Machine Learning - Lecture 8
 Support Vector Machines

06.11.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Announcements

- Exam dates
- $1^{\text {st }}$ date: Saturday, 29.02., 13:30h - 15:30h
, $2^{\text {nd }}$ date: Thursday, 19.03., 11:00h $-13: 00 \mathrm{~h}$
- The exam dates have been optimized to avoid overlaps with other Computer Science Master lectures as much as possible
- If you still have conflicts with both exam dates, please tell us.

If you're an exchange student and need to leave RWTH before the first exam date, we will offer some special oral exam slots

- Please do NOT contact us about those yet.
- We will let you sign up for those special exam slots in early January
- Please do not forget to register for the exam in RWTH online!

RWIITAACHET UNVERSTT
Recap: Support Vector Machine (SVM)

- Basic idea
, The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
Up to now: consider linear classifiers

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=0
$$

- Formulation as a convex optimization problem
- Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

based on training data points \mathbf{x}_{n} and target values $t_{n} \in\{-1,1\}$

Topics of This Lecture

- Support Vector Machines
- Lagrangian (primal) formulation
, Dual formulation
, Soft-margin classification
- Nonlinear Support Vector Machines
, Nonlinear basis functions
- The Kernel trick
- Mercer's condition
, Popular kernels
- Analysis
, Error function
- Applications

RWIIMACHE

Support Vector Machine (SVM)

- Optimization problem

Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

, Quadratic programming problem with linear constraints.

- Can be formulated using Lagrange multipliers.
- Who is already familiar with Lagrange multipliers?
, Let's look at a real-life example...

$$
\begin{aligned}
& \text { SVM - Lagrangian Formulation } \\
& \text { - Find hyperplane minimizing }\|\mathbf{w}\|^{2} \text { under the constraints } \\
& \qquad t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1 \geq 0 \quad \forall n \\
& \text { - Lagrangian formulation } \\
& \text {, Introduce positive Lagrange multipliers: } \quad a_{n} \geq 0 \quad \forall n \\
& \text {, Minimize Lagrangian ("primal form") } \\
& \qquad L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& \text {, I.e., find } \mathbf{w}, b, \text { and } \mathbf{a} \text { such that } \\
& \quad \frac{\partial L}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} a_{n} t_{n}=0 \\
& \frac{\partial L}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n} \\
& \hline
\end{aligned}
$$

RWITAACHE
SVM - Lagrangian Formulation

- Lagrangian primal form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}
\end{aligned}
$$

- The solution of L_{p} needs to fulfill the KKT conditions
- Necessary and sufficient conditions

$$
\begin{aligned}
a_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0
\end{aligned}
$$

SVM - Solution (Part 1)

- Solution for the hyperplane
, Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

. Because of the KKT conditions, the following must also hold

$$
a_{n}\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0
$$

$$
\begin{gathered}
\text { KKT: } \\
\lambda f(\mathbf{x})=0
\end{gathered}
$$

- This implies that $a_{n}>0$ only for training data points for which

$$
\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0
$$

\Rightarrow Only some of the data points actually influence the decision boundary!

SVM - Solution (Part 2)

- Solution for the hyperplane
, To define the decision boundary, we still need to know b.
, Observation: any support vector \mathbf{x}_{n} satisfies
$t_{n} y\left(\mathbf{x}_{n}\right)=t_{n}\left(\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1 \quad \begin{gathered}\text { KKT: } \\ f(\mathbf{x}) \geq 0\end{gathered}$
, Using $t_{n}^{2}=1$ we can derive: $\quad b=t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}$
, In practice, it is more robust to average over all support vectors:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

SVM - Support Vectors

- The training points for which $a_{n}>0$ are called "support vectors".
- Graphical interpretation:
, The support vectors are the points on the margin.
, They define the margin and thus the hyperplane.
\Rightarrow Robustness to "too correct points!

