Machine Learning – Lecture 4 Probability Density Estimation III 17.10.2019 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

Recap: Maximum Likelihood Approach • Computation of the likelihood • Single data point: $p(x_n|\theta)$ • Assumption: all data points $X = \{x_1, \dots, x_n\}$ e independent $L(\theta) = p(X|\theta) = \prod_{n=1}^N p(x_n|\theta)$ • Log-likelihood $E(\theta) = -\ln L(\theta) = -\sum_{n=1}^N \ln p(x_n|\theta)$ • Estimation of the parameters θ (Learning) • Maximize the likelihood (=minimize the negative log-likelihood) $\Rightarrow \text{Take the derivative and set it to zero.}$ $\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^N \frac{\partial}{\partial \theta} p(x_n|\theta) \stackrel{!}{=} 0$

Mixture of Multivariate Gaussians "Generative model" $p(j) = \pi_j$ 1 1 1 2 3 $p(\mathbf{x}|\theta) = \sum_{j=1}^3 \pi_j p(\mathbf{x}|\theta_j)$ $p(\mathbf{x}|\theta_1)$ 0.5 $p(\mathbf{x}|\theta_2)$ 0.5

Credit Assignment Problem

- "Credit Assignment Problem"
 - If we are just given \mathbf{x} , we don't know which mixture component this example came from

$$p(\mathbf{x}|\theta) = \sum_{j=1}^{2} \pi_{j} p(\mathbf{x}|\theta_{j})$$

We can however evaluate the posterior probability that an observed x was generated from the first mixture component.

$$p(j=1|\mathbf{x},\theta) = \frac{p(j=1,\mathbf{x}|\theta)}{p(\mathbf{x}|\theta)}$$

$$p(j=1,\mathbf{x}|\theta) = p(\mathbf{x}|j=1,\theta)p(j=1) = p(\mathbf{x}|\theta_1)p(j=1)$$

$$p(j=1|\mathbf{x},\theta) = \frac{p(\mathbf{x}|\theta_1)p(j=1)}{\sum_{j=1}^2 p(\mathbf{x}|\theta_j)p(j)} \quad \underset{\text{"responsibility" of component if for x}}{=} p_j(\mathbf{x})$$

component i for x.

EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$
I-Step, re-estimate the parameters (separately for each mixture)

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_j \leftarrow \sum_{n=1}^N \gamma_j(\mathbf{x}_n)$$
 = soft number of samples labeled j

$$\hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\boldsymbol{\mu}}_{j}^{\mathrm{new}} \leftarrow \frac{1}{\hat{N}_{i}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\begin{split} \hat{\boldsymbol{\mu}}_{j}^{\text{new}} &\leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n} \\ \hat{\boldsymbol{\Sigma}}_{j}^{\text{new}} &\leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}})^{\text{T}} \\ \text{\tiny m Bernt Schiele} \end{split}$$

EM - Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - m E.g. consider the case $\m \Sigma_k = \sigma_k^2 {f I}$ (this also holds in general)
 - Assume component j is exactly centered on data point \mathbf{x}_n . This data point will then contribute a term in the likelihood function

$$\mathcal{N}(\mathbf{x}_n|\mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{\sqrt{2\pi}\sigma_j}$$

For $\sigma_i \rightarrow 0$, this term goes to infinity!

- ⇒ Need to introduce regularization
 - > Enforce minimum width for the Gaussians
 - E.g., instead of $oldsymbol{\Sigma}^{\text{-1}}$, use $(oldsymbol{\Sigma} + \sigma_{\min} \mathbf{I})^{\text{-1}}$

EM – Technical Advice (2)

- · EM is very sensitive to the initialization
 - ightarrow Will converge to a local optimum of E.
 - > Convergence is relatively slow.
- ⇒ Initialize with k-Means to get better results!
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.
- Typical procedure
 - > Run k-Means M times (e.g. M = 10-100).
 - \triangleright Pick the best result (lowest error J).
 - Use this result to initialize EM
 - Set \(\mu_i\) to the corresponding cluster mean from k-Means.
 - Initialize Σ_i to the sample covariance of the associated data points.

K-Means Clustering Revisited

- · Interpreting the procedure
 - 1. Initialization: pick K arbitrary centroids (cluster means)
 - Assign each sample to the closest centroid.
 - Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 - 4. Go to step 2 (until no change)

B. Leibe

Topics of This Lecture Mixture distributions Recap: Mixture of Gaussians (MoG) Maximum Likelihood estimation attempt K-Means Clustering Algorithm Applications EM Algorithm Credit assignment problem MoG estimation EM Algorithm Interpretation of K-Means Technical advice Applications

References and Further Reading

 More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop's book (recommendable to read).

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

- · Additional information
 - > Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, "Maximum-Likelihood from incomplete data via EM algorithm", In Journal Royal Statistical Society, Series B. Vol 39, 1977
 - > EM tutorial:
 - J.A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to <u>Parameter Estimation for Gaussian Mixture and Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe

RWTHAACHE UNIVERSIT

8