Machine Learning - Lecture 10

AdaBoost
13.11.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

	Topics of This Lecture - Recap: Nonlinear Support Vector Machines - Ensembles of classifiers . Bagging . Bayesian Model Averaging - AdaBoost - Intuition - Algorithm - Analysis - Extensions	$\begin{gathered} \text { RWIIMACHIT } \\ \text { UNIVERSIT } \end{gathered}$
	B. Leibe	

RWITAACHE
Recap: SVM - Dual Formulation

- Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{aligned}
a_{n} & \geq 0 \quad \forall n \\
\sum_{n=1}^{N} a_{n} t_{n} & =0
\end{aligned}
$$

- Comparison
L_{d} is equivalent to the primal form L_{p}, but only depends on a_{n}.
- L_{p} scales with $\mathcal{O}\left(D^{3}\right)$.

ح L_{d} scales with $\mathcal{O}\left(N^{3}\right)$ - in practice between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$.

Recap: Support Vector Machine (SVM)

- Basic idea
- The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points
Up to now: consider linear classifier

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=0
$$

- Formulation as a convex optimization problem

Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

based on training data points \mathbf{x}_{n} and target values $t_{n} \in\{-1,1\}$

Recap: The Kernel Trick

- Important observation
- $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$:

$$
\begin{aligned}
y(\mathbf{x}) & =\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b \\
& =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \phi(\mathbf{x})+b
\end{aligned}
$$

- Define a so-called kernel function $k(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$.

Now, in place of the dot product, use the kernel instead:

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

- The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Recap: SVM Loss Function

- Traditional soft-margin formulation

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \quad \begin{aligned}
& \text { "Maximize } \\
& \text { the margin" }
\end{aligned}
$$

subject to the constraints

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n} \quad \begin{array}{r}
\text { "Most points should } \\
\text { be on the correct } \\
\text { side of the margin" }
\end{array}
$$

- Different way of looking at it
- We can reformulate the constraints into the objective function.

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{}_{\mathrm{L}_{2}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {"Hinge loss" }}
$$

where $[x]_{+}:=\max \{0, x\}$.
B. Leibe

Recap: Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- Classify new data points using

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

Topics of This Lecture

- Recap: Nonlinear Support Vector Machines
- Ensembles of classifiers
- Bagging
- Bayesian Model Averaging
- AdaBoost
- Intuition
- Algorithm
- Analysis
- Extensions

RWITMACHE UNIVERSITY
So Far...

- We've seen already a variety of different classifiers , k-NN
. Bayes classifiers

- Each of them has their strengths and weaknesses...
. Can we improve performance by combining them?

Ensembles of Classifiers

- Intuition
- Assume we have K classifiers.
, They are independent (i.e., their errors are uncorrelated).
, Each of them has an error probability $p<0.5$ on training data.
- Why can we assume that p won't be larger than 0.5 ?
, Then a simple majority vote of all classifiers should have a lower error than each individual classifier..

Constructing Ensembles

- How do we get different classifiers?
- Simplest case: train same classifier on different data.
, But... where shall we get this additional data from?
- Recall: training data is very expensive!
- Idea: Subsample the training data
, Reuse the same training algorithm several times on different subsets of the training data.
- Well-suited for "unstable" learning algorithms
- Unstable: small differences in training data can produce very different classifiers
- E.g., Decision trees, neural networks, rule learning algorithms,...
, Stable learning algorithms
- E.g., Nearest neighbor, linear regression, SVMs,...

Constructing Ensembles

- Bagging $=$ "Bootstrap aggregation" (Breiman 1996)
- In each run of the training algorithm, randomly select M samples with replacement from the full set of N training data points.
- If $M=N$, then on average, 63.2% of the training points will be represented. The rest are duplicates.
- Injecting randomness
, Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
, Perform mutliple runs of the learning algorithm with different random initializations.

