilted and non-tilted roads
can be expected to be very similar. For implementation on the
GPU, both the rectification and vertical offset computations are
performed implicitly by making use of the projective texturing
capabilities of the GPU.

C. Topographical Map Generation

Since all ruled surfaces extracted from all stereo pairs are
parallel to �g, it is possible to create a topographical map by
applying an orthogonal projection along the �g vector. The 3D
ruled surfaces now become 2D curves on the topographical
map. By adding the left and right camera centers, we can
create a closed curve, outlining a single polygon for each
stereo pair. As Figure 6 shows, these polygons can still contain
some errors.

Each polygon can be interpreted as a carving area, meaning
that the 2D area covered by the polygon has been marked
as empty by the corresponding stereo set. In order to create
an integrated topographical map, one could carve out the
polygons of each stereo pair and detect the silhouette of the
total carved area. This process, however, is prone to errors
introduced by a single incorrect polygon since it can never
be recovered by other stereo pairs. Therefore we apply a
voting based carving algorithm. After the topographical map
is initialized to a value of zero, the area covered by each
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Fig. 7. (a) Original carving polygon. (b) Modified carving polygon with
disparity limitation and gradient of voting values. (c) Comparison of the
topographical map with the original and the modified voting algorithm.

projected polygon is incremented by one. Finally, only the
area with a value greater than a threshold N is carved and
the corresponding silhouette is extracted, see Figure 6. This
results in a more robust integration algorithm.

To obtain fast execution times for the topographical map
generation, the voted carving is implemented on the graphics
card using a blending operation. This means, however, that the
polygons must be subdivided into triangles. This subdivision
process must be such that each pixel inside the polygon is
covered by one triangle only. This kind of tessellation is
not trivial for concave polygons such as the ones generated
by the dynamic programming and can quickly become time
consuming for increasing horizontal resolution of the images.
In our case, the ordering constraint imposed by the dynamic
programming pass gives us a straightforward solution to this
tessellation problem. It can be shown that, if the ordering
constraint is satisfied, the polygon can be tessellated by a
triangle fan with its origin at the optical center of one of the
cameras as shown in Figure 6.

Although the above-mentioned algorithm has the advantage
of simplicity, it still suffers from a few drawbacks when
applied in practice. For example, the areas in front of the
survey vehicle at low driving speed will receive more votes
than the areas at high speeds. To address these problems,
we propose a number of modifications to the voted carving
algorithm.

First of all, in a standard stereo setup the depth accuracy
of a disparity estimation is inversely proportional to the
disparity. This implies that the depths corresponding to low
disparity values have a large error margin. Needless to say,
carving polygons that contain disparities of zero corrupt the
topographical map. Therefore we add a lower limit to the
disparity values (dmin) that are passed on by the optimal path
search algorithm to the voted carving. In our experiments, we
used a minimal value corresponding to 10% of the maximum
disparity range. Note that the disparity estimation algorithm
still operates on the full disparity range, the disparity values
are being limited after the optimal path extraction.

Secondly, because the depth accuracy is lower for objects
that are situated far away from the camera, we apply a
gradient to the voting area of each carving polygon. The
voting value for each pixel inside the polygon is set to zmin/z
where z denotes the perpendicular distance to the baseline and
zmin corresponds to a disparity value of dmax. This gradient
decreases inversely linear with z so that objects far away from

Fig. 8. Calibration of the wheel contact points of the survey vehicle, relative
to the stereo rig.

the camera receive lower confidence scores, as illustrated in
the second image of Figure 7.

Finally, in most cases, there will be a substantial variation
in the driving speed of the survey vehicle, e.g. when stopping
for traffic lights. When standing still, the carving area in
front of the survey vehicle will accumulate many votes and
therefore easily pass the final thresholding stage. In this case,
the increased robustness added by the voted carving of many
different polygons and the gradient is bypassed, which is
undesirable. Luckily, the introduction of the gradient enables
us to normalize the results. For each pixel in the topographical
map, its value is now divided by the number of votes it has
received. Because the number of votes corresponds to the
value of the voted carving algorithm without the gradient, the
two values needed to calculate the final result can be easily
generated on the graphics card by storing the result of the
voted carving with the gradient e.g. in the red channel of the
topographical map and the results for the voted carving with
a constant value of 1 e.g. in the blue channel.

Not only does this normalization procedure reduce the
negative effect of speed variations but it also adds robustness
near the areas where turns are made. In such areas, the 3D
scene directly behind the turn is only seen by a limited number
of frames. In those cases, the original voted carving algorithm
results in low values on the topographical map like the ones
indicated by the white circles in Figure 7. These low values
make it hard to choose a good thresholding value. As can
be seen in the right image of Figure 7, the normalization
procedure displays better behavior near turns.

