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Machine Learning – Lecture 15

Convolutional Neural Networks

05.12.2019

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
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Topics of This Lecture

• Recap: Tricks of the Trade
 Initialization

 Dropout

 Batch Normalization

• Convolutional Neural Networks
 Neural Networks for Computer Vision

 Convolutional Layers

 Pooling Layers

• CNN Architectures
 LeNet

 AlexNet

 VGGNet

 GoogLeNet

3
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Recap: Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
4

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton
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Recap: Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
5

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Recap: Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

6
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Recap: Commonly Used Nonlinearities

• Sigmoid

• Hyperbolic tangent

• Softmax

7
B. Leibe
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Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Advantages

 Much easier to propagate gradients through deep networks.

 We do not need to store the ReLU output separately

– Reduction of the required memory by half compared to tanh!

 ReLU has become the de-facto standard for deep networks.

9
B. Leibe

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Disadvantages / Limitations

 A certain fraction of units will remain “stuck at zero”.

– If the initial weights are chosen such that the ReLU output is 0 for the

entire training set, the unit will never pass through a gradient to change

those weights.

 ReLU has an offset bias, since its outputs will always be positive

10
B. Leibe
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Further Extensions

• Rectified linear unit (ReLU)

• Leaky ReLU

 Avoids stuck-at-zero units

 Weaker offset bias

• ELU

 No offset bias anymore

 BUT: need to store activations
11
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𝑔 𝑎 = max 𝛽𝑎, 𝑎

𝑔 𝑎 = ቊ
𝑎, 𝑥 < 0
𝑒𝑎 − 1, 𝑥 ≥ 0

𝑔 𝑎 = max 0, 𝑎
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Topics of This Lecture

• Recap: Tricks of the Trade
 Initialization

 Dropout

 Batch Normalization

• Convolutional Neural Networks
 Neural Networks for Computer Vision

 Convolutional Layers

 Pooling Layers

• CNN Architectures
 LeNet

 AlexNet

 VGGNet

 GoogLeNet

12
B. Leibe

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Initializing the Weights

• Motivation

 The starting values of the weights can have a significant effect 

on the training process.

 Weights should be chosen randomly, but in a way that the sigmoid 

is primarily activated in its linear region.

• Guideline (from [LeCun et al., 1998] book chapter)

 Assuming that

– The training set has been normalized

– The recommended sigmoid                                              is used

the initial weights should be randomly drawn from a distribution 

(e.g., uniform or Normal) with mean zero and variance

where nin is the fan-in (#connections into the node).

15
B. Leibe

𝜎𝑤
2 = 1

𝑛𝑖𝑛
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Historical Sidenote

• Apparently, this guideline was either little known or 

misunderstood for a long time

 A popular heuristic (also the standard in Torch) was to use

𝑊~𝑈 −
1

𝑛𝑖𝑛
,
1

𝑛𝑖𝑛

 This looks almost like LeCun’s rule. However…

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 If we do that for the above formula, we obtain

𝜎2 = 1

12

2

𝑛𝑖𝑛

2

=
1

3

1

𝑛𝑖𝑛

 Activations & gradients will be attenuated with each layer! (bad)
16
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Glorot Initialization

• Breakthrough results

 In 2010, Xavier Glorot published an analysis of what went wrong in 

the initialization and derived a more general method for automatic 

initialization.

 This new initialization massively improved results and made direct 

learning of deep networks possible overnight.

 Let’s look at his analysis in more detail...

17
B. Leibe

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep 

Feedforward Neural Networks, AISTATS 2010.
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Analysis

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 What is the variance of Y ?

