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Important Announcement

Happy New Year everybody!

2
B. Leibe
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

4
B. Leibe
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Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks

5
B. Leibe
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Recap: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

 This makes it possible

to train (much) deeper

networks.
6

B. Leibe
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Recap: Analysis of ResNets

• The effective paths in ResNets

are relatively shallow

 Effectively only 5-17 active modules

• This explains the resilience to deletion

 Deleting any single layer only affects a 

subset of paths (and the shorter ones

less than the longer ones).

• New interpretation of ResNets

 ResNets work by creating an ensemble 

of relatively shallow paths

 Making ResNets deeper increases the

size of this ensemble

 Excluding longer paths from training 

does not negatively affect the results.
7

Image source: Veit et al., 2016
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Recap: R-CNN for Object Detection

8
B. LeibeSlide credit: Ross Girshick
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Recap: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

9
Slide credit: Ross Girshick
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Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks

13
B. Leibe
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Neural Networks for Sequence Data

• Up to now

 Simple structure: Input vector  Processing Output

• In the following, we will look at sequence data

 Interesting new challenges

 Varying input/output length, need to memorize state, 

long-term dependencies, ...

• Currently a hot topic

 Early successes of NNs for text / language processing.

 Very good results for part-of-speech tagging, automatic translation, 

sentiment analysis, etc.

 Recently very interesting developments for video understanding, 

image+text modeling (e.g., creating image descriptions), and even 

single-image understanding (attention processes).

14
B. Leibe
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Motivating Example

• Predicting the next word in a sequence

 Important problem for speech recognition, text autocorrection, etc.

• Possible solution: The trigram (n-gram) method

 Take huge amount of text and count the frequencies of all triplets 

(n-tuples) of words.

 Use those frequencies to predict the relative probabilities of words 

given the two previous words

 State-of-the-art until not long ago...

15
B. LeibeSlide adapted from Geoff Hinton
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Problems with N-grams

• Problem: Scalability

 We cannot easily scale this to large N.

 The number of possible combinations increases exponentially

 So does the required amount of data

• Problem: Partial Observability

 With larger N, many counts would be zero.

 The probability is not zero, just because the count is zero!

 Need to back off to (N-1)-grams when the count for N-grams is 

too small.

 Necessary to use elaborate techniques, such as Kneser-Ney 

smoothing, to compensate for uneven sampling frequencies.

16
B. LeibeSlide adapted from Geoff Hinton
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Let’s Try Neural Networks for this Task

• Important issues

 How should we encode the words to use them as input?

 What internal NN structure do we need?

 How can we perform classification (softmax) with so many 

possible outputs?

17
B. Leibe

index of word at t-2 index of word at t-1

internal NN structure

“softmax” units (one per possible next word)



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Neural Probabilistic Language Model

• Core idea

 Learn a shared distributed encoding (word embedding) for the words 

in the vocabulary.

18
B. LeibeSlide adapted from Geoff Hinton Image source: Geoff Hinton

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language 

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Word Embedding

• Idea

 Encode each word as a vector in a

d-dimensional feature space.

 Typically, V » 1M, d 2 (50, 300)

• Learning goal

 Determine weight matrix WV£d that

performs the embedding.

 Shared between all input words

• Input

 Vocabulary index x in 1-of-K encoding.

 For each input x, only one row of WV£d is needed.

WV£d is effectively a look-up table.

19
B. Leibe

Image source: Xin Rong, 2015
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Word Embedding: Full Network

• Train on large corpus of data, learn WV£d .

 Shown to outperform n-grams by [Bengio et al., 2003].
20

B. Leibe

skip connections

Many parameters:

W2d£V gets huge!

mapping to hidden units

𝐖𝟐𝒅×𝑽
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9

Visualization of the Resulting Embedding

(part of a 2.5D map of the most common 2500 words)
21

B. Leibe
Image source: Geoff Hinton
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9

Visualization of the Resulting Embedding

22
B. Leibe

Image source: Geoff Hinton
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9

Visualization of the Resulting Embedding

23
B. Leibe

Image source: Geoff Hinton
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Popular Word Embeddings

• Open issue

 What is the best setup for learning such an embedding from large 

amounts of data (billions of words)?

• Several recent improvements

 word2vec [Mikolov 2013]

 GloVe [Pennington 2014]

 Pretrained embeddings available for everyone to download.

24
B. Leibe
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word2vec

• Goal

 Make it possible to learn high-quality

word embeddings from huge data sets

(billions of words in training set).