Note that, in a worst case scenario, a pixel in the topograph-
ical map that was only seen by one stereo set and resulted
from an erroneous depth estimation close to the baseline
would have a very high normalized value and therefore pass
the thresholding stage. To reduce the effect of these outliers,
we use a combination of two thresholds. A pixel on the
topographical map can only pass the thresholding stage if its
number of received votes is larger than the first threshold and
if the value of its normalized vote is greater than the second
threshold.
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Fig. 9. Mapping of line segments onto textures. Each 3D line corresponds
to a column in the texture map.

D. Road Reconstruction

Facade reconstruction using passive techniques is a difficult
task. Looking at the visual imagery, road reconstruction is
even more so. Due to the homogeneous texture of a road,
one can only determine its position by using edge information
of road markings, if available at all. The correct detection
of these edges however, is also tedious due to the likely
presence of false edges. For example, a parked car creates
false edges which lie outside the road plane. Hence, using
passive techniques for road reconstruction is extremely limited.
Therefore we introduce a method which interacts with the SfM
in order to determine the road position.

The stereo cameras are mounted onto the survey vehicle
in fixed positions. This allows us to determine the positions
where the two front wheels touch the road, relative to the
camera coordinate frames, as shown in Figure 8. As the SfM
algorithm tracks the positions and orientations of the cameras,
it also tracks the positions of these contact points implicitly.
This results in a sparse sampling of points on the road as the
vehicle moves forward. For each stereo set, the left and right
contact points are connected to form a line segment which gets
elongated in both directions until it intersects with the facade
ruled surfaces. By interconnecting the resulting line segments
of consecutive stereo sets, we are able to reconstruct another
ruled surface, representing the road. Note that, compared to
the facades which are constrained to be parallel to the gravity
vector �g, the ruled surface representing the road is independent
of �g and can therefore be slanted or tilted.

Looking at Figure 4, one can see that the line-based similar-
ity measure would perform better if the integration along the y
direction were limited to the facades. The reconstructed ruled
surface for the road makes this possible. It allows us to discard
similarity values SSDx,y,d for which the corresponding 3D
point is positioned beneath the road. Since the road level of
a certain point is only known once we passed it, discarding
those points would imply a certain look-ahead. Therefore we
use an approximation of the future road level by extrapolating
the previously computed road levels. Although this future road
level is only an approximation, it provides similar results to
using the actual future road level because, at ground level,
there are still a few objects corrupting the line-based similarity

Fig. 10. Examples of texture maps created in the texture generation step
of the algorithm. These kind of images are suitable for texture compression
such as jpeg2000.

measure such as parked cars and pedestrians. One could raise
the point that it would be better to use the camera level rather
than the road level to discard points so that parked cars do
not corrupt the results. Using the camera level, however, is
not robust in the presence of bumpy roads.

E. Texture Generation

Once the 3D facade and road models have been constructed,
we can apply textures to them by back-projecting the images
onto the models. Because the facade and road models consist
of line segments, we can initialize 2D textures where each
vertical line in a texture corresponds to a 3D line segment,
as shown in Figure 9. To ensure that images do not back-
project on occluded 3D structures, we apply a commonly
used technique in computer graphics, called shadow mapping.
Before an image is used for texturing, its corresponding depth
map is generated by projecting the 3D models onto its image
plane. When texturing a vertical line segment of the facade
strip with the image, we compare the line depth relative to the
camera with the depth stored in the depth map. If the former is
larger or the line is situated outside the camera view frustum,
then the texture should not be applied.

The road and facade textures are initialized as black, and the
images are processed in the same order in which they were
recorded. If an image is the first to be applied to a certain
line segment and passes the visibility test, the black color is
replaced by the projected image. If a previously processed
image already projected onto the line segment, the resulting
color Cnew is a linear combination of the previously stored
color Cold and the current texture color Ctex according to the
equation Cnew = (1−B) ·Cold +B ·Ctex where the blending
factor B is 0.5 or greater. The constraint on B ensures that
newly applied images, which are closer to the model and are
therefore more detailed, have a larger weight than previous
images.

Because the model is composed of ruled surfaces for both
the facades and the roads, we can make sure that line segments
which are close in 3D space are also close in the texture
map. In contrast to a random placement of the line segments
in the textures, this avoids introducing high frequencies in
the resulting textures and allows us to apply compression
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Fig. 11. (top) Undistorted images, taken directly from the video stream; (bottom) rendering of the reconstructed models from the same point of view.

techniques such as jpeg2000 to the textures, resulting in
a highly compact representation of a textured 3D model.
Figure 10 shows a number of typical texture maps extracted by
the texture generation pass. Notice how the building facades
appear to be rectified.

F. Discussion.

Figure 11 shows a comparison between the original images
and renderings of the reconstructed models for three recorded
video sequences. As can be seen from those examples, the
proposed algorithm manages to capture the road surface and
building facades very well. As pointed out in Section III-B,
however, the reconstruction is based on the assumption that
the scene is composed of ruled surfaces. Since cars violate
this assumption, they appear squashed onto the road and
facade surfaces, thereby degrading the visual realism of the
3D model to a large extent. Furthermore, moving and/or shiny
cars degrade the accuracy of the camera positions returned by
the SfM algorithm which is based on the assumption of a static
scene with diffuse reflectance properties.

