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Abstract. Estimating the pose and 3D shape of a large variety of in-
stances within an object class from stereo images is a challenging prob-
lem, especially in realistic conditions such as urban street scenes. We
propose a novel approach for using compact shape manifolds of the shape
within an object class for object segmentation, pose and shape estima-
tion. Our method first detects objects and estimates their pose coarsely
in the stereo images using a state-of-the-art 3D object detection method.
An energy minimization method then aligns shape and pose concurrently
with the stereo reconstruction of the object. In experiments, we evaluate
our approach for detection, pose and shape estimation of cars in real
stereo images of urban street scenes. We demonstrate that our shape
manifold alignment method yields improved results over the initial stereo
reconstruction and object detection method in depth and pose accuracy.

1 Introduction

Object-level shape priors are arguably important components for object pose
estimation and 3D reconstruction from images. Shape priors provide strong reg-
ularization cues for these problems which are highly ill-posed in a purely data-
driven manner. In this paper, we propose a novel approach that uses shape priors
for segmenting objects and estimating their shape and pose from stereo images.
This knowledge about objects is useful in applications such as autonomous driv-
ing or augmented/virtual reality. For autonomous driving, shape and pose can be
vital for navigation in order to judge free-space or possible collisions. Accurate
6-DoF pose from single stereo pairs can also be useful for tracking applications.

It is often not feasible to match all possible instances of an object class to
images directly using explicit CAD models. Thus, we take the approach to learn
compact shape manifolds that represents the intra-class object variance. We find
objects, e.g. cars, in the stereo images using a state-of-the-art 3D object detection
method (3DOP, [3]) and align the reconstruction with our shape manifold. Our
method provides shape in occluded areas or regions where vision or laser-based
methods often fail, such as textureless, reflective, or transparent surfaces. It also
provides a segmentation of the object instance in the image.

In experiments, we assess the performance of our approach for detection,
pose and shape estimation of cars in stereo images of urban street scenes using

Proc. of German Conf. on Pattern Recognition (GCPR), Hannover, Germany, September 2016 (to appear)



2 Francis Engelmann, Jörg Stückler, Bastian Leibe

the popular KITTI benchmark [5]. We demonstrate superior pose estimation
performance compared to the baseline 3D object detection approach (3DOP).
Our method also provides shape reconstructions that improve on the initial
stereo reconstruction.

In summary, we make the following contributions: 1) We propose a method
that recovers shape and pose of objects from stereo images using class-specific
3D shape priors. Our registration method directly operates on the 3D stereo
reconstruction from a single stereo pair. 2) We combine our shape matching
method with a state-of-the-art 3D object detection approach to accurately de-
tect objects, determine their 3D pose and shape, and segment them in stereo
images. This approach improves the initial stereo reconstruction, especially at
farther ranges or textureless and specular surfaces where purely stereo-based
reconstructions are inherently limited in reconstruction quality. It also excels in
pose accuracy compared to the initial 3D object detection approach.

2 Related Work

Traditionally, multi-view stereo approaches use local surface-based priors to reg-
ularize depth reconstruction [10, 6, 23, 17]. SPS-Stereo [23], for instance, uses a
piecewise planarity assumption within superpixels for joint stereo reconstruction,
segmentation, and optical flow. Recently, several methods have been proposed
that incorporate semantic and appearance-based priors that model surface prop-
erties of object classes. Saxena et al. [20] demonstrated that depth can be esti-
mated from monocular images using a discriminatively-trained Markov random
field model on appearance cues. Sun et al. [21] use random forests to cast votes
for object detection, pose and 3D shape of objects in monocular images. A simi-
lar method has been proposed by Thomas et al. [22] which transfers depth from
training image patches to a detected object using a patch-based implicit shape
model detector. Haene et al. [9] propose a variational framework for joint 3D
reconstruction and class segmentation in a multi-view stereo setup. The method
uses trained object class-specific local surface priors for depth reconstruction.
Joint semantic segmentation and 3D reconstruction has also been investigated
by Kundu et al. [11] who pose this problem in a higher-order conditional random
field to jointly estimate semantic segmentation and 3D occupancy in a volumet-
ric map. Guney and Geiger [8] start from a sparse reconstruction and a semantic
segmentation to perform CRF-based dense reconstruction with semantic priors.
They impose local shape priors on the superpixels in a semantic segment.

