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1 Shape Features

Our shape clustering and matching approach requires repeatable descriptors represented by
the GCTs. To retrieve such features, we take care that the GCTs are aligned consistently in
position and orientation with respect to a reference frame in the object. In the following, we
provide details and motivations on our design choices for the shape features.
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PCA RANSAC

Figure 1: Comparison of the orientation estimates using PCA or RANSAC. An object is
shown from a bird’s eye perspective. The blue circles indicate the surface points. The red
line visualizes the orientation direction which would be estimated by each of the algorithms.

1.1 Reference Position

GCTs are designed to model the shape of objects that only change position and orientation
in the ground plane. Thus, we extract a reference vertical axis in the center of the object as
the vertical axis of its GCT. We place this reference axis at the center of the 3D bounding
box of the object measurements.

The GCT is integrated from object measurements of multiple frames over time, such that
the 3D bounding box changes with the measurements and a realignment of the center axis
becomes necessary. Since the recentering of the model is computationally expensive, we
recenter the GCT only, if the new center diverges more than a certain distance (10 cm in our
experiments) from the current position of the vertical axis. By this, we rarely recenter and
the recentering does not affect the performance of the tracker significantly.

1.2 Reference Orientation

Since objects are observed with varying orientation, we aim at describing trajectories and
GCT shapes in an orientation-invariant way. To this end, we estimate a reference orientation
in the ground plane from the object measurements and normalize trajectory and shape with
respect to this orientation. Notably, the estimated orientation does not need to be an inter-
pretable orientation like a moving or viewing direction, but needs to be repeatable for the
shape category. We identified the following possible ways for orientation estimation:

1. Direction of motion: In related work, objects are often defined as moving parts of the
scene [3, 6] and the direction of motion is used as a reference. In our approach, how-
ever, we also want to model static objects such as parked cars or standing pedestrians.

2. Principal component analysis (PCA): We can estimate the main axis of the data points
contained in the GCT with PCA. The main axis should be similar for objects of the
same category. This approach only considers shape and hence it is applicable for static
and dynamic objects. However, this estimation is inaccurate for partially observed
objects because the main axis will depend on the distribution of observed parts (see
Figure 1).

3. Robust plane fit: With the RANSAC algorithm we can fit a dominant plane to the
object measurements to retrieve the object orientation. Compared to PCA, this has
the advantage that such a plane can still be found for partially observed objects. For
example, in Figure 1, we fit a plane to the side of the car. This approach has also been
used by Teichman and Thrun [7] and is used in our method.
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Figure 2: Depending on the view point on the object, different planes can be fit to the object
measurements.

While the RANSAC orientation estimate is less prone to drift as the PCA estimate, it
still may find one of multiple possible plane fits. For example, for the orientation estimate
of the car shown in Figure 2, we can fit a plane which is perpendicular to (yellow plane) or
along (green plane) its forward direction. Even worse, for cylindrical objects the orientation
estimation could be arbitrary, but such objects rather rarely occur in urban street scenes.
Typically for pedestrians which are close to cylindrical objects, we can extract one of two
main axes (frontal or sagittal directions) from the measurements. We observed that most
objects underlie an ambiguity of four different orientations. We can compensate for this
ambiguity by training on enough data such that there are good motion models for each of
these cases.

2 Distance Measures

In this section we describe further details on GCT distance measures and the reasoning be-
hind choosing appropriate default values for unobserved parts of the GCT. Mitzel [4] pro-
poses to compare median-based GCTs using the Euclidean distance and histogram-based
GCTs using histogram intersection. A single orientation bin can be compared by

dM(x,y) = ‖x− y‖2 , (1) dH(x,y) = 1−
B

∑
h=0

min{x(h),y(h)} (2)

2.1 Default Distance (DD)

Since the objects are only observed partially, several bins typically remain unobserved. With-
out further handling, unobserved bins would be represented with a median distance of zero
or an empty histogram, respectively. This biases the distance measure significantly, causing
large distances between GCTs of similar shapes with missing overlap of observed volume.