While RANSAC outlier rejection [9] can help to remove
moving objects from further consideration, many natural car
motions can be misinterpreted as static because of an ambi-
guity in their image projections. For example, following a car
in the same lane at more or less the same speed on a straight
stretch makes it clearly indistinguishable from a static object
at infinity. Also, a car approaching on the other lane with
a speed correlated to ours is indistinguishable from a static
car parked somewhere in the middle of both lanes. Because
of the nature of traffic, these situations of correlated motion
occur more often than we would wish (for our application).
Furthermore, since cars are passing close to the cameras, they

0o

180o

90o

150o

30o

#images mirrored
0◦ 117 no

30◦ 138 yes
90◦ 50 no

150◦ 119 yes
180◦ 119 no

Fig. 12. (left) Visualization of the viewpoints the single-view detectors were
trained on. (right) Number of training images used for each view.

may substantially influence the computed camera translation
and rotation.

Car recognition can help in both aforementioned challenges
by informing the SfM algorithm to ignore car features and by
retrieving the 3D position of cars, so that they can be replaced
by virtual 3D placeholders, thereby improving the visual
realism of the 3D city model. Replacing real cars by virtual
ones instead of actually trying to model them in 3D from the
images, is also advantageous for several other reasons. First
and foremost, an accurate reconstruction of the observed car
geometry is not necessarily a desirable goal. Apart from the
fact that such a reconstruction would be extremely difficult
to obtain due to transparent windows and specularities on
the car surface, this reconstruction would at best contain one
half of each car, since the other half is not visible from the
collected viewpoints along the road. Removing the cars from
the reconstruction entirely, on the other hand, is also not
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(a) (b) (c) (d)

Fig. 13. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (c) temporal integration on reconstructed
map, (d) estimated 3D car locations, rendered back into the original image.

easily possible, since the area behind and underneath them
has never been observed by the survey vehicle. Filling in the
resulting gaps in the road and facade textures would require
semantically meaningful texture inpainting, which is currently
still far beyond the state-of-the-art. Finally, content providers
are often asked to remove personal items from their data to
avoid privacy issues. The virtual cars do not reveal license
plates or other identification cues and can thus alleviate such
concerns.

IV. OBJECT DETECTION

In the following, we therefore integrate the reconstruc-
tion framework with an appearance-based object recognition
pipeline, which tries to detect cars from multiple viewpoints,
to estimate their precise location and orientation in 3D, and
to feed back this information to the city modeling engine.

Figure 13 visualizes the different stages of the recognition
pipeline. We start by applying several single-view car detectors
to both camera images and collect their responses to find
possible car locations. However, without any additional scene
knowledge, those detectors produce too many false positives
at improbable image locations and scales (Fig. 13(a)). Using
the ground plane and camera parameters retrieved by SfM,
we therefore enforce geometric constraints that limit car
detections to physically plausible positions (Fig. 13(b)). Each
car detection in each subsequent frame casts a vote for the
position and orientation of the car in 3D world coordinates.
These votes are then integrated over time to form 3D bounding
box hypotheses for static cars, while moving cars are discarded
(Fig. 13(c,d)). The resulting lists of 3D car hypotheses is used
to instantiate virtual 3D placeholders in the 3D city model,
which cover the reconstruction artifacts and increase the visual
realism of the final model. The following sections describe
those steps in more detail.

A. Appearance-Based Object Detection

Object detection from a moving vehicle is a notoriously
difficult task due to the combined effects of motion blur,
lens flaring, significant partial occlusion, and rapidly changing
lighting conditions between shadowed and brightly lit areas.
Some of those effects are visualized in Figure 14. In order to
cope with those challenges, we found it necessary to base the
detectors on a robust combination of different cues.

The recognition system is thus based on a multi-cue ex-
tension [22] of the Implicit Shape Model (ISM) approach
[21], [23]. A battery of 5 single-view ISM detectors is run
in parallel to capture different aspects of cars (see Fig. 12
for a visualization of their distribution over viewpoints). For
efficiency reasons, we make use of symmetries and run mir-
rored versions of the same detectors for the other semi-profile
views. All detectors share the same set of initial features: local
Shape Context descriptors [28], computed at Harris-Laplace,
Hessian-Laplace, and DoG interest regions [28], [25].

As the detection system is described in detail in [21],
we only summarize its main steps here. During training,
extracted features are clustered into appearance codebooks,
and each detector learns a dedicated spatial distribution for
the codebook entries that occur in its target viewpoint. During
recognition, features are again matched to the codebooks, and
activated codebook entries cast probabilistic votes for possible
object locations and scales according to their learned spatial
distributions. The votes are collected in 3-dimensional Hough
voting spaces for (x, y, scale), one for each detector, and
maxima are found using Mean-Shift Mode Estimation [2],
[21].