Several semantic SLAM methods have been proposed that include objects
through rigid 3D shape templates into the mapping and localization process [7,
18]. Some recent depth reconstruction and SLAM methods also use 3D shape
priors. The priors model the shape variation of an object class more generically
as manifolds of 3D models. One key di↵erence in such methods is how the object
shape manifold is modeled and how the objects can be detected and their pose
recovered. Bao et al. [2] create shape and appearance-based shape priors that
model the object shape as a deformable template whose shape depends on a set of
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anchoring 2D interest points. Implicit shape models based on a truncated signed
distance function (TSDF) are used in [16]. This method applies GP-LVMs [12]
for manifold learning on the TSDF and recovers segmentation, 3D pose and re-
construction in a level-set formulation. However, the level-set segmentation also
requires a pre-trained random forest regressor for inside and outside probabilities
on the specific target object, which is obtained through manual initialization on a
video. Sandhu et al. [19] use kernel PCA and a region-based level-set formulation
instead. Dame et al. [4] take the GP-LVM shape priors in [16] one step further
into a monocular dense SLAM system. While we evaluate our method on stereo
data from urban scenarios, the above methods are demonstrated in small-scale
monocular settings. Closer to our data scenario, [25] detect objects similar to a
few annotated examples in TSDF maps that are integrated from stereo depth
obtained in urban street scenes. They propose a method to learn PCA shape
priors on the detected objects and demonstrate the models to improve recon-
struction quality. In contrast, we estimate the shape from a single stereo pair
observation in order to be able to align shape priors also with dynamic objects.
Furthermore, we use an object proposal method that is trained on a larger set of
training examples and provides a coarse 3D pose estimate. Zia et al. [26] use a
shape prior encoded by linear embedding of CAD wireframe models to estimate
the 3D pose and shape of objects such as cars and bicycles in monocular images.
They train a detector for the wireframe vertices and propose an optimization
procedure that fits the wireframe shapes to the detected vertices. This shape
prior is also used by Menze et al. [14] to jointly estimate object pose and shape
together with scene flow from stereo images. Our shape priors represent surface
implicitly using TSDFs and, hence, do not require correspondence of wireframe
vertices and edges between example instances.

Related to our work are also 3D object detection methods. In 3DOP [3],
objects are detected using a selective search approach in SPS-Stereo reconstruc-
tions. First, a large set of object proposals is generated in an energy minimization
framework that finds potential objects according to a set of shape and appear-
ance based features in a reduced volumetric search space. Each proposal is then
classified as part of an object class using a convolutional neural network. The
network also regresses the orientation of the object. We use 3DOP for initial
3D object detection and refine the detections using shape prior matching. The
work of Zheng et al. [24] focuses on improving an object proposal method with
shape priors. Di↵erent to our method, it uses a GP-LVM shape prior to sam-
ple shapes and render additional training images for a state-of-the-art object
proposal approach.

3 Our Method

Our approach to 3D shape recovery and pose estimation aligns a 3D manifold
of shapes with noisy stereo reconstructions of objects. We learn this 3D shape
prior from a database of CAD models of an object class (for instance, cars). We
use a local optimization method that determines shape and pose concurrently
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1.InputDepth 2.CarDetections 3.Initialization 4.Optimization 5.Our Result

Fig. 1. Overview of our pipeline: From stereo images, we estimate depth using a stereo
reconstruction method (e.g. SPS-Stereo [23]) and compute object detections (blue
bounding boxes) using 3DOP [3]. We then optimize the shape and the pose of the
detected object by solving an energy-minimization problem. The red bounding box
shows the initialization that we determine from the 3DOP result and the object seg-
ment, the optimization result is shown in green. On the right, we display the optimized
shape and pose superimposed on the initial stereo reconstruction.

in an energy minimization framework. In order to align a shape model to each
object in a scene (see Fig. 1), we first detect the objects in stereo data using the
state-of-the-art 3D object detection approach from [3]. The method also provides
us with a coarse pose initialization, which we subsequently refine with our shape
matching method.