We address the problem of unobserved bins by setting them to a default distance or his-
togram content as in [4]. We denote the default distance by γ ∈ R and the default histogram
by γ ∈ RH , hence, we use the GCTs

s′(i, j) =

{
s(i, j), if s(i, j) 6= /0
γ, otherwise.

(3)
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Two partially observed objects (bird’s eye perspective):

No dedicated handling of 
empty rays:

Default distance (DD): Neglecting emtpy rays 
(NE):

Figure 3: Visualization of the error for comparing partially observed objects through either
no dedicated handling, DD or NE. The red arrows visualize the resulting error.

2.2 Neglecting Empty Bins (NE)
Alternatively to substituting empty bins in a preprocessing step, we can neglect the empty
bins in the distance calculation. This way, only the bins which are filled in both GCTs
influence the distance.

We can adapt the distance function d(s,s′) between GCTs s, s′ to reflect this concept:

dNE(s,s′) = α

N

∑
i=0

M

∑
j=0

{
d(s(i, j),s′(i, j)), if s(i, j) 6= /0∧ s′(i, j) 6= /0
0, else

(4)

where s(i, j) 6= /0 iff the bin s(i, j) is not empty. α denotes the normalization factor:

α =
1

(NM)−E(s,s′)
. (5)

E(s,s′) denotes the number of bins which are filled in both GCTs:

E(s,s′) =
N

∑
i=0

M

∑
j=0

{
1, if s(i, j) 6= /0∧ s′(i, j) 6= /0
0, else.

(6)

2.3 Comparison of Distance Measures
With the DD approach, we can distinguish shapes of different size better than by neglecting
empty bins. This is especially useful in urban street scenes where many objects types vary
in heights as for example trucks, cars or dogs. However, the DD approach also penalizes
empty bins if they are due to unobserved parts of an object. Neglecting empty bins, on the
other hand, ignores the parts which were not jointly observed in the two shapes. With the
default distance value in the DD approach, we can control the penalization of empty bins. In
the following, we give further insights and an empirical analysis for both distance measures.



KLOSTERMANN ET AL.: SUPP. MAT.: UNSUPERVISED SMP LEARNING IN STREET SCENES5

Figure 3 visualizes the resulting error for comparing partially observed objects if either
empty bins are not handled in a dedicated way, if they are handled by the DD approach or if
they are handled by the NE approach. Without dedicated handling, empty bins fully add error
terms to the distance metric and we cannot control their contribution. With the DD approach
we can change their influence on the distance metric by modifying the default distance or
histogram values. Lastly, with the NE approach we focus on the filled bins only.

In Figure 4 the performance of different configurations are visualized. In this setting
the clustering parameters are optimized for achieving the best value on the V0.1 metric. The
V0.1 metric is a modification of the V measure, which is a combination of homogeneity and
completeness. Its parameter β can be set to favour homogeneity [5]:

Vβ =
(1+β ) ·homogeneity · completeness
(β ·homogeneity)+ completeness

. (7)

The combination of median features (ME) and using a default distance (DD) scores best on
the V0.1 metric but produces an unreasonable number of clusters. The combinations HI-DD
and ME-NE achieve a V0.1 metric similar to ME-DD with a reasonable number of clusters.
Hence we favour these combinations in our evaluation. While the variation in these config-
urations seems to be rather small, the difference in V0.1 between ME-Euclidean and ME-DD
amounts to almost 0.1 which is large in matter of the V0.1 metric. Note that HI-DD and
ME-NE achieve a larger value on the V0.1 metric than ME-Euclidean and a similar score to
Histogram Intersection but produce less clusters at the same time.

