Machine Learning - Lecture 3

Probability Density Estimation II

16.10.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals
, Bayes Decision Theory
, Probability Density Estimation
- Classification Approaches
, Linear Discriminants
, Support Vector Machines
, Ensemble Methods \& Boosting
, Randomized Trees, Forests \& Ferns

- Deep Learning
, Foundations
, Convolutional Neural Networks
, Recurrent Neural Networks

Topics of This Lecture

- Recap: Parametric Methods
, Gaussian distribution
- Maximum Likelihood approach
- Non-Parametric Methods
, Histograms
, Kernel density estimation
, K-Nearest Neighbors
, k-NN for Classification
- Mixture distributions
- Mixture of Gaussians (MoG)
, Maximum Likelihood estimation attempt

Recap: Gaussian (or Normal) Distribution

- One-dimensional case
- Mean μ
, Variance σ^{2}

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

- Multi-dimensional case
- Mean μ
, Covariance Σ

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Gaussian Distribution - Properties

- Quadratic Form
- \mathcal{N} depends on x through the exponent

- Shape of the Gaussian
> $\boldsymbol{\Sigma}$ is a real, symmetric matrix.
, We can therefore decompose it into its eigenvectors

$$
\boldsymbol{\Sigma}=\sum_{i=1}^{D} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}}
$$

$$
\boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}}
$$

and thus obtain $\Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}}$ with $y_{i}=\mathbf{u}_{i}^{\mathrm{T}}(\mathbf{x}-\boldsymbol{\mu})$
\Rightarrow Constant density on ellipsoids with main directions along the eigenvectors \mathbf{u}_{i} and scaling factors $\sqrt{\lambda_{i}}$

Gaussian Distribution - Properties

- Special cases
, Full covariance matrix

$$
\boldsymbol{\Sigma}=\left[\sigma_{i j}\right]
$$

\Rightarrow General ellipsoid shape
, Diagonal covariance matrix

$$
\begin{aligned}
& \quad \mathbf{\Sigma}=\operatorname{diag}\left\{\sigma_{i}\right\} \\
& \Rightarrow \text { Axis-aligned ellipsoid }
\end{aligned}
$$

, Uniform variance

$$
\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}
$$

\Rightarrow Hypersphere

Gaussian Distribution - Properties

- The marginals of a Gaussian are again Gaussians:

Parametric Methods

- Given
, Data $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
, Parametric form of the distribution with parameters θ
, E.g. for Gaussian distrib.: $\theta=(\mu, \sigma)$
- Learning

- Estimation of the parameters θ
- Likelihood of θ
. Probability that the data X have indeed been generated from a probability density with parameters θ

$$
L(\theta)=p(X \mid \theta)
$$

Maximum Likelihood Approach

- Computation of the likelihood
, Single data point: $\quad p\left(x_{n} \mid \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$
, Assumption: all data points are independent

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

, Log-likelihood

$$
E(\theta)=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)
$$

, Estimation of the parameters θ (Learning)

- Maximize the likelihood
- Minimize the negative log-likelihood

Maximum Likelihood Approach

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

- We want to obtain $\hat{\theta}$ such that $L(\hat{\theta})$ is maximized.

Maximum Likelihood Approach

- Minimizing the log-likelihood
, How do we minimize a function?
\Rightarrow Take the derivative and set it to zero.

$$
\frac{\partial}{\partial \theta} E(\theta)=-\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p\left(x_{n} \mid \theta\right)}{p\left(x_{n} \mid \theta\right)} \stackrel{!}{=} 0
$$

- Log-likelihood for Normal distribution (1D case)

$$
\begin{aligned}
E(\theta) & =-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \mu, \sigma\right) \\
& =-\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left\|x_{n}-\mu\right\|^{2}}{2 \sigma^{2}}\right\}\right)
\end{aligned}
$$