RWITMACHE

Bayesian Model Averaging

- Model Averaging
- Suppose we have H different models $h=1, \ldots, H$ with prior probabilities $p(h)$.
. Construct the marginal distribution over the data set

$$
p(\mathbf{X})=\sum_{h=1}^{H} p(\mathbf{X} \mid h) p(h)
$$

- Interpretation
, Just one model is responsible for generating the entire data set.
- The probability distribution over h just reflects our uncertainty which model that is.
. As the size of the data set increases, this uncertainty reduces, and $p(\mathbf{X} \mid h)$ becomes focused on just one of the models.

Note the Different Interpretations!

- Model Combination (e.g., Mixtures of Gaussians)
, Different data points generated by different model components.
, Uncertainty is about which component created which data point.
\Rightarrow One latent variable \mathbf{z}_{n} for each data point:

$$
p(\mathbf{X})=\prod_{n=1}^{N} p\left(\mathbf{x}_{n}\right)=\prod_{n=1}^{N} \sum_{\mathbf{z}_{n}} p\left(\mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

- Bayesian Model Averaging
, The whole data set is generated by a single model.
, Uncertainty is about which model was responsible.
\Rightarrow One latent variable \mathbf{z} for the entire data set:

$$
p(\mathbf{X})=\sum_{\substack{\mathbf{z} \\ \text { B. Leibe }}} p(\mathbf{X}, \mathbf{z})
$$

Model Averaging: Expected Error

- Combine M predictors $y_{m}(\mathbf{x})$ for target output $h(\mathbf{x})$.
, E.g. each trained on a different bootstrap data set by bagging.
, The committee prediction is given by

$$
y_{C O M}(\mathbf{x})=\frac{1}{M} \sum_{m=1}^{M} y_{m}(\mathbf{x})
$$

- The output can be written as the true value plus some error.

$$
y(\mathbf{x})=h(\mathbf{x})+\epsilon(\mathbf{x})
$$

- Thus, the expected sum-of-squares error takes the form

$$
\mathbb{E}_{\mathbf{x}}=\left[\left\{y_{m}(\mathbf{x})-h(\mathbf{x})\right\}^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})^{2}\right]
$$

Model Averaging: Expected Error

- Average error of individual models

$$
\mathbb{E}_{A V}=\frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})^{2}\right]
$$

- Average error of committee $y_{m}(\mathbf{x})=h(\mathbf{x})+\epsilon_{m}(\mathbf{x})$ $\mathbb{E}_{C O M}=\mathbb{E}_{\mathbf{x}}\left[\left\{\frac{1}{M} \sum_{m=1}^{M} y_{m}(\mathbf{x})-h(\mathbf{x})\right\}^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\left\{\frac{1}{M} \sum_{m=1}^{M} \epsilon_{m}(\mathbf{x})\right\}^{2}\right]$
- Assumptions
, Errors have zero mean:
$\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x})\right]=0$
, Errors are uncorrelated:
$\mathbb{E}_{\mathbf{x}}\left[\epsilon_{m}(\mathbf{x}) \epsilon_{j}(\mathbf{x})\right]=0$
- Then:

$$
\mathbb{E}_{C O M}=\frac{1}{M} \mathbb{E}_{A V}
$$

AdaBoost - "Adaptive Boosting"

- Main idea
[Freund \& Schapire, 1996]
- Iteratively select an ensemble of component classifiers
- After each iteration, reweight misclassified training examples. - Increase the chance of being selected in a sampled training set. - Or increase the misclassification cost when training on the full set.
- Components
- $h_{m}(\mathbf{x})$: "weak" or base classifier
- Condition: <50\% training error over any distribution
- $H(\mathbf{x})$: "strong" or final classifier
- AdaBoost:
- Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$
H(\mathbf{x})=\operatorname{sign}\left(\sum_{\substack{m=1 \\ \text { B. Leibe }}}^{M} \alpha_{m} h_{m}(\mathbf{x})\right)
$$