B. Integration of Ground Surface Constraints

Geometric scene constraints, such as the knowledge about
the ground surface on which objects can move, can help
detection in several important respects. First, they can restrict
the search space for object hypotheses to a corridor in the
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(a) (b) (c) (d)

Fig. 14. (top) Car detections on typical images from the city scenario. (bottom) Examples for the difficulties in this scenario: (a) motion blur, (b) lens flaring,
(c) bright lighting (d) strong shadows.

(x, y, scale) volume, thus allowing significant speedups and
filtering out false positives. Second, they make it possible to
evaluate object hypotheses under a size prior and “pull” them
towards more likely locations. Last but not least, they allow
to place object hypotheses at 3D locations, so that they can
be corroborated by temporal integration. In the following, we
use all three of those ideas to improve detection quality.

Given the camera calibration and a ground plane estimate
from from SfM, we can estimate the 3D location for each
object hypothesis by projecting a ray through the base point
of its bounding box and intersecting this ray with the ground
plane. If the ray passes above the horizon, we can trivially
reject the hypothesis. In the other case, we can estimate
its real-world size by projecting a second ray through the
bounding box top point and intersecting it with a vertical
plane through the object’s 3D base. Using this information, we
can formally express the likelihood for the real-world object
H given image I by the following marginalization over the
image-plane hypotheses {hi}:

p(H |I) =
∑

i

p(H |hi, I)p(hi|I)

∼
∑

i

p(hi|H)p(H)p(hi|I) (6)

where p(H) expresses a prior for object sizes and distances,
and p(hi|H) reflects the accuracy of our 3D estimate. In our
case, we enforce a uniform distance prior up to a maximum
depth of 70m and model the size prior by a Gaussian, similar to
[17]. The hypothesis scores are thus modulated by the degree
to which they comply with scene geometry, before they are
passed to the next stage (Fig. 13(a,b)).

C. Hypothesis Selection

In order to fuse the individual object hypotheses into
a consistent system response, we next apply the following
hypothesis selection stage. We first compute a top-down
segmentation for each hypothesis h according to the method

described in [21]. This yields two per-pixel probability maps
p(figure|h) and p(ground |h) per hypothesis. With their help,
we can express the hypothesis likelihood p(h|I) in terms of
the pixels p it occupies:

p(h|I) =
∏
p∈I

p(h|p) =
∏

p∈Seg(h)

p(p = figure|h)p(h). (7)

where Seg(h) denotes the segmentation area of h, i.e. the
pixels for which p(p = figure|h) > p(p = ground |h). We
then search for the optimal combination of hypotheses that
best explains the image content under the constraint that each
pixel can be assigned to at most one hypothesis.

The resulting hypothesis selection problem is formulated
in a Minimum Description Length (MDL) framework. Briefly
stated, this framework provides a formalism to weigh off
the explanatory power of a set of hypotheses against the
complexity of the resulting explanation. Taking an analogy
to image encoding, each detection hypothesis can explain a
set of pixels, namely its support region in the image, and
can thus provide savings [24] in terms of transmission bits.
However, in order to specify the hypothesis, we have to
“pay” a certain model cost, as well as a cost for the error
made by this representation. When two detection hypotheses
overlap, they compete for image pixels; thus, their combined
support area is reduced. As the model cost however still
applies, such a hypothesis combination is only beneficial if
the combined support outweighs the increased cost. Following
the formalism of [24], we express the savings of a particular
hypothesis h as

Sh ∼ Sdata − κ1Smodel − κ2Serror , (8)

where Sdata corresponds to the number N of data points or
pixels that are explained by h; Smodel denotes the model cost;
Serror describes a cost for the error that is made by this
representation; and κ1, κ2 are constants to weight the different
factors. It can be shown that if the error term is chosen as the
log-likelihood over all data points x assigned to a hypothesis
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(a) (b) (c)

Fig. 15. Visualization of the temporal integration stage: (a) estimated 3D object locations as the survey vehicle is moving along (in green); (b) real-world object
hypotheses obtained by mean-shift clustering (in orange); (c) final hypotheses selected by the QBOP (in red).

h, then the following relationship holds:

Serror = − log
∏
x∈h

p(x|h) = −
∑
x∈h

log p(x|h)

= −
∑
x∈h

log (1 − (1 − p(x|h)))

=
∑
x∈h

∞∑
n=1

1
n

(1 − p(x|h))n (9)

Using a first-order approximation1 for the infinite sum, we
obtain

Serror ≈
∑
x∈h

(1 − p(x|h)) = N −
∑
x∈h

p(x|h). (10)

Substituting eq.(10) into eq.(8), the savings then reduce to the
merit term

Sh = −κ1Smodel +
∑
x∈h

((1 − κ2) + κ2p(x|h)) , (11)

which is effectively just a sum over the data assignment
likelihoods, together with a regularization term to compensate
for unequal sampling. When hypotheses overlap, they compete
for data points, resulting in interaction costs. As shown in [24],
[20], the optimal hypothesis selection can then be formulated
as a Quadratic Boolean Optimization Problem (QBOP):

max
m

mT Qm = max
m

mT

⎡
⎢⎣

q11 · · · q1M

...
. . .

