Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

Machine Learning — Lecture 4

Probability Density Estimation Il * Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

» Randomized Trees, Forests & Ferns

17.10.2019

* Deep Learning

wr e RS .
» Foundations
» Convolutional Neural Networks E‘. Lr

» Recurrent Neural Networks

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

Machine Learning Winter ‘19
Machine Learning Winter ‘19

leibe@vision.rwth-aachen.de

B. Leibe

RWTH//CHE RWTH CHET
Recap: Maximum Likelihood Approach Recap: Histograms
* Computation of the likelihood * Basic idea:
» Single data point: p($n|9) » Partition the data space into distinct
. . o . bins with widths A; and count the
» Assumption: all data points X 71\?1-' ...,z }e independent number of observations, n, in each
bin.
1(0) = p(X16) = [ planl6) o 1
- n=1 fONA; 0
» Log-likelihood N 0 05 1
] E@)=—-InL(9) = — Z Inp(z,|0) 2 » Often, the same width is used for all bins, A, = A.
E . . =1 . 2 » This can be done, in principle, for any dimensionality D...
= * Estimation of the parameters 6 (Learning) = e
j=} o
E » Maximize the likelihood (=minimize the negative log-likelihood) E j?zm ...but the required
ﬁ = Take the derivative and set it to zero. § =R number of bins
e 9 N0 (al6) | o Pt grows exponen-
£ 5720 =~ 3 09—0 =0 z tially with D!
© © - T
= =1 pl@n] ) " = po1 n=z 2 pai 5
de credit Bernt Schiele B. Leibe B. Lelte Jmage source: G\, Bishop, 200
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Recap: Kernel Density Estimation Topics of This Lecture
* Approximation formula: Exe,cf:: * Mixture distributions
7.

» Mixture of Gaussians (MoG)
» Maximum Likelihood estimation attempt

* K-Means Clustering
» Algorithm
» Applications

pP\X
(x) NV

fixed V fixed K
determine K determine V/

Kernel Methods K-Nearest Neighbor

° =) * EM Algorithm

5 5 » Credit assignment problem
% § > MoG estimation

= * Kernel methods = * K-Nearest Neighbor E > EM Algorithm

§ . Place a kernel window k .' L » Increase the volume V/ § - Interprgtation _Of K-Means
® at location x and count L until the i’ nearest = » Technical advice

2 f f 2

E P;ﬁngi?jgyisata points _ . data points are found. E « Applications

ide adapted from Bernt Schiele B. Leibe B. Leibe




Mixture Distributions

* A single parametric distribution is often not sufficient
» E.g. for multimodal data
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Gaussians
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Mixture of Gaussians

Likelihood of measurement z
given mixture component j

M
plel6) = Y GGG

plalh) = Nelpy. ) = ———exp {_(m - 1) }

P)
20'].

component j

/ p(x)dx =1
~ The mixture parameters are

0 = (71, 11,01, - - -, , T, 40, O01)

M
p() = mjwitr 0+ mi- Lana Som=1 Proret
=1

* Notes
» The mixture density integrates to 1:
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Mixture of Multivariate Gaussians

(a)

05

)
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

14

lmage source: G\, Bishop, 200«

B. Leibe

Machine Learning Winter ‘19

o
g
=
=)
=
£
o
o
3
Py
=
=
S
)
=

Machine Learning Winter ‘19

Mixture of Gaussians (MoG)

* Sum of M individual Normal distributions

" /&A

T

» In the limit, every smooth distribution can be approximated this way
(if M is large enough)
M
p(x(0) = > p(xl6;)p(5)
j=1
; 1
ide credit: Bernt Schiele B. Leibe

Mixture of Gaussians (MoG)

* “Generative model”

“Weight” of mixture

@ p(j) =m; component

)/ 3\
p(m) 0 Mixture
Alp e

l Mixture density

p(xl) = " p(z]0;)p(j)

S IAVANRD:

T

ide credit Bernt Schigle B. Leibe
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Mixture of Multivariate Gaussians
* Multivariate Gaussians