Model Averaging: Expected Error

- Average error of committee

$$
\mathbb{E}_{C O M}=\frac{1}{M} \mathbb{E}_{A V}
$$

- This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the mode!!
. Spectacular indeed...
- This sounds almost too good to be true...
- And it is... Can you see where the problem is?
- Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
- In practice, they will typically be highly correlated.
, Still, it can be shown that

$$
\mathbb{E}_{C O M} \cdot \mathbb{E}_{A V}
$$

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

AdaBoost - Formalization

- 2-class classification problem
- Given: training set $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ with target values $\mathbf{T}=\left\{t_{1}, \ldots, t_{N}\right\}, t_{n} \in\{-1,1\}$.
- Associated weights $\mathbf{W}=\left\{w_{1}, \ldots, w_{N}\right\}$ for each training point.
- Basic steps
- In each iteration, AdaBoost trains a new weak classifier $h_{m}(\mathbf{x})$ based on the current weighting coefficients $\mathbf{W}^{(m)}$.
- We then adapt the weighting coefficients for each point
- Increase w_{n} if \mathbf{x}_{n} was misclassified by $h_{m}(\mathbf{x})$.
- Decrease w_{n} if \mathbf{x}_{n} was classified correctly by $h_{m}(\mathbf{x})$.
- Make predictions using the final combined model

$$
H(\mathbf{x})=\operatorname{sign}\left(\sum_{\substack{m=1 \\ \text { B. Leibe }}}^{M} \alpha_{m} h_{m}(\mathbf{x})\right)
$$

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
- AdaBoost was introduced in 1996 by Freund \& Schapire.
- It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes \& Drucker 97, etc.)
- As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
- Note: margin for boosting is not the same as margin for SVM. - A bit like retrofitting the theory...
- However, those bounds are too loose to be of practical value.
- Different explanation
(Friedman, Hastie, Tibshirani, 2000)
, Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
- Explains why boosting works well.
, Improvements possible by altering the error function.

AdaBoost - Algorithm

1. Initialization: Set $w_{n}^{(1)}=\frac{1}{N}$ for $n=1, \ldots, N$.
2. For $m=1, \ldots, M$ iterations
a) Train a new weak classifier $h_{m}(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right) \quad I(A)= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { else }\end{cases}
$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$
\epsilon_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}
$$

c) Calculate a weighting coefficient for $h_{m}(\mathbf{x})$:

$$
\alpha_{m}=?
$$

d) Update the weighting coefficients:

$$
w_{n}^{(m+1)}=?
$$

AdaBoost - Minimizing Exponential Error

- Exponential error function

$$
E=\sum_{n=1}^{N} \exp \left\{-t_{n} f_{m}\left(\mathbf{x}_{n}\right)\right\}
$$

- where $f_{m}(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_{l}(\mathbf{x})$:

$$
f_{m}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{m} \alpha_{l} h_{l}(\mathbf{x})
$$

- Goal

Minimize E with respect to both the weighting coefficients α_{l} and the parameters of the base classifiers $h_{l}(\mathbf{x})$.

AdaBoost - Minimizing Exponential Error

- Sequential Minimization
, Suppose that the base classifiers $h_{1}(\mathbf{x}), \ldots, h_{m-1}(\mathbf{x})$ and their coefficients $\alpha_{1}, \ldots, \alpha_{m-1}$ are fixed.
\Rightarrow Only minimize with respect to α_{m} and $h_{m}(\mathbf{x})$.

$$
\begin{aligned}
E & =\sum_{n=1}^{N} \exp \left\{-t_{n} f_{m}\left(\mathbf{x}_{n}\right)\right\} \quad \text { with } \quad f_{m}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{m} \alpha_{l} h_{l}(\mathbf{x}) \\
& =\sum_{n=1}^{N} \exp \{\underbrace{-t_{n} f_{m-1}\left(\mathbf{x}_{n}\right)}_{=\text {const. }}-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\} \\
& =\sum_{n=1}^{N} w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}
\end{aligned}
$$

RWIH

AdaBoost - Minimizing Exponential Error

$$
E=\sum_{n=1}^{N} w_{n}^{(m)} \exp \left\{-\frac{1}{2} t_{n} \alpha_{m} h_{m}\left(\mathbf{x}_{n}\right)\right\}
$$