3.1 Shape Modelling and Manifold Learning

We learn 3D shape priors using linear subspace analysis (PCA) on a TSDF
representation of objects in a class. We use TSDFs, as shapes of object instances
can be homogeneously approximated in a shared voxel grid representation. Using
a multi-view rendering pipeline, we transform a CAD model database of various
object shapes into volumetric TSDF grids. The coordinate frame origin of each
instance is placed at the center of gravity and at ground level height, while the
axes are aligned with forward, sideward, and upward directions. Fig. 2 illustrates
example shapes on a learned manifold of cars.

More formally, a TSDF �(x, z) yields the truncated signed distance at point
x 2 R3 towards the object surface. Hence, the surface is implicitly represented
as the zero-level set of the TSDF. The TSDF is approximated through trilinear
interpolation of TSDF values e�i(z) at vertices i 2 N (x) in a voxel grid. The
vertex set N (x) corresponds to the corners of the voxel that point x falls into.
The TSDF voxel grid values are embedded in the linear subspace through the
mapping

z
⇣
e�
⌘
= V>

⇣
e�� µe�

⌘
, (1)

where e� is stacked from all vertex distances and µe� is its mean over all examples

in the training set (i.e., the mean shape). The subspace projection matrix V>
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Fig. 2. Example shapes in our learned shape manifold of cars. The center shape cor-
responds to the mean shape.

is obtained through eigen decomposition ⌃ = VDV> of the covariance

⌃ =
1

M � 1

⇣
e�� µe�

⌘> ⇣e�� µe�

⌘
(2)

where e� is the design matrix stacked from the TSDF vertex distances e�
>

of
the M examples. Given an encoding z 2 RK , the corresponding TSDF can be
reconstructed using e�(z) = Vz+ µe�.

3.2 Object Detection and Segmentation

We detect objects in a scene using 3DOP [3]. We observed that the 2D bounding
boxes in the image domain are more accurate then the rather coarse bound-
ing box estimates in 3D. Since we use stereo reconstructions (obtained with
libELAS [6] or SPS-Stereo [23] in our experiments), the points X on an object
may not fall inside the 3D bounding box due to disparity noise. Thus, we seg-
ment the points on the object that project into the 2D bounding boxes and find
points that are close to the estimated 3D center position. As an additional seg-
mentation cue in our urban street scene setting, we remove points on and below
the road plane which is found by the same approach as used in 3DOP. Finally,
we redetermine the 3D bounding box of the segmented points and determine a

pose estimate ⇠0 :=
�
✓0 t>0

�>
from the rotation obtained by the 3D bounding

box of 3DOP. For the translation we try both the center of the 3D bounding box
of the segmented points and the center of the 3DOP bounding box, and pick the
best scoring one in terms of energy. We additionally apply a verification step by
pruning detections that have an unreasonably sized bounding box, i.e. where the
bounding box extent in each dimension is unreasonably small.

3.3 Concurrent Shape and Pose Alignment

We optimize concurrently for shape and pose of the detected objects using the
segmented object points X . The pose estimate is initialized from the detected
pose ⇠0, while the shape estimation is started from the mean shape z0 := 0 2 RK .
Our energy function corresponds to the negative logarithm of the a-posteriori
probability of the stereo reconstruction given the reconstructed shape and pose
estimate,

E(X , ⇠, z) = � 1

N

 
NX

i=1

log [p (xi | ⇠, z)]
!