M
p(x10) = > p(x/6;)p(5)
oy 1 _
p(x[6;) = W €xp {_i(x - ”j)TEj x— ”1)}

» Mixture weights / mixture coefficients:M

p(j) =mjwith 0- - 1andz7rj:1 1 @
j=1

05 M

0= (71,0, 0, .., Tag, Mpg, Baa) of

0 05 1

» Parameters:

15

\mage source: G\, Bishop, 200¢

ide credit. Bernt Schigle B. Leibe




RWTHACHE

Mixture of Multivariate Gaussians Mixture of Gaussians — 15t Estimation Attempt

* “Generative model” * Maximum Likelihood N
» Minimize E = —InL(f) = — Z Inp(x,|0)
n=1
- Let's first look at 11

OF B
=—=0 \/
op; E

K

» We can already see that this will b

N
Inp(X|m, g, £) =Y I}
n=1

difficult, since

e N (%n by, Ek)}
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This will cause problems!

ide credit: Bernt Schiele B. Leibe
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Mixture of Gaussians — 1st Estimation Attempt

RWTH/ /T
Mixture of Gaussians — 1st Estimation Attempt

* Minimization:

9\ g B) = * But...
N 2 p(x,]0;) oy Vel B N o 5
OF Oll]p n|Yj 51 (%0 — )N (X s S| anl X mj Xn(pt;) X;
_— = —_ 7}( J ’
Om, 71 2okt P(XnlOk)

H‘W) ’?:‘l(xn) VZ Zf:l 77&?%&9’ EJ.:)

* |.e. there is no direct analytical solution!

i(EI(XTLMV) p(x/60)) )

n=1 ZkK=1 (X0 |0k)

o N o
2 TN (Xn |, 3, | 2 oF
5 — *;le(xn Y 20 3 ?:f(7f17u1721,-~~,7TM7MM72M)
H n=1 _1 RN (Xn |y, 2 s J
E i > » Complex gradient function (non-linear mutual dependencies)
£ * We thus obtain N =% (xn) £ » Optimization of one Gaussian depends on all other Gaussians!
L3 “ hility”? (]
7 D Vi(Xn)Xn responsibility” of 3 » Itis possible to apply iterative numerical optimization here,
£ = H; = N component j for x, £ but in the following, we will see a simpler method.
g 2 on1 %i(%n) 5
= 18 = ; 19
B. Leibe B. Leibe
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Mixture of Gaussians — Other Strategy Mixture of Gaussians — Other Strategy

* Other strategy: * Assuming we knew the values of the hidden variable...

F(x]1) Jx)

Sx) 2 F(x2)

X

ML for Gaussian #1 I T ML for Gaussian #2
g°—: » Observed data: . see LTI . X % assumed known — 1 111 2 2 2 J
2 » Unobserved data: 1111 22 2 2 2 h(j = 1|zn) =
% — Unobserved = “hidden variable” jlx % ].7 )= 111 00 0 0
g . £ h(j =2lzn) = 0 000 11 1
5 h(j =1|zn) = 111 000 0 § N N
5 . 5 h(j = 1|z,)z h(j = 2|z,)z
2 h(j =2lz,) = 0 000 11 1 .= Znivl U=tlea)en Z”jvl U = 2an)an
é é 2im Wi = Lzn) Yic M = 2[zn)

de credit Bernt Schiele B. Leibe % de credit Bernt Schiele B. Leibe 2
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Mixture of Gaussians — Other Strategy

¢ Assuming we knew the mixture components...