 \bullet

B. Leibe

SVM - Discussion (Part 1)

- Linear SVM
, Linear classifier
, SVMs have a "guaranteed" generalization capability.
- Formulation as convex optimization problem.
\Rightarrow Globally optimal solution!
- Primal form formulation
, Solution to quadratic prog. problem in M variables is in $\mathcal{O}\left(M^{3}\right)$.
, Here: D variables $\Rightarrow \mathcal{O}\left(D^{3}\right)$
- Problem: scaling with high-dim. data ("curse of dimensionality")

SVM - Dual Formulation

- Improving the scaling behavior: rewrite L_{p} in a dual form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}-b \sum_{\neq 1}^{N} a_{n} t_{n}+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

- Using the constraint $\sum_{n=1}^{N} a_{n} t_{n}=0$ we obtain
$\frac{\partial L_{p}}{\partial b}=0$

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

RWIHMMET UNIVERSTT

SVM - Dual Formulation

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

$$
\text { , Using the constraint } \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n} \text {, we obtain } \quad \frac{\partial L_{p}}{\partial \mathbf{w}}=0
$$

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \sum_{m=1}^{N} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

SVM - Dual Formulation

$$
L=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
$$

$$
\text { , Applying } \frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text { and again using } \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

$$
\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

, Inserting this, we get the Wolfe dual

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

SVM - Discussion (Part 2)

- Dual form formulation
- In going to the dual, we now have a problem in N variables $\left(a_{n}\right)$.
, Isn't this worse??? We penalize large training sets!
- However..

1. SVMs have sparse solutions: $a_{n} \neq 0$ only for support vectors!
\Rightarrow This makes it possible to construct efficient algorithms

- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$.

2. We have avoided the dependency on the dimensionality.
\Rightarrow This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
\Rightarrow We'll see that later in today's lecture...

SVM - Non-Separable Data

- Non-separable data
, I.e. the following inequalities cannot be satisfied for all data points

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 & \text { for } \quad t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 & \text { for } \quad t_{n}=-1
\end{array}
$$

- Instead use

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1-\xi_{n} \quad \text { for } \quad t_{n}=+1
$$

$$
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1+\xi_{n} \text { for } t_{n}=-1
$$

with "slack variables" $\quad \xi_{n} \geq 0 \quad \forall n$

SVM - Non-Separable Data

- Separable data
- Minimize
- Non-separable data
- Minimize

Minimize

SVM - New Dual Formulation

- New SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{array}{cc}
0 \cdot a_{n} \cdot C & \begin{array}{c}
\text { This is all } \\
\text { that changed }
\end{array} \\
\sum_{n=1}^{N} a_{n} t_{n}=0 &
\end{array}
$$

- This is again a quadratic programming problem \Rightarrow Solve as before... (more on that later)

SVM - New Primal Formulation

- New SVM Primal: Optimize

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}-\underbrace{\substack{N}}_{\begin{array}{c}
\text { Constraint } \\
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
\end{array} \sum_{\substack{\text { Constraint } \\
\xi_{n} \geq 0}}^{\sum_{n=1}^{N} a_{n}\left(t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n}\right)}-\underbrace{\sum_{n} \mu_{n} \xi_{n}}_{n=1}}
$$

- KKT conditions

a_{n}	≥ 0	μ_{n}	≥ 0			
$t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n}$	≥ 0	ξ_{n}	≥ 0			
$a_{n}\left(t_{n} y\left(\mathbf{x}_{n}\right)-1+\xi_{n}\right)$	$=0$	$\mu_{n} \xi_{n}$	$=0$		λ	≥ 0
---:	:---					
$f(\mathbf{x})$	≥ 0					
$\lambda f(\mathbf{x})$	$=0$					

Interpretation of Support Vectors

- Those are the hard examples!
, We can visualize them, e.g. for face detection

SVM - New Solution

- Solution for the hyperplane
- Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

- Again sparse solution: $a_{n}=0$ for points outside the margin.
\Rightarrow The slack points with $\xi_{n}>0$ are now also support vectors!
, Compute b by averaging over all $N_{\mathcal{M}}$ points with $0<a_{n}<C$:

$$
b=\frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}}\left(t_{n}-\sum_{m \in \mathcal{M}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

Topics of This Lecture

- Support Vector Machines

Recap: Lagrangian (primal) formulation
Dual formulation
Soft-margin classification

- Nonlinear Support Vector Machines
, Nonlinear basis functions
- The Kernel trick
- Mercer's condition
- Popular kernels
- Analysis

Error function
Applications

RWTHAMEFIT

What Could This Look Like?