 If inputs and outputs have both mean 0, the variance is

 If the Xi and Wi are all i.i.d, then

 The variance of the output is the variance of the input, but scaled 

by n Var(Wi).
18
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𝑉𝑎𝑟 𝑊𝑖𝑋𝑖 = 𝐸 𝑋𝑖
2𝑉𝑎𝑟 𝑊𝑖 + 𝐸 𝑊𝑖

2𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

= 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟 𝑌 = 𝑉𝑎𝑟 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛 = nVar Wi Var(Xi)

𝑌 = 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛
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Analysis (cont’d)

• Variance of neuron activations

 if we want the variance of the input and output of a unit to be the 

same, then n Var(Wi) should be 1. This means

 If we do the same for the backpropagated gradient, we get

 As a compromise, Glorot & Bengio proposed to use

 Randomly sample the weights with this variance. That’s it.

19
B. Leibe
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Sidenote

• When sampling weights from a uniform distribution [a,b]

 Again keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

 Or when only taking into account the fan-in

𝑊~𝑈 −
3

𝑛𝑖𝑛
,

3

𝑛𝑖𝑛

 If this had been implemented correctly in Torch from the beginning, 

the Deep Learning revolution might have happened a few years 

earlier…
20
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Extension to ReLU

• Important for learning deep models

 Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• We can also improve them with proper initialization

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, derived to use instead

21
B. Leibe

jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf


4

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Topics of This Lecture

• Recap: Tricks of the Trade
 Initialization

 Dropout

 Batch Normalization

• Convolutional Neural Networks
 Neural Networks for Computer Vision

 Convolutional Layers

 Pooling Layers

• CNN Architectures
 LeNet

 AlexNet

 VGGNet

 GoogLeNet

22
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Batch Normalization             [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

 Complication: centering + normalization also needs to be done 

at test time, but minibatches are no longer available at that point.

– Learn the normalization parameters to compensate for the expected 

bias of the previous layer (usually a simple moving average)

• Effect

 Much improved convergence (but parameter values are important!)

 Widely used in practice
25
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Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training (a form of regularization).

 Change network architecture for each minibatch, effectively training 

many different variants of the network.

 When applying the trained network, multiply activations with the 

probability that the unit was set to zero during training.

 Greatly improved performance
26
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Topics of This Lecture

• Recap: Tricks of the Trade

• Convolutional Neural Networks
 Neural Networks for Computer Vision

 Convolutional Layers

 Pooling Layers

• CNN Architectures
 LeNet

 AlexNet

 VGGNet

 GoogLeNet

27
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Neural Networks for Computer Vision

• How should we approach vision problems? 

• Architectural considerations

 Input is 2D  2D layers of units

 No pre-segmentation  Need robustness to misalignments

 Vision is hierarchical  Hierarchical multi-layered structure

 Vision is difficult  Network should be deep

28
B. Leibe

Face Y/N?
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Why Hierarchical Multi-Layered Models?

• Motivation 1: Visual scenes are hierarchically organized

29
B. Leibe

Object

Object parts

Primitive features

Input image

Face

Eyes, nose, ...

Oriented edges

Face image

Slide adapted from Richard Turner
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Why Hierarchical Multi-Layered Models?

• Motivation 2: Biological vision  is hierarchical, too

30
B. Leibe

Object

Object parts

Primitive features

Input image

Face

Eyes, nose, ...

Oriented edges

Face image

Slide adapted from Richard Turner

Inferotemporal

cortex

V4: different

textures

V1: simple and

complex cells

Photoreceptors,

retina
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Hubel/Wiesel Architecture

• D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

 Visual cortex consists of a hierarchy of simple, complex, and 

hyper-complex cells

32
B. LeibeSlide credit: Svetlana Lazebnik, Rob Fergus
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Why Hierarchical Multi-Layered Models?

• Motivation 3: Shallow architectures are inefficient at 

representing complex functions

33
B. Leibe

An MLP with 1 hidden layer

can implement any function

(universal approximator)

=

However, if the function is deep,

a very large hidden layer may

be required.

Slide adapted from Richard Turner
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What’s Wrong With Standard Neural Networks?

• Complexity analysis

 How many parameters does 

this network have?

 For a small 32£32 image

• Consequences

 Hard to train

 Need to initialize carefully

 Convolutional nets reduce the 

number of parameters!