” |/k/mdk\w

J*1|«'U p(j =2|z)

1 111 22 2 2 i

* Bayes decision rule: Decide j =1 if

p(j = 1zn) > p(j = 2|zn)
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Topics of This Lecture
¢ K-Means Clustering
» Algorithm
» Applications
%
= 24
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K-Means — Example with K=2
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Clustering with Hard Assignments

* Let's first look at clustering with “hard assignments”

J(x)

X
!oz e ooo o0 . .
8
2
£
©
8
£ 1111 2 2
3
= 23
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K-Means Clustering

* |terative procedure
1. |Initialization: pick K arbitrary
centroids (cluster means) 1

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned ., ' -
to them. N

4. Go to step 2 (until no change) ,

« Algorithm is guaranteed to

Machine Learning Winter ‘19

. X . o A
converge after finite #iterations. : ;f?nagfm .
05| £
»  Local optimum -«',n
»  Final result depends on initialization. S L B R 2;
ide credit- Rernt Schiele B. Leibe
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K-Means Clustering
* K-Means optimizes the following  000},7 ¢
objective function:
N K
2 500
J= TnkHanukH 1S
n=1k=1 AW
©®—0e o010
» where 1 2 3 2

1 if k = argmin; [|x,, — p;|[?
Tnk = .
0 otherwise.

» l.e., my is an indicator variable that checks whether p, is the
nearest cluster center to point x,,.

» In practice, this procedure usually converges quickly to a local
optimum.
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Example Application: Image Compression

Example Application: Image Compression

—

K-Means
Clustering

_/

Image source: CM, Bishop, 200¢

Original image

Take each pixel
as one data point.

N

2
Set the pixjcoh

to the cluster mean.
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Summary K-Means Topics of This Lecture
» Simple, fast to compute u
» Converges to local minimum ) T
of within-cluster squared error
* Problem cases | 4
» Setting k? ) (1) Vel cluter
- » Sensitive to initial centers & ° EM Algorithm
'E » Sensitive to outliers E » Credit assignment problem
é » Detects spherical clusters only ? é » MoG estimation
o ) 2 E) . EM Algorithm
= ° Extensions ‘H-‘g £ » Interpretation of K-Means
3 . Speed-ups possible through — s . Technical advice
E efficient search structures B g
g . General distance measures: k-medoids g
de credit Kristen Grauman B. Leibe * B. Lelte o
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EM Clustering EM Clustering
* Clustering with “soft assignments” * Clustering with “soft assignments”
» Expectation step of the EM algorithm » Maximization step of the EM algorithm
P X N .
f( ) f( ) _ Zn=1 p(]‘xn)xn
7 N .
> =1 P(d1%n)
X X
e &
-E * o0 o e e o . 'E e oo o * o o .
£ . £
| o\ / -
§ p(1]z) 099 08 02 001 . % p(l|r) o099 08 02 001 Maximum Likelihood
= B o J o p(2]z) 00102 08 099 estimate
£ p(2|z) 0.01 02 08 099 £
© ©
= a2 = 33
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Credit Assignment Problem

* “Credit Assignment Problem”
» If we are just given x, we don’t know which mixture component this

example came from 9

p(x[0) = Zﬂjp(XWj)

» We can however evaluate the posterior probability that an observed
x was generated from the first mixture component.

_p(i=1x)
p(x]0)
p(j =1,x]0) =p(x|j =1,0)p(j = 1) = p(x|61)p(j = 1)
. x|0 j=1
p(j =1lx,0) = —2—;:( | 1)(17(2') ?) =v;®)
j=1P x|0;)p(i “responsibility” of
component j for x. 34

p(] = llxv 0)

ide credit: Bernt Schiele B. Leibe

EM Algorithm — An Example

L=20 o ®
- §:

39
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EM — Technical Advice (2)

* EM is very sensitive to the initialization
» Will converge to a local optimum of E.
» Convergence is relatively slow.

= Initialize with k-Means to get better results!

» k-Means is itself initialized randomly, will also only find a
local optimum.

» But convergence is much faster.

* Typical procedure
» Run k-Means M times (e.g. M = 10-100).
» Pick the best result (lowest error J).

» Use this result to initialize EM
— Set y; to the corresponding cluster mean from k-Means.