3 Trajectory Features
Trajectory information can be used as features in various ways. We compare four different
representations of trajectory information (Figure 5):

1. Current motion (CM): At each time step, we could estimate the current acceleration,
velocity and angular velocity of the object and use it as a feature. With this informa-
tion, a quadratic extrapolation of the object motion could be made as in [1].

2. Trajectory characteristics (TC): We can define a local window around the current time
step or analyse the whole trajectory up to the current time step. By this, we could
describe the analysed trajectory part by the minima, maxima and mean of velocity,
acceleration and angular velocity for as for example in [8]:

(vmin,vmax,vmean,amax,amean,rotmax,rotmean,rotsum).

Here, v denotes the velocity, a the acceleration and rot the angular velocity, while
rotsum denotes the sum of all orientation changes in the local window of the trajectory.

3. Relative position (RP): Kooji et al. [2] model the trajectory relative to the camera
frame (see Figure 5). Note, that ego-motion is compensated as well. This way, the mo-
tion model strongly depends on the position of the object relative to the camera. This
can be advantageous for deciding if, for example, a pedestrian will cross the street,
because it implicitly models the distance of the object to the curb and the distance to
the observing car.

4. Relative trajectory (RT): Alternatively, the reference frame can be placed individually
for each tracked object at the current position of the object. We rotate the coordinate
system according to the estimated orientation in order to align the trajectories of the
observed objects. This representation is not biased by the position and hence it is
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Affinity Propagation - Median - Default distance (ME - DD) - Distance matrix (265 clusters)
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Affinity Propagation - Histogram - Neglecting empty (HI - NE) - Distance matrix (27 clusters)

Figure 4: Comparison of different configuration. In every case Affinity Propagation is used
as clustering algorithm and the features are transformed to a distance matrix as preprocessing
step.
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Figure 5: Visualization of trajectory representations. Red dots visualize the position of the
object.

K-Mean Mean Shift
Affinity
Propagation DBSCAN

Cluster shapes
- Spherical X X X X
- Convex X X X
- Non-convex X
Cluster representative (X) (X) X
Number of clusters specified X

Table 1: Comparison of the introduced clustering algorithms

more general. It also enables us to model constraints for the velocity, acceleration and
angular velocity of the tracked object.

We choose RT, since it models the past and future trajectory directly and flexibly. Further-
more, it is independent of the relative position of the tracked object.

4 Clustering Algorithm Comparison
We analyse the performance of four clustering algorithms on the task of shape-motion pattern
clustering: K-Means, Mean Shift, Affinity Propagation (AP) and DBSCAN. In Table Table 1
we display key characteristics of each algorithm.

We evaluate and compare the performance of the clustering algorithms based on clus-
tering metrics. Figure 6 visualizes the performance of the four clustering algorithms. We
observe that the performance on the different metrics strongly relates with the number of
found clusters. Mean Shift tends to group large objects (cars, vans and trucks) and small
objects (pedestrians and cyclists). Accordingly, it performs best on metrics which favour
completeness. Affinity Propagation and DBSCAN distribute the instances of each class over
multiple clusters. This results in a higher homogeneity but decreases completeness. The
metric V0.1 combines homogeneity and completeness by weighting homogeneity 10 times
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K-Means - Histogram - Default histogram (HI - DD) - Distance matrix (4 clusters)

Mean Shift - Histogram - Default histogram (HI - DD) - Distance matrix (3 clusters)

Affinity Propagation - Histogram - Default histogram (HI - DD) - Distance matrix (32 clusters)

DBSCAN - Histogram - Default histogram (HI - DD) - Distance matrix (19 clusters)

Figure 6: Comparison of the four different clustering algorithms. In every case the GCT was
represented as histogram and empty bins were filled by a default histogram.