Maximum Likelihood Approach

- Minimizing the log-likelihood

$$
\begin{aligned}
\frac{\partial}{\partial \mu} E(\mu, \sigma) & =-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p\left(x_{n} \mid \mu, \sigma\right)}{p\left(x_{n} \mid \mu, \sigma\right)} \\
& =-\sum_{n=1}^{N}-\frac{2\left(x_{n}-\mu\right)}{2 \sigma^{2}} \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right) \\
& =\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}-N \mu\right) \\
\frac{\partial}{\partial \mu} E(\mu, \sigma) & \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& p\left(x_{n} \mid \mu, \sigma\right)= \\
& \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left\|x_{n}-\mu\right\|^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximum Likelihood Approach

- When applying ML to the Gaussian distribution, we obtain

$$
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- In a similar fashion, we get

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

"sample variance"

- $\hat{\theta}=(\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- This is a very important result.
- Unfortunately, it is wrong...

Maximum Likelihood Approach

- Or not wrong, but rather biased...
- Assume the samples $x_{1}, x_{2}, \ldots, x_{N}$ come from a true Gaussian distribution with mean μ and variance σ^{2}
, We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$
\begin{aligned}
\mathbb{E}\left(\mu_{\mathrm{ML}}\right) & =\mu \\
\mathbb{E}\left(\sigma_{\mathrm{ML}}^{2}\right) & =\left(\frac{N-1}{N}\right) \sigma^{2}
\end{aligned}
$$

\Rightarrow The ML estimate will underestimate the true variance.

- Corrected estimate:

$$
\tilde{\sigma}^{2}=\frac{N}{N-1} \sigma_{\mathrm{ML}}^{2}=\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
, It systematically underestimates the variance of the distribution!
, E.g. consider the case

$$
N=1, X=\left\{x_{1}\right\}
$$

\Rightarrow Maximum-likelihood estimate:

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

, We say ML overfits to the observed data.
, We will still often use ML, but it is important to know about this effect.

Deeper Reason

- Maximum Likelihood is a Frequentist concept
, In the Frequentist view, probabilities are the frequencies of random, repeatable events.
- These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
- In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
- This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- To see the difference...
, Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
- This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
, In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
- If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

Posterior \propto Likelihood \times Prior
, This generally allows to get better uncertainty estimates for many situations.

- Main Frequentist criticism
- The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
- Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
, In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
, i.e. to use a prior for θ
> Training data then converts this prior distribution on θ into a posterior probability density.

θ
, The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.

Bayesian Learning

- Bayesian Learning is an important concept
, However, it would lead too far here.
\Rightarrow I will introduce it in more detail in the Advanced ML lecture.

Topics of This Lecture

- Recap: Parametric Methods
, Gaussian distribution
- Maximum Likelihood approach
- Non-Parametric Methods
, Histograms
, Kernel density estimation
, K-Nearest Neighbors
> k-NN for Classification
- Mixture distributions
> Mixture of Gaussians (MoG)
, Maximum Likelihood estimation attempt

Non-Parametric Methods

- Non-parametric representations
, Often the functional form of the distribution is unknown

- Estimate probability density from data
, Histograms
> Kernel density estimation (Parzen window / Gaussian kernels)
, k-Nearest-Neighbor

Histograms

- Basic idea:
- Partition the data space into distinct bins with widths Δ_{i} and count the number of observations, n_{i}, in each bin.

$$
p_{i}=\frac{n_{i}}{N \Delta_{i}}
$$

, Often, the same width is used for all bins, $\Delta_{i}=\Delta$.
, This can be done, in principle, for any dimensionality $D \ldots$

...but the required number of bins grows exponentially with D !

Histograms

- The bin width \triangle acts as a smoothing factor.