• Approach

 Define two alternative learning tasks

for learning the embedding:

– “Continuous Bag of Words” (CBOW)

– “Skip-gram”

 Designed to require fewer parameters.

26
B. Leibe

Image source: Mikolov et al., 2015
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word2vec: CBOW Model

• Continuous BOW Model

 Remove the non-linearity

from the hidden layer

 Share the projection layer 

for all words (their vectors

are averaged)

 Bag-of-Words model

(order of the words does not 

matter anymore)

• Side note

 Summing the encoding vectors

for all words encourages the

network to learn orthogonal

embedding vectors for

different words. 27
B. Leibe

Image source: Xin Rong, 2015

SUM
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word2vec: Skip-Gram Model

• Continuous Skip-Gram Model

 Similar structure to CBOW

 Instead of predicting the current

word, predict words 

within a certain range of

the current word.

 Give less weight to the more

distant words

• Implementation

 Randomly choose a number R 2 [1,C].

 Use R words from history and R words

from the future of the current word

as correct labels.

 R+R word classifications for each input.
28

B. Leibe
Image source: Xin Rong, 2015
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Interesting property

• Embedding often preserves linear regularities between 

words

 Analogy questions can be answered through simple algebraic 

operations with the vector representation of words.

• Example

 What is the word that is similar to small in the same sense as 

bigger is to big?

 For this, we can simply compute

X = vec(“bigger”) – vec(“big”) + vec(“small”)

 Then search the vector space for the word closes to X using the 

cosine distance.

 Result (when words are well trained): vec(“smaller”).

• Other example

 E.g., vec(“King”) – vec(“Man”) + vec(“Woman”) ¼ vec(“Queen”)
29

B. Leibe
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Evaluation on Analogy Questions

30
B. Leibe

Image source: Mikolov et al., 2015

s
e

m
a

n
ti
c

s
y
n

ta
c
ti
c



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Results

• Results

 word2vec embedding is able to correctly answer many of those 

analogy questions.

 CBOW structure better for syntactic tasks

 Skip-gram structure better for semantic tasks

31
B. Leibe

Image source: Mikolov et al., 2015
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Problems with 100k-1M outputs

• Weight matrix gets huge!

• Example: CBOW model

 One-hot encoding for inputs

 Input-hidden connections are

just vector lookups.

 This is not the case for the

hidden-output connections!

 State h is not one-hot, and 

vocabulary size is 1M.

W’N£V has 300£1M entries

 All of those need to be

updated by backprop.

32
B. Leibe

Image source: Xin Rong, 2015
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Problems with 100k-1M outputs

• Softmax gets expensive!

 Need to compute normaliza-

tion over 100k-1M outputs

33
B. Leibe

Image source: Xin Rong, 2015
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Solution: Hierarchical Softmax

• Idea

 Organize words in binary search tree, words are at leaves

 Factorize probability of word w0 as a product of node probabilities 

along the path.

 Learn a linear decision function y = vn(w,j)¢h at each node to decide 

whether to proceed with left or right child node.

 Decision based on output vector of hidden units directly.
34

B. Leibe
Image source: Xin Rong, 2015
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Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks

35
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Siamese Networks

• Similar idea to word embeddings

 Learn an embedding network that preserves (semantic) similarity 

between inputs

 E.g., used for patch matching
36

B. Leibe
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Discriminative Face Embeddings

• Learning an embedding using a Triplet Loss Network

 Present the network with triplets of examples

 Apply triplet loss to learn an embedding 𝑓(∙) that groups the positive 

example closer to the anchor than the negative one.

 Used with great success in Google’s FaceNet face recognition

37
B. Leibe

Anchor PositiveNegative
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Triplet Loss – Practical Implementation

• Triplet loss formulation

• Practical Issue: How to select the triplets?
 The number of possible triplets grows cubically with the dataset size.

 Most triplets are uninformative

 Mining hard triplets becomes crucial for learning.

 Actually want medium-hard triplets for best training efficiency

• Popular solution: Hard triplet mining
 Process the dataset to find hard triplets

 Use those for learning

 Iterate



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Triplet Loss – Practical Implementation (2)

• Popular solution: Hard triplet mining

 Process the dataset to find hard triplets

 Use those for learning

 Iterate

Embed data

with 𝑓𝜃

Update 

embedding 𝑓𝜃

Mine hard

triplets



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks

40
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Outlook: Recurrent Neural Networks

• Up to now

 Simple neural network structure: 1-to-1 mapping of inputs to outputs

• Next lecture: Recurrent Neural Networks

 Generalize this to arbitrary mappings

41
B. Leibe

Image source: Andrej Karpathy
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