34
B. LeibeSlide adapted from Richard Turner
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Convolutional Neural Networks (CNN, ConvNet)

• Neural network with specialized connectivity structure

 Stack multiple stages of feature extractors

 Higher stages compute more global, more invariant features

 Classification layer at the end

35
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik
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Convolutional Networks: Intuition

• Fully connected network

 E.g. 1000£1000 image

1M hidden units

 1T parameters!

• Ideas to improve this

 Spatial correlation is local

36
B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Convolutional Networks: Intuition

• Locally connected net

 E.g. 1000£1000 image

1M hidden units
10£10 receptive fields

 100M parameters!

• Ideas to improve this

 Spatial correlation is local

 Want translation invariance

37
B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Convolutional Networks: Intuition

• Convolutional net

 Share the same parameters 

across different locations

 Convolutions with learned 

kernels

38
B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Convolutional Networks: Intuition

• Convolutional net

 Share the same parameters 

across different locations

 Convolutions with learned 

kernels

• Learn multiple filters

 E.g. 1000£1000 image

100 filters
10£10 filter size

 10k parameters

• Result: Response map

 size: 1000£1000£100

 Only memory, not params!
39

B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Important Conceptual Shift

• Before

• Now:

40
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy
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Convolution Layers

• Note: Connectivity is 

 Local in space (5£5 inside 32£32)

 But full in depth (all 3 depth channels)

41
B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy

Hidden neuron

in next layer

Example
image: 32£32£3 volume

Before: Full connectivity
32£32£3 weights

Now: Local connectivity

One neuron connects to, e.g.,
5£5£3 region. 

 Only 5£5£3 shared weights.
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Convolution Layers

• All Neural Net activations arranged in 3 dimensions

 Multiple neurons all looking at the same input region, 

stacked in depth

42
B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy
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Convolution Layers

• All Neural Net activations arranged in 3 dimensions

 Multiple neurons all looking at the same input region, 

stacked in depth

 Form a single [1£1£depth] depth column in output volume.

43
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Naming convention:
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

45
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

46
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

47
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

48
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

49
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
 5£5 output
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

50
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
 5£5 output

What about stride 2?
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

51
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
 5£5 output

What about stride 2?
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

52
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
 5£5 output

What about stride 2?
 3£3 output
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Convolution Layers

• Replicate this column of hidden neurons across space,

with some stride.

• In practice, common to zero-pad the border.

 Preserves the size of the input spatially.

53
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Example:
7£7 input

assume 3£3 connectivity

stride 1
 5£5 output

What about stride 2?
 3£3 output

0

0

0 00 0

0

0

0

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Activation Maps of Convolutional Filters

54
B. Leibe

5£5 filters

Slide adapted from FeiFei Li, Andrej Karpathy

Activation maps

Each activation map is a depth

slice through the output volume.
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Effect of Multiple Convolution Layers

55
B. LeibeSlide credit: Yann LeCun
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Convolutional Networks: Intuition

• Let’s assume the filter is an 

eye detector

 How can we make the 

detection robust to the exact 

location of the eye?

56
B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Convolutional Networks: Intuition

• Let’s assume the filter is an 

eye detector

 How can we make the 

detection robust to the exact 

location of the eye?

• Solution:

 By pooling (e.g., max or avg) 

filter responses at different 

spatial locations, we gain 

robustness to the exact spatial 

location of features.

57
B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Max Pooling

• Effect:

 Make the representation smaller without losing too much information

 Achieve robustness to translations

58
B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy
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Max Pooling

• Note

 Pooling happens independently across each slice, preserving the 

number of slices.

59
B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy
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CNNs: Implication for Back-Propagation

• Convolutional layers

 Filter weights are shared between locations

 Gradients are added for each filter location.