...
qM1 · · · qMM

⎤
⎥⎦m (12)

where m = (m1, m2, . . . , mM ) is a vector of indicator
variables, such that mi = 1 if hypothesis hi is accepted and 0
otherwise. Q is an interaction matrix whose diagonal elements
qii express the merits of each individual hypothesis, while the
off-diagonal elements qij express the cost of their overlap.

1This approximation is justified if we make sure that only sufficiently
confident point assignments are made, as is the case e.g. for all pixels
belonging to a hypothesis’s top-down segmentation Seg(h), since they fulfill
the condition p(p = figure|h) > p(p = ground |h).

In our case, we express the merits of each image-plane
hypothesis by how well it explains the image pixels it oc-
cupies, using p(h|I) from eq.(7). Since this measure favors
objects at larger scales, we set the model cost to a scale and
viewpoint dependent normalization factor Aσ,v(h), expressing
the expected area of an object hypothesis at its detected scale
and viewpoint. This results in the following merit terms:

qii = Shi =−κ1 + p(hi|Hi)p(Hi)f(hi), (13)

f(hi) =
1

Aσ,v(hi)

∑
p∈Seg(hi)

((1−κ2) + κ2p(p=fig.|hi)) . (14)

Two image-plane hypotheses hi and hj interact if they com-
pete for the same pixels. In this case, we assume that the
hypothesis h∗ ∈ {hi, hj} that is farther away from the camera
is occluded and subtract its support in the overlapping image
area. The interaction cost then becomes

qij = qji = −1
2
p(h∗|H∗)p(H∗)f(h∗). (15)

This formulation allows to select the best global interpreta-
tion for each image from the output of the different single-
view detectors. Since typically only a subset of hypotheses
produces overlaps, it is generally sufficient to compute a
fast greedy approximation to the optimal solution. Examples
for the resulting detections are shown in Figure 14. As can
be seen from those examples, the resulting object detection
module is capable of reliably detecting cars from different
viewpoints and in scenes of realistic complexity. It should
be noted, however, that both the reliance on multiple cues
and the parallel execution of several single-view detectors
introduce additional computational cost, so that the object
detection module is not yet capable of real-time performance.
In future work, we therefore intend to speed up this stage by
incorporating more efficient feature extraction [1] and efficient
sharing of features between detectors [27], [35].

D. Integration of Facade Constraints

Using the information from 3D reconstruction, we add
another step to check if hypothesized 3D object locations
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Fig. 16. (top) Online 3D car location estimates of our system using only information from previous frames. (bottom) Final 3D estimates integrated over the full
sequence.

lie behind reconstructed facades. As this information will
typically only be available after a certain time delay (i.e.
when our system has collected sufficient information about the
facade), this filter is applied as part of the following temporal
integration stage.

E. Temporal Integration

The above stages are applied to both camera images si-
multaneously. The result is a set of 3D object hypotheses
for each frame, registered in a world coordinate system.
Each hypothesis comes with its 3D location, a 3D orientation
vector inferred from the selected viewpoint, and an associated
confidence score. Since each individual measurement may still
be subject to error, we improve the accuracy of the estimation
process by integrating the detections over time. This procedure
results in 3D bounding box estimates for each static car, while
moving cars are discarded.

Figure 15 shows a visualization of the integration procedure.
We first cluster consistent hypotheses by starting a mean-
shift search with adaptive covariance matrix from each new
data point H and keeping all distinct convergence points H
(Fig. 15(b)). We then select the set of hypothesis clusters that
best explains our observations by again solving a QBOP, only
this time in the 3D world space

q̃ii = −κ̃1 +
∑

Hk∈Hi

((1−κ̃2) + κ̃2 gk,i) (16)

q̃ij = −1
2

∑
Hk∈Hi∩Hj

((1−κ̃2) + κ̃2gk,∗+ κ̃3 O(Hi,Hj)) (17)

gk,i = e−λ(t−tk)p(Hk|Hi)p(Hk|I) (18)

where p(H |Hi) is obtained by evaluating the location of H
under the covariance of the cluster Hi; H∗ denotes the weaker
of the two hypothesis clusters; and O(Hi,Hj) measures the
overlap between their real-world bounding boxes, assuming
average car dimensions. This last term is the main conceptual
difference to the previous formulation in eqs. (14) and (15). It

TABLE I

TIMING RESULTS OF THE 3D RECONSTRUCTION SYSTEM.

introduces a strong penalty term for hypothesis pairs that over-
lap physically. In order to compensate for false positives and
moving objects, each measurement is additionally subjected to
a small temporal decay with time constant λ. The results of
this procedure are displayed in Fig. 15(c).