— Initialize X; to the sample covariance of the associated data points.
B. Leibe
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EM Algorithm

* Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
ﬁ.f-'V(xnlflJ‘ EJ)
2oy TN (a1, Eie)
» M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

(%) Vi=1,....,K, n=1,...,N

N
Nj Z'y] (xr) = soft number of samples labeled j

n=1
anew Nj
i N
N
A New 1
BT — > i(xn)xn
J n=1
X
sine: A New ~new\T
2 A > () (6 — 57 (6 — f3°)
J n=1 38
de adapted from Bernt Schiele B Leibe
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EM — Technical Advice

* When implementing EM, we need to take care to avoid
singularities in the estimation!
» Mixture components may collapse on single data points.
» E.g. consider the case X, = 421 (this also holds in general)
» Assume component j is exactly centered on data point x,,. This data
point will then contribute a term in the likelihood function

1
N (xn|xn, 0']2'1) =
40

V2ro;
» For o; — 0, this term goes to infinity!
lmage source. CM._Bishop, 200¢

= Need to introduce regularization
» Enforce minimum width for the Gaussians
» E.g., instead of X1, use (2 + o, )"

min:

B. Leibe

K-Means Clustering Revisited

* Interpreting the procedure ’ B
1. |Initialization: pick K arbitrary
centroids (cluster means) 1

2. Assign each sample to the closest

centroid. (E-Step)
3. Adjust the centroids to be the - . )
means of the samples assigned A A A A
to them. (M-Step) .
1 20 et
: ot o
4. Go to step 2 (until no change) . Ti}:?;i‘%"
' Sy e
o B AN
SR
NI e

B. Leibe
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K-Means Clustering Revisited

* K-Means clustering essentially corresponds to a Gaussian
Mixture Model (MoG or GMM) estimation with EM whenever
» The covariances are of the K Gaussians are set to X; = 0>
» For some small, fixed o2

k-Means MoG
> . .
2 ) 5
=
H |
2
= o5 o8
5
S L I
g -85 -05)
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Application: Background Model for Tracking

e Train background MoG for each pixel
> Model “common* appearance
variation for each background pixel.
» Initialization with an empty scene.
» Update the mixtures over time
— Adapt to lighting changes, etc.

i |Gaussian

“| Mixture

* Used in many vision-based tracking ~
applications — a
. Anything that cannot be explained =
by the background model is labeled EH

as foreground (=object). -
Easy segmentation if camera is fixed.

v

C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking
|IEEE Trans. PAMI, 22(8):747-757, 2000.
B. Leibe
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Image Source: Daniel Roth, Tobias Jaggli
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Summary: Gaussian Mixture Models

* Properties
» Very general, can represent any (continuous) distribution.
» Once trained, very fast to evaluate.
» Can be updated online.

* Problems / Caveats
» Some numerical issues in the implementation
= Need to apply regularization in order to avoid singularities.

» EM for MoG is computationally expensive
— Especially for high-dimensional problems!
— More computational overhead and slower convergence than k-Means
— Results very sensitive to initialization
= Run k-Means for some iterations as initialization!

» Need to select the number of mixture components K.

= Model selection problem (see later lecture)

44
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Applications

* Mixture models are used in
many practical applications.

» Wherever distributions with complex
or unknown shapes need to be
represented...

05

* Popular application in Computer Vision
» Model distributions of pixel colors.
» Each pixel is one data point in, e.g., RGB space.
= Learn a MoG to represent the class-conditional densities.
= Use the learned models to classify other pixels.

46
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Application: Image Segmentation

(a) input image

(b) user input (c) inferred segmentation

* User assisted image segmentation
» User marks two regions for foreground and background.
» Learn a MoG model for the color values in each region.
» Use those models to classify all other pixels.
= Simple segmentation procedure
(building block for more complex applications)

48
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http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
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References and Further Reading

More information about EM and MoG estimation is available
in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book
(recommendable to read). E = i

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

Additional information
» Original EM paper:
— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical Society,
Series B. Vol 39, 1977

» EM tutorial:
— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mixture and Hidden Markov Models®,
TR-97-021, ICSI, U.C. Berkeley, CA,USA
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