� log p(z)� log p(⇠), (3)
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where N is the number of object points. Using our TSDF shape representation,
the observation likelihood depends on the distance from the surface,

log p (xi | ⇠, z) = const.� 1

2�2
d

⇢ (� (R(✓)xi + t, z)) . (4)

Instead of an outlier-sensitive quadratic norm corresponding to a Gaussian dis-
tribution (⇢(y) = kyk22), we use the robust Huber-norm ⇢(y) = kyk✏ on the
residuals. The shape prior penalizes deviations from the mean shape through

log p(z) = const.� 1

2

KX

j=1

✓
zj
�j

◆2

, (5)

where �2
j is the eigen value of the j-th principal component. For the pose prior,

we can exploit domain knowledge. In the case of cars in urban street scenes, we
model that the object should stand on the ground, i.e.,

log p(⇠) = const.� 1

2�2
y

(ty � g(t))2 , (6)

where g(t) is the estimated road height at position t. In this setting, we also
only need to estimate the rotation of the car around the vertical direction. The
noise parameters �d and �y implement a trade-o↵ between observation likeli-
hood p (xi | ⇠, z), shape prior and pose prior. We optimize for pose and shape
alternatingly until convergence. The terms are optimized using gradient descent
for which we employ the Ceres solver [1].

4 Experiments

We evaluate our method on the popular KITTI dataset [5]. Specifically, we use
the KITTI Stereo 2015 training dataset [15], as it focuses mainly on cars in urban
and rural scenes. This dataset consists of 200 stereo frames that contain semantic
segmentations of 431 vehicles. The stereo images have a resolution of 1242⇥375px
each and a baseline of 0.54m. The vehicle segments are also annotated with dense
depth from manually fitted CAD models. We added manual ground truth pose
annotations for the vehicles on the first 50 frames of the dataset in order to
evaluate pose accuracy. For this, we fitted 3D models from Google Warehouse to
the data. Throughout our experiments we use a bin size of 0.1m for the TSDF
voxel grids and a truncation distance of ±0.2m. We empirically determine the
noise parameters as �2

d = 0.03 and �2
y = 3. As stereo reconstruction inputs

we use libELAS [6] and SPS-Stereo [23]. For libELAS, we remove noisy points
whose normals are perpendicular to the viewing direction. For 3DOP we use an
up-sampling factor of 2.415.
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Fig. 3. Upper row: pose estimation results. Both the translation and rotation exhibit
significant improvements compared to the baseline method (3DOP, [3]). Bottom row:
depth reconstruction results. See text for details.

4.1 Pose Estimation Accuracy

We evaluate pose estimation accuracy for 3DOP as our baseline method and
variants of our own approach that use stereo reconstructions from libELAS, SPS-
Stereo, and the ground truth depth annotation as 3D input for shape and pose
alignment. Fig. 3, top row, shows the pose accuracy results obtained with these
approaches on the 50 pose-annotated frames of the KITTI Stereo 2015 training
dataset. It can be seen that our approach is able to improve pose accuracy in
translation as well as orientation. Our method even achieves better accuracy at
larger distances where the input stereo depth is more noisy.

4.2 Shape Estimation Accuracy

We also assess the quality of the matched shapes using the ground-truth depth
annotations on the KITTI Stereo 2015 dataset. To this end, we compare the
initial stereo reconstructions by libELAS and SPS-Stereo with improved recon-
structions obtained by our method using both initial stereo methods. To obtain
the stereo depth maps, we backproject our estimated 3D shapes into the stereo
images. To this end, we determine the zero-level set surface represented by the
optimized TSDF using the marching cubes algorithm [13]. The results in the
bottom row of Fig. 3 show that on average our method can achieve better ac-
curacy in disparity, especially at larger distances. Note, that the outlier rate is
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Table 1. Ablation study on shape reconstruction error averaged over all points. We
show the e↵ectiveness of each component in our method by enabling them step by step.
Note the improvements in score with each step. Fig. 4 visualizes the TSDF distance.