F. Estimating Car Orientations

In the above procedure, car orientations are estimated using
the following two observations. First, the main estimation
errors are made both along a car’s main axis and along our
viewing direction. Since the latter moves when passing a
parked car, the cluster’s main axis is slightly tilted towards
our egomotion vector (c.f. Fig.15(a)). Second, the semi-profile
detectors, despite being trained only for 30◦ views, respond
to a relatively large range of viewpoints. As a result, the
orientation estimates from those detectors are usually tilted
slightly away from our direction of movement. In practice, the
two effects compensate for each other, so that a reasonably
accurate estimate of a car’s main axis can be obtained by
averaging the two directions. Some typical examples of the
resulting 3D estimates are shown in Fig. 16.
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Fig. 17. (left) Rendered image taken from the original 3D city model and augmented with the virtual placeholders. (right) A collection of rendered images
from the final 3D city model taken from various vantage points.

V. FEEDBACK INTO 3D RECONSTRUCTION

The object recognition module uses the knowledge of
camera parameters and ground plane resulting from the 3D
reconstruction algorithm to guide its search for cars. In addi-
tion to identifying 3D bounding volumes that could contain
cars, it also generates a list of 3D hypotheses for the scale,
position, and rotation of each detected car. These could be
used directly to instantiate 3D virtual cars. However, the
orientation estimates are not in all cases sufficiently accurate
due to the inherent limitations of the appearance-based object
recognition algorithm (which uses object detectors that are
trained on a discrete set of car orientations). In addition, the
location estimates are based on a rough ground plane estimate,
extrapolating the road surface under the survey vehicle at the
time when the object was first seen. Therefore, the virtual
cars look more or less alright, but they can be positioned
slightly above or below the road surface, and do not always
seem to be neatly parked due to the noise on their rotation.
Therefore, the following refinement is performed for each car.
Along the camera path resulting from SfM, one looks for the
camera center closest to the estimated 3D car position. Around
this location, the ground plane is estimated using the contact
points of the wheels of the survey vehicle on the road, as
previously explained in Section III. The 3D virtual model is
then lowered onto this ground plane. Its orientation within
the plane can be refined as follows. When the car direction
returned by the object recognition algorithm is close to the
direction of the local camera path section where it passes the
car, the latter direction is adopted as final orientation of the
car. As a consequence, when the motion of the survey vehicle
through the street is smooth, the resulting refined orientations
of the cars will inherit this smoothness.

At each detected car location, we then instantiate a virtual
car model acting as a placeholder. We apply the following
computer graphic tools to blend the virtual 3D cars into the
real environment. First, a directional light source is placed
above the scene, and the cars are rendered using local Gouraud
shading. To simulate the metallic look of a typical car, a
specular component is added which takes as its input a
spherical reflection map that is built up on-the-fly by the
graphics card. In this way, the cars reflect the environment,
as would be expected in real-life. For speed reasons, the
shadows of cars on the road are not explicitly calculated, but
are mimicked by dark spots which were blended onto the road
under the car. This also helps in covering up the remaining car
artifacts which were textured onto the road surface.

Figure 17(right) shows a collection of views on the final
3D city model from vantage points away from the original
camera path followed by the survey vehicle. (Note that in those
examples only the cars’ main orientations are inferred; the
information whether a car is facing forward or backward was
not yet used in the rendered examples. This can however easily
be corrected by incorporating scene knowledge about allowed
driving directions, which is done in the newest version of our
system).

VI. EXPERIMENTAL EVALUATION

A. 3D Reconstruction

We tested the reconstruction system on three stereo se-
quences. Table I shows the statistics and timing results of
each specific sequence. Note that real-time processing at 25
frames per second can be achieved by batching and pipelining
the different operations. The SfM, bundling, map generation
and texture application each form an independent stage in the
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Fig. 18. (top left) Topographical map generation by voted carving; (top
right) silhouette, extracted after thresholding; (bottom left) aerial view of the
corresponding area; (bottom right) silhouette mapped onto aerial image.

pipeline and can therefore be executed on two computers in
parallel. Note that we make use of both the CPUs and GPUs.
The tests were performed on a PC with a AMD 64 X2 Dual
Core CPU, 1GB of RAM and an nVidia Geforce 8800GTX
GPU. For maximum performance, the algorithm is able to
exploit the dual-core functionality of the CPU by assigning
one core to each of the two modules of the SfM.

Comparisons between the original images and renderings of
the reconstructed models from the same viewpoint are shown
in Figure 11. The topographical map generation is illustrated
in Figure 18 2. Because the simple geometry assumptions are
never perfectly met in real life, it makes no sense to investigate
the reconstruction accuracy of the resulting 3D models. As our
goal is to supply simple models for realistic pre-visualization
of traffic situations the only measure used to judge the quality
of the result is the subjective measure of realism.