60
B. Leibe
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Topics of This Lecture

• Recap: Tricks of the Trade

• Convolutional Neural Networks
 Neural Networks for Computer Vision

 Convolutional Layers

 Pooling Layers

• CNN Architectures
 LeNet

 AlexNet

 VGGNet

 GoogLeNet

61
B. Leibe
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CNN Architectures: LeNet (1998)

• Early convolutional architecture

 2 Convolutional layers, 2 pooling layers

 Fully-connected NN layers for classification

 Successfully used for handwritten digit recognition (MNIST)

62
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik
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ImageNet Challenge 2012

• ImageNet

 ~14M labeled internet images

 20k classes

 Human labels via Amazon

Mechanical Turk

• Challenge (ILSVRC)

 1.2 million training images

 1000 classes

 Goal: Predict ground-truth 

class within top-5 responses

 Currently one of the top benchmarks in Computer Vision

63
B. Leibe

[Deng et al., CVPR’09]

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

CNN Architectures: AlexNet (2012)

• Similar framework as LeNet, but

 Bigger model (7 hidden layers, 650k units, 60M parameters)

 More data (106 images instead of 103)

 GPU implementation

 Better regularization and up-to-date tricks for training (Dropout)

64

Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012. P
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ILSVRC 2012 Results

• AlexNet almost halved the error rate

 16.4% error (top-5) vs. 26.2% for the next best approach 

 A revolution in Computer Vision

 Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13
65

B. Leibe
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CNN Architectures: VGGNet (2014/15) 

67
B. Leibe

Image source: Hirokatsu Kataoka

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale 

Image Recognition, ICLR 2015
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CNN Architectures: VGGNet (2014/15) 

• Main ideas 

 Deeper network

 Stacked convolutional

layers with smaller

filters (+ nonlinearity)

 Detailed evaluation

of all components

• Results

 Improved ILSVRC top-5

error rate to 6.7%.

68
B. Leibe

Image source: Simonyan & Zisserman

Mainly used

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556
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Comparison: AlexNet vs. VGGNet

• Receptive fields in the first layer

 AlexNet: 11£11, stride 4

 Zeiler & Fergus: 7£7,   stride 2

 VGGNet: 3£3,   stride 1

• Why that?

 If you stack a 3£3 on top of another 3£3 layer, you effectively get 

a 5£5 receptive field.

 With three 3£3 layers, the receptive field is already 7£7.

 But much fewer parameters: 3¢32 = 27 instead of 72 = 49.

 In addition, non-linearities in-between 3£3 layers for additional 

discriminativity.

69
B. Leibe
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CNN Architectures: GoogLeNet (2014/2015)

• Main ideas

 “Inception” module as modular component

 Learns filters at several scales within each module

70
B. Leibe

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions, 

arXiv:1409.4842, 2014, CVPR‘15, 2015.
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GoogLeNet Visualization

71
B. Leibe

Inception

module
+ copies

Auxiliary classification 

outputs for training the 

lower layers (deprecated)

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Results on ILSVRC

• VGGNet and GoogLeNet perform at similar level

 Comparison: human performance ~5%  [Karpathy]

72
B. Leibe

Image source: Simonyan & Zisserman

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Newer Developments: Residual Networks

73
B. Leibe
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Newer Developments: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

 We’ll analyze this

mechanism in more

detail later…
74

B. Leibe

http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf
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ImageNet Performance

75
B. Leibe
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Understanding the ILSVRC Challenge

• Imagine the scope of the 

problem!

 1000 categories

 1.2M training images

 50k validation images

• This means...

 Speaking out the list of category

names at 1 word/s...

...takes 15mins.

 Watching a slideshow of the validation images at 2s/image...

...takes a full day (24h+).

 Watching a slideshow of the training images at 2s/image...

...takes a full month.

76
B. Leibe
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More Finegrained Classes

78
B. Leibe

Image source: O. Russakovsky et al.
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Quirks and Limitations of the Data Set

• Generated from WordNet ontology

 Some animal categories are overrepresented

 E.g., 120 subcategories of dog breeds

 6.7% top-5 error looks all the more impressive

79
B. Leibe

Image source: A. Karpathy
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