KLOSTERMANN ET AL.: SUPP. MAT.: UNSUPERVISED SMP LEARNING IN STREET SCENES9

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9  

Prediction error

Traj

 

S
h
a
p
e

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9  

Trajectory Clusters

Traj

 

S
h
a
p
e

150

200

250

300

350

400

450

500

550

Figure 7: Parameter estimation for the SMP clustering.

stronger than completeness. Since Affinity Propagation and K-Means achieve the largest
value of V0.1, we can assume that the clusters of Affinity Propagation and K-Means fit best to
the training data. Depending on the application we need to decide which type of clustering
is desirable. K-Means creates a better clustering in terms of completeness, while Affinity
Propagation creates the best clustering in terms of homogeneity among the four clustering
algorithms. We argue that in most applications, homogeneity is more desirable than com-
pleteness: If the instances of one class are distributed over multiple clusters, the various
clusters could still be easily annotated by an expert. Hence, we use Affinity Propagation in
our approach.

5 Parameter Estimation
We cluster the shapes and the trajectory features in each shape cluster with Affinity Propaga-
tion (AP). The clusters of AP mainly depends on the preference parameter. This parameter
models for each instance how likely it is that this instance will be a representative and hence
forms a cluster by its own. Thus, by increasing the preference parameter, the number of
clusters increases. With a grid search approach, we try a range of preference parameters for
the shape and the trajectory clustering step. We vary the default preference value (median
of the distances between the instances) by a factor λ . Figure 7, left, shows the resulting
prediction error. The right figure shows the number of generated SMPs in each case. In our
experiments, we choose a preference parameter of λshape = 0.3 for shape and λtra j = 0.8 for
trajectories. Analogously, we estimate the optimal parameter for the pure motion approach.

6 Dataset Augmentation
The amount of training data is crucial for the performance of the algorithm. For each object
in the test set, many similar objects are needed in the training set to cover the ambiguities of
the orientation estimation and the variability resulting from partial observations well.

The KITTI training dataset contains only about 500 meaningful training examples of
shapes and trajectories. From each trajectory we extract up to 10 feature vectors. Extracting
more feature vectors from each track reduces the variability within the feature space and
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Figure 8: The number of features can be increased by creating artificial shape/trajectory
combinations based on the existing ones. (left, top) displays an object together with the
three last positions. (right, top) Due to the ambiguity introduced by using RANSAC as
orientation estimation the orientation can also be turned by 180 degrees. (left, bottom) With
the assumption that shape and trajectory are axis symmetric in the orientation axis we can
create another artificial copy. This represents, for example, that a car which does a left turn
can also do a right turn. (right, bottom) Lastly, both effects can be combined.

does not result in new objects from new viewpoints. The limited number of only 500 feature
vectors is conditioned to the trajectory representation. We represent a trajectory by the offset
to the 20 past and 20 future positions of the tracked objects. Thus, an object needs to be
tracked for 4 seconds to be usable as training instance. Id switches or shortly interrupted
tracks limit the number of suitable objects further.

We augment the limited training data to increase the number of training instances. First,
we can exploit the RANSAC ambiguity to generate for each existing training instance a
second one. For the orientation estimation with RANSAC, we fit a plane to the point cloud
and use the normal vector of this plane as orientation estimation. Hence, a GCT for which
the orientation is changed by 180 degree is also a valid training instance. In Figure 8 the both
upper examples visualize this augmentation. We copy the original GCT and the trajectory
(left), and rotate the orientation by 180 degree (right).

Next, we can assume that objects and their trajectories can be mirrored due to the inherent
symmetry of the typical objects in street scenes. For example, if a car drives a left turn it
can also drive a right one. In the lower right part of Figure 8 we mirror the original object
together with its trajectory along the orientation axis. Last but not least, we can achieve a
fourth example from the training instance by combining the augmentation due to RANSAC
and mirroring.

The augmented dataset is four times larger (about 2000 instances instead of 500 in-
stances). Despite both augmentations are artificial they result in valid shapes and trajectories
which we could detect in a street scene. Furthermore, we increase the variability of the train-
ing features with the augmented instances since they add instances from a different view
point.
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