- Example:
, Mapping to polynomial space, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$:
$\phi(\mathbf{x})=\left[\begin{array}{c}x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2}\end{array}\right]$
, Motivation: Easier to separate data in higher-dimensional space.
, But wait - isn't there a big problem?
- How should we evaluate the decision function?

Solution: The Kernel Trick

- Important observation

2 $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$:

$$
\begin{aligned}
y(\mathbf{x}) & =\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})+b \\
& =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \phi(\mathbf{x})+b
\end{aligned}
$$

- Trick: Define a so-called kernel function $k(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

- The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)

SVMs with Kernels

- Using kernels

Applying the kernel trick is easy. Just replace every dot product by a kernel function...

$$
\mathbf{x}^{\mathrm{T}} \mathbf{y} \quad \rightarrow \quad k(\mathbf{x}, \mathbf{y})
$$

. ...and we're done.

- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.
- Wait - does this always work?
- The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
. When is this the case?
"Sounds like magic..."

Kernels Fulfilling Mercer's Condition

- Polynomial kernel

$$
k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}+1\right)^{p}
$$

- Radial Basis Function kernel

$$
k(\mathbf{x}, \mathbf{y})=\exp \left\{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}\right\} \quad \text { e.g. Gaussian }
$$

- Hyperbolic tangent kernel

$$
k(\mathbf{x}, \mathbf{y})=\tan \quad \text { e.g. Sigmoid }
$$

Actually, this was wrong in the original SVM paper.
(and many, many more...)
B. Leibe

Back to Our Previous Example...

- $2^{\text {nd }}$ degree polynomial kernel:

$$
\begin{aligned}
\phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y}) & =\left[\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{1}^{2} \\
\sqrt{2} y_{1} y_{2} \\
y_{2}^{2}
\end{array}\right] \begin{array}{c}
\substack{0 \\
0.6 \\
0.4 \\
0.2} \\
0
\end{array} \\
& =x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2} \\
& =\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)^{2}=: k(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

Whenever we evaluate the kernel function $k(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{\top} \mathbf{y}\right)^{2}$, we implicitly compute the dot product in the higher-dimensional feature space.

Which Functions are Valid Kernels?

- Mercer's theorem (modernized version):
- Every positive definite symmetric function is a kernel.
- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

$K=$| $k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $k\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right)$ |
| | | | | |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right)$ | $k\left(\mathbf{x}_{n}, \mathbf{x}_{3}\right)$ | \ldots | $k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$ |

(positive definite $=$ all eigenvalues are >0)

Example: Bag of Visual Words Representation

- General framework in visual recognition
. Create a codebook (vocabulary) of prototypical image features
- Represent images as histograms over codebook activations
, Compare two images by any histogram kernel, e.g. χ^{2} kernel
\downarrow
$k_{\chi^{2}\left(h, h^{\prime}\right)}=\exp \left(-\frac{1}{\gamma} \sum_{j} \frac{\left(h_{j}-h_{j}^{\prime}\right)^{2}}{h_{j}+h_{j}^{\prime}}\right)$

\downarrow

aron
B. Leibe

Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{gathered}
0 \cdot a_{n} \cdot C \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{gathered}
$$

- Classify new data points using

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)+b
$$

Summary: SVMs

- Properties

. Empirically, SVMs work very, very well.
, SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.

- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been applied to a variety of other tasks - e.g. SV Regression, One-class SVMs, ..
- The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...
- Good overview, software, and tutorials available on http://www.kernelmachines.org/

Topics of This Lecture

- Support Vector Machines
- Recap: Lagrangian (primal) formulation

Dual formulation
Soft-margin classification

- Nonlinear Support Vector Machines

Nonlinear basis functions
The Kernel trick
Mercer's condition
Popular kernels

- Analysis
- Error function
- Applications

SVM - Analysis

- Traditional soft-margin formulation

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \quad \text { "Maximize } \quad \text { the margin" }
$$

subject to the constraints

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
$$

"Most points should be on the correct side of the margin"

- Different way of looking at it
- We can reformulate the constraints into the objective function.

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\mathrm{L}_{2} \text { regularizer }}+\underbrace{C \sum_{n=1}^{N}\left[1-t_{n} y\left(\mathbf{x}_{n}\right)\right]_{+}}_{\text {"Hinge loss" }}
$$

where $[x]_{+}:=\max \{0, x\}$.

Topics of This Lecture

[^0]RNTH

Example Application: Text Classification

- Problem:
, Classify a document in a number of categories

- Representation:
, "Bag-of-words" approach
, Histogram of word counts (on learned dictionary) all. I. - Very high-dimensional feature space (~ 10.000 dimensions)
- Few irrelevant features
- This was one of the first applications of SVMs
, T. Joachims (1997)
- Results:

	Bayes	Rocchio	C4.5	k-NN	SVM (poly) degree $d=$					SVM (rbf)$\text { width } \gamma=$			
					1	2	\| 3		5	0.6	0.81	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3		$\begin{aligned} & \|85.1\| \\ & \text { comb } \end{aligned}$	$\begin{aligned} & 85.9 \\ & \text { bined: } \end{aligned}$	$\begin{array}{\|c\|} \hline 86.2 \mid \\ : \mathbf{8 6 . 0} \\ \hline \end{array}$	85.9	$\begin{array}{r} 86.4 \\ \text { con } \end{array}$	$86.5 \mid \bar{\delta}$ mbined	$\begin{aligned} & 86.3 \mid \\ & \text { ed: } 86 \end{aligned}$	$\begin{aligned} & 86.2 \\ & .4 \\ & \hline \end{aligned}$

Example Application: OCR

- Handwritten digit recognition
- US Postal Service Database
, Standard benchmark task for many learning algorithms

OOITR
1075518255182814358010963 $10775 \% 1655460 \%$, 4.603 . 1.605 $182=51085030525.2043401$
2601496357146371037314.47
 $33010330102.96023 .31208901,2$ 94052804729101295582.99855
 116117605718860015810189.9 $11575>12125058822749.516$ 9950512002536222033,23322 3921271272315395053888312 13219141922919251912014

 30841115910106154061033. 10641110304752620097996
 Leibe

RNIHMALHE
Historical Importance

- USPS benchmark
, 2.5\% error: human performance
- Different learning algorithms
- 16.2% error: Decision tree (C4.5)
- 5.9% error: (best) 2-layer Neural Network
. 5.1% error: LeNet 1 - (massively hand-tuned) 5 -layer network
- Different SVMs
. 4.0% error: Polynomial kernel ($p=3,274$ support vectors)
. 4.1% error: Gaussian kernel ($\sigma=0.3,291$ support vectors)

\qquad

Many Other Applications

- Lots of other applications in all fields of technology
, OCR
- Text classification
- Computer vision
. High-energy physics
- Monitoring of household appliances
- Protein secondary structure prediction
- Design on decision feedback equalizers (DFE) in telephony
(Detailed references in Schoelkopf \& Smola, 2002, pp. 221)

[^0]: - Support Vector Machines
 - Recap: Lagrangian (primal) formulation

 Dual formulation

 - Soft-margin classification
 - Nonlinear Support Vector Machines
 - Nonlinear basis functions

 The Kernel trick

 - Mercer's condition
 - Popular kernels
 - Analysis
 - Error function
 - Applications