, Observation:

- Correctly classified points: $t_{n} h_{m}\left(\mathbf{x}_{n}\right)=+1 \quad \Rightarrow$ collect in \mathcal{T}_{m}
- Misclassified points: $\quad t_{n} h_{m}\left(\mathbf{x}_{n}\right)=-1 \quad \Rightarrow$ collect in \mathcal{F}_{m}
- Rewrite the error function as

AdaBoost - Minimizing Exponential Error

- Minimize with respect to $h_{m}(\mathbf{x}): \frac{\partial E}{\partial h_{m}\left(\mathbf{x}_{n}\right)} \stackrel{!}{=} 0$

\Rightarrow This is equivalent to minimizing

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)
$$

(our weighted error function from step 2a) of the algorithm)
\Rightarrow We're on the right track. Let's continue...

AdaBoost - Minimizing Exponential Error

- Minimize with respect to α_{m} : $\frac{\partial E}{\partial \alpha_{m}} \stackrel{!}{=} 0$

$$
\begin{aligned}
& E=\left(e^{\alpha_{m} / 2}-e^{-\alpha_{m} / 2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)+e^{-\alpha_{m} / 2} \sum_{n=1}^{N} w_{n}^{(m)} \\
&\left(\frac{1}{2} e^{\alpha_{m} / 2}+\frac{1}{2} e^{-\alpha_{m} / 2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right) \stackrel{1}{=} e^{-\alpha_{m} / 2} \sum_{n=1}^{N} w_{n}^{(m)} \\
&\left.\begin{array}{l}
\text { weighted } \\
\text { error }
\end{array} \epsilon_{m}:=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}\right)=\frac{e^{-\alpha_{m} / 2}}{e^{\alpha_{m} / 2}+e^{-\alpha_{m} / 2}} \\
& \Rightarrow \epsilon_{m}=\frac{1}{e^{\alpha_{m}}+1} \\
& \Rightarrow \text { Update for the } \alpha \text { coefficients: } \quad \alpha_{m}=\ln \left\{\frac{1-\epsilon_{m}}{\epsilon_{m}}\right\}
\end{aligned}
$$

1. Initialization: Set $w_{n}^{(1)}=\frac{1}{N} \mathrm{r} n=1, \ldots, N$.
2. For $m=1, \ldots, M$ iterations
a) Train a new weak classifier $h_{m}(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$
J_{m}=\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)
$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$
\epsilon_{m}=\frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(h_{m}(\mathbf{x}) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}
$$

c) Calculate a weighting coefficient for $h_{m}(\mathbf{x})$:

$$
\alpha_{m}=\ln \left\{\frac{1-\epsilon_{m}}{\epsilon_{m}}\right\}
$$

d) Update the weighting coefficients:

$$
w_{n}^{(m+1)}=w_{n}^{(m)} \exp \left\{\alpha_{m} I\left(h_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)\right\}
$$

Discussion: AdaBoost Error Function
Sensitive to outliers!

- Exponential error used in AdaBoost
- No penalty for too correct data points, fast convergence.
, Disadvantage: exponential penalty for large negative values!
\Rightarrow Less robust to outliers or misclassified data points!

Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
- Continuous approximation to ideal misclassification function.
- Sequential minimization leads to simple AdaBoost scheme.
, Properties?
Summary: AdaBoost
- Properties
, Simple combination of multiple classifiers.
, Easy to implement.
, Can be used with many different types of classifiers.
- None of them needs to be too good on its own.
- In fact, they only have to be slightly better than chance.
, Commonly used in many areas.
, Empirically good generalization capabilities.
- Limitations
- Original AdaBoost sensitive to misclassified training data points.
- Because of exponential error function.
- Improvement by GentleBoost
, Single-class classifier
- Multiclass extensions available

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

```
Christopher M. Bishop
    Pattern Recognition and Machine Learning
    Pattern Recogni
```


- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
, J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a Statistical View of Boosting, The Annals of Statistics, Vol. 38(2), pages 337-374, 2000.