Pipeline Components TSDF Distance (avg.±std.dev. [m])

libELAS [6] SPS-Stereo [23] Ground Truth

3DOP + init. pose + mean shape 0.136±0.044 0.134±0.044 0.105±0.032
3DOP + init. pose + optimized shape 0.133±0.045 0.131±0.045 0.086±0.035
3DOP + optimized pose + mean shape 0.127±0.050 0.130±0.048 0.079±0.044
3DOP + optimized pose + optim. shape 0.124±0.051 0.127±0.049 0.063±0.040

-0.2 m

0.0 m

0.2 m

Fig. 4. Estimated pose and shape using di↵erent input depths. From left to right:
libELAS [6], SPS-Stereo [23], ground truth depth. Points are color-coded by TSDF
distance i.e. the Euclidean distance between a point and the zero-level set of the TSDF.

slightly larger for our method, but comparable with libELAS. One reason for
this is that pose misalignments cause pixels in the background to be set onto
the matched foreground shape.

Table 1 shows shape matching results in terms of mean and std. dev. of the
TSDF distance of the points in the object segments. The results demonstrate
how much the individual steps in our pipeline contribute to the improvements of
the shape alignment. Shape as well as pose optimization improve the alignment.
Note that when using stereo depth as input, the distances also include the noise of
the stereo depth. Hence, we also give the distances for the ground truth as input
in order to assess the shape reconstruction quality isolated from the stereo depth
estimation algorithm. We show several qualitative examples of shape matching
results in Fig. 4. The examples demonstrate that our method can well align
TSDFs through shape and pose optimization to input stereo reconstructions.
We also provide a result when using ground truth as input to demonstrate our
method on clean inputs.

Figs. 5 and 6 show qualitative shape matching results in whole image context
using libELAS and SPS-Stereo inputs to our method. The results in Fig. 5 and
the left column in Fig. 6 demonstrate that the aligned shapes in these images
capture the shape of the objects well. In the upper right image of Fig. 6, it can
be seen that for occlusions or far-distance measurements our method can yield
misaligned results, but it still captures the coarse pose and shape of the objects
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Fig. 5. Qualitative Results From top to bottom, every set of four rows shows: Input
image with 2D 3DOP detections and back-projected inferred shapes (first row). Input
image with 3D 3DOP detections and 3D view of inferred shapes (second row). libELAS
depth map with applied normal filtering and our improved depth map (third row). SPS-
Stereo depth map and our improved depth map (fourth row). Depth encoded from small
(red) to large (blue) values.
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Fig. 6. Example depth reconstruction and segmentation results for libELAS depth
input. Disparity encoded from small (red) to large (blue) values. Right column shows
problematic examples for our method. See text for a detailed discussion.

in this example. In the middle right image, 3DOP cannot provide good object
detections on the parked cars on the right street side. Finally, in the lower right
image, a suboptimal matching result is obtained for a truck vehicle which is not
represented in our shape manifold. Additional qualitative results are shown in
the supplementary material.

5 Conclusions and Future Work

In this paper, we have presented a method for detecting objects of a given class
and for concurrently estimating their shape and pose in stereo images from
urban street scenes. Our method employs a state-of-the-art 3D object detec-
tion approach which coarsely estimates the pose of the objects. We learn a 3D
TSDF shape manifold of instances of an object class using a model database. We
propose an energy-minimization approach to align stereo reconstructions with
object pose and shape within the manifold.

In experiments, we have demonstrated that our method is able to yield im-
proved poses for cars on the KITTI Stereo 2015 dataset compared to [3]. The
shape estimated by our method also yields improved depth compared to the
input stereo reconstruction methods such as libELAS and SPS-Stereo.

We have demonstrated that our approach works well for cars in urban street
scenes. Cars are rigid objects that can be well represented using the linear sub-
space embedding method. In future work, we want to further investigate the
suitability of embedding methods to model deformable or articulated objects in
our pipeline.
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