Figure 19 illustrates some drawbacks of the current imple-
mentation. The top image shows that incomplete carving can
occur near corners. This is due to the limited frustum of the
cameras. The silhouette extraction stage will extract a ruled
surface along the dashed line, while the actual facades are
represented by the bold lines. This problem can be resolved
by using either additional or omni-directional cameras. The
bottom left image illustrates a case in which the simple
geometry assumptions were clearly violated, but where the
resulting simplified textured model could still be used to
yield a realistic rendering through the city model to illustrate
traffic maneuvers. Because of the homogeneous texture on the
side of the taller building, the optimal stereo matching path
clearly shows preference towards the smaller building. The
building in the bottom right image also violates the simple

2Sample result videos can be downloaded from the following website:
http://homes.esat.kuleuven.be/∼ncorneli/ijcv07/.

Fig. 19. (a) Incomplete carving due to limited frustum of the cameras. (b)
Ruled surface assumption violated with limited impact on visual perception.
(c) Ruled surface assumption violated with noticable impact on visual per-
ception (as visible on the 2nd floor gallery).

geometry assumptions. Here, the optimal path prefers the
smaller building on the left side of the poorly reconstructed
building and vice versa on the right side.

B. Object Recognition

In order to evaluate the object recognition performance, we
manually annotated the car locations in the first test sequence.
This sequence consists of 1175 image pairs recorded by the
camera vehicle over a distance of approximately 500m. The
stereo input streams were captured at a frame rate of 25fps
and a relatively low resolution of 380× 288 pixels. All image
pairs are processed at their original resolution by the SfM
and reconstruction modules and bilinearly interpolated to twice
that size for object detection (similar to [25]). The 5 single-
view car detectors were trained on images taken from the
LabelMe database [30], for which viewpoint annotations and
rough polygon outlines were already available (c.f . Fig.12).
In all experiments, we set κ2 = 0.95, κ̃2 = 0.5, and plot
performance curves over the value of κ1.

For a quantitative estimate of the performance improvement
brought about by the inclusion of geometry constraints, we
annotated the left camera stream of the video sequence by
marking all cars that were within a distance of 50m and visible
by at least 40-50%. It is important to note that this includes
many difficult cases with partial visibility, so it is unrealistic
to expect perfect detection in every frame. We then evaluate
the detection performance using the criterion from [23]: a
detection is only counted as correct if it a) overlaps with the
annotation bounding box by more than 50% and b) is the
closest such detection for this annotation rectangle; else it is
counted as a false positive.

Figure 20 presents the resulting detection performance with
and without ground plane constraints. As can be seen from
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Fig. 20. (top) Comparison of the object detection performance with and
without scene geometry constraints. (bottom) Map with the reconstructed
camera path and all detected car locations (in red).

the plot, detection reaches a level of about 50% recall at 4
false positives per image (fppi) when no assumptions about
scene geometry are made. Using the ground plane automati-
cally estimated from SfM, both the recognition rate and the
detection precision are considerably increased. Looking at the
operating point for temporal integration of 47% recall (marked
by a cross in the plot), the false positive rate is reduced from 3
fppi to 0.34 fppi, corresponding to an almost tenfold increase
in detection precision.

Counted over its full length, the sequence contains 77 (suffi-
ciently visible) static and 4 moving cars, all but 6 of which are
correctly detected in at least one frame. The online estimation
of their 3D locations and orientation usually converges at a
distance between 15 and 30m and leads to a correct estimate
for 68 of the static cars; for 5 more, the obtained estimate
would also have been correct, but does not reach a sufficiently
high confidence level to be accepted. The moving cars are also
detected in most input frames, but temporal integration does
not converge to a stable location estimate for them due to their
motion. In more recent work, we have therefore extended the
integration framework to also estimate trajectories for moving
objects and track them over time [20]. Figure 20(bottom)
shows a topographical map with the camera path and all

reconstructed car locations.

VII. DISCUSSION & CONCLUSION

In this paper, we presented an effective city modeling frame-
work which delivers compact and visually realistic 3D repre-
sentations to be used for easy distribution and pre-visualization
of ground-level traffic situations in consumer navigation tools.
Our proposed approach integrates 3D reconstruction and object
detection in a tight collaboration, which allows one algo-
rithm to help the other overcome its weaknesses. Specifically,
the reconstruction pipeline builds on a speed-optimized SfM
algorithm to determine camera poses for a stereo survey
sequence. Computation time is kept low thanks to the pre-
calibrated stereo rig, the use of monochrome video signals
and a simple feature extraction algorithm. Subsequently, the
resulting camera poses are used by an adapted dense stereo
algorithm. The latter uses the graphics card as implementation
platform and incorporates the assumptions of simple output
geometry, namely that building facades are approximately all
parallel to the direction of gravity and that the road can be
approximated by a ruled surface. The results are compact and
can be retrieved at video frame rate, making it realistic for
this city modeling framework to be unleashed on large image
databases covering entire cities.

As parked and moving cars may degrade the visual realism
of the reconstruction and lead to unpleasant artifacts in the
final 3D city model, we combined the reconstruction system
with an object detection pipeline. This recognition system was
used to detect cars in the original video input, guided by the
online scene geometry estimates the reconstruction pipeline
could provide. The inclusion of those geometric constraints
proved extremely helpful and led to a significant increase in
detection precision, as could be shown in our experiments. The
detection results were then temporally integrated in a world
coordinate frame to create 3D bounding box hypotheses for
static cars and instantiate a virtual 3D placeholder for each
such detected car in the final city model. In this way, the
artifacts caused by cars could be removed, and a final 3D city
model with heightened visual realism could be obtained.

Apart from covering up the reconstruction artifacts from
observed cars on the road surface, the placeholder models
have several additional advantages. Since they are instantiated
in the same locations as their real counterparts, they give a
better impression of the scale of the reconstructed model and
the width and passability of its streets. This is an important
feature, as the main application area of future city modeling
technology will most likely be in car navigation systems, for
which recovery of the number and dimensions of individual
driving lanes becomes increasingly important. In addition, the
placeholder models make it possible to ”brand” the city model
with the car type the final navigation system is built into.
The reconstructed city would then contain neutral car models,
interspersed with models of the driver’s (or manufacturer’s)
preferred car brand. Last but not least, the substitution of
observed real cars by generic models also addresses privacy
issues.

The proposed placeholder solution also does not violate our
goal of creating a compact city model suitable for rendering
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on a low-cost platform. The reconstructed city model for the
entire first test sequence, including all facade textures, takes up
only 712kB. Each placeholder car model requires an additional
300–500kB of storage, but it can be reused whenever the car
is instantiated in the reconstruction. In our test application, we
used 4 distinct car models, which together with the shadow
effects, already gave rise to a surprising degree of variability in
the depicted scenes. For a final application, we expect that 10–
12 distinct car models will be sufficient to reduce repetitions.
The spherical reflection map used for increased realism also
does not add to the storage costs, since it can be created
dynamically, as part of the regular rendering process. The
simple rendering algorithm we used can be performed even
by the latest generation of PDAs with mobile graphic cards.

It is important to point out that our approach is targeted
at the ground-level reconstruction of urban scenes and takes
advantage from the tall buildings that can be found there,
both for finding good features during SfM and for the facade
reconstruction itself. Although it can compensate for occa-
sional gaps in the facades, it would not work well for rural or
suburban scenes, where such structures are entirely missing.
However, such less densely populated scenes can be captured
well by aerial imagery (in contrast to urban scenes, where high
buildings and narrow streets severely limit the aerial camera’s
view). The methods are thus complementary, and the best-
suited approach should be chosen for each environment. This
is in line with current practice of land surveying companies,
which are already now employing a mixture of different
methods for different environments.

At this stage, all detected cars were removed from further
processing by the reconstruction algorithm. However, parked
cars can still contribute some features to the reconstruction
algorithm as they comply to the assumption of a static scene.
We will therefore investigate to what extent we can distinguish
between parked and moving cars and use that information. We
envision some problems with scenarios which are borderline
cases. For instance, when standing in front of a red traffic light,
most cars around us will be static, but they will gradually start
to move when the traffic light turns green. Therefore, there is
a grey zone in which we cannot clearly determine whether the
car is static or not.

The first cognitive loop which was established between
reconstruction and recognition will inspire us to add additional
loops between existing components to increase the overall
robustness of the combined system. Detectors for other object
classes, such as pedestrians, motorbikes, trees, etc. could be
used in the same spirit as presented in this paper. They will
help in improving the visual quality of the final 3D model,
and in automatically masking out image content which might
otherwise disturb the reconstruction or lead to privacy issues.

This paper emphasizes the use of passive stereo for 3D city
modeling purposes. Although it is only a matter of time before
fast, cheap, and compact active range scanners will become
available, passive scanners still have the advantage of being
able to capture the entire scene at a single point in time. This
can prove useful when implementing cognitive loops such as
the one between 3D reconstruction and object detection. Next
to the road surface, the ruled surfaces of the facades can also

be used to filter out false positives in the object detection
stage, allowing the application to lower the detection threshold
while maintaining the detection performance. Lowering this
threshold reduces the chance that an object is missed which
can have disastrous consequences in e.g. real-time pedestrian
detection for automated vehicles.

Future work on the reconstruction system will mainly focus
on two separate problems. On the one hand, the simple
geometry assumptions will never completely fit the true 3D
geometry of the scene. This makes it very difficult to extract
a consistent model texture from the original images. Super-
resolution schemes cannot be applied, as they assume that the
3D geometry is correct in order to merge different textures. A
different, clever way of merging textures from different images
is needed to remove artifacts from the final texture. On the
other hand, we can use the simplified model as a starting point
for determining a more detailed 3D model when accurate 3D
measurements are required.

A further increase in reconstruction accuracy and realism
can be achieved by mounting more than two cameras on
the survey vehicles and by using view dependent texture
mapping [7]. Finally, the higher-level understanding of urban
architecture would help in improving the 3D geometry and
therefore also its texture. For instance, balconies which stick
out of the building facades could be detected and modeled,
doors could be detected and pushed deeper into the facades,
etc.
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