Summary: Histograms

- Properties
, Very general. In the limit $(N \rightarrow \infty)$, every probability density can be represented.
, No need to store the data points once histogram is computed.
, Rather brute-force
- Problems
, High-dimensional feature spaces
- D-dimensional space with M bins/dimension will require M^{D} bins!
\Rightarrow Requires an exponentially growing number of data points
\Rightarrow "Curse of dimensionality"
, Discontinuities at bin edges
> Bin size?
- too large: too much smoothing
- too small: too much noise

R ch

Statistically Better-Founded Approach

- Data point \mathbf{x} comes from $\operatorname{pdf} p(\mathbf{x})$
, Probability that x falls into small region \mathcal{R}

$$
P=\int_{\mathcal{R}} p(y) d y
$$

- If \mathcal{R} is sufficiently small, $p(\mathbf{x})$ is roughly constant
, Let V be the volume of \mathcal{R}

$$
P=\int_{\mathcal{R}} p(y) d y \approx p(\mathbf{x}) V
$$

- If the number N of samples is sufficiently large, we can estimate P as

$$
P=\frac{K}{N} \quad \Rightarrow p(\mathbf{x}) \approx \frac{K}{N V}
$$

Statistically Better-Founded Approach

- Kernel methods
, Example: Determine the number K of data points inside a fixed hypercube...

Kernel Methods

- Parzen Window
, Hypercube of dimension D with edge length h :

$$
\left.\begin{array}{rl}
k(\mathbf{u}) & = \begin{cases}1, & \left|u_{i}\right| \leq \frac{1}{2} h, \\
0, & \text { else }\end{cases} \\
\text { "Kernel function" }
\end{array}\right\}
$$

Kernel Methods: Parzen Window

- Interpretations

1. We place a kernel window k at location \mathbf{x} and count how many data points fall inside it.
2. We place a kernel window k around each data point \mathbf{x}_{n} and sum up their influences at location \mathbf{x}.
\Rightarrow Direct visualization of the density.

- Still, we have artificial discontinuities at the cube boundaries...
, We can obtain a smoother density model if we choose a smoother kernel profile function, e.g., a Gaussian

Kernel Methods: Gaussian Kernel

- Gaussian kernel
, Kernel function

$$
\begin{gathered}
k(\mathbf{u})=\frac{1}{\left(2 \pi h^{2}\right)^{1 / 2}} \exp \left\{-\frac{\mathbf{u}^{2}}{2 h^{2}}\right\} \\
K=\sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right) \quad V=\int k(\mathbf{u}) d \mathbf{u}=1
\end{gathered}
$$

, Probability density estimate

$$
p(\mathbf{x}) \approx \frac{K}{N V}=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2 \pi)^{D / 2} h} \exp \left\{-\frac{\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}}{2 h^{2}}\right\}
$$

Gauss Kernel: Examples

Kernel Methods

- In general
- Any kernel such that

$$
k(\mathbf{u}) \geqslant 0, \quad \int k(\mathbf{u}) \mathrm{d} \mathbf{u}=1
$$

can be used. Then

$$
K=\sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right)
$$

. And we get the probability density estimate

$$
p(\mathbf{x}) \approx \frac{K}{N V}=\frac{1}{N} \sum_{n=1}^{N} k\left(\mathbf{x}-\mathbf{x}_{n}\right)
$$

Slide adapted from Bernt Schiele
B. Leibe

Statistically Better-Founded Approach

$p(\mathbf{x}) \approx \frac{K}{N V}$

Kernel Methods
K-Nearest Neighbor

K-Nearest Neighbor

- Increase the volume V until the K next data points are found.

K-Nearest Neighbor

- Nearest-Neighbor density estimation
, Fix K, estimate V from the data.
, Consider a hypersphere centred on x and let it grow to a volume V^{\star} that includes K of the given N data
 points.
, Then

$$
p(\mathbf{x}) \simeq \frac{K}{N V^{\star}}
$$

- Side note
- Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
, E.g. consider $K=1$ and a sample exactly on a data point $\mathbf{x}=x_{j}$.

k-Nearest Neighbor: Examples

not smooth enough
about OK
too smooth

Summary: Kernel and k-NN Density Estimation

- Properties
, Very general. In the limit $(N \rightarrow \infty)$, every probability density can be represented.
, No computation involved in the training phase
\Rightarrow Simply storage of the training set
- Problems
, Requires storing and computing with the entire dataset.
\Rightarrow Computational cost linear in the number of data points.
\Rightarrow This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
, Kernel size / K in K-NN?
- Too large: too much smoothing
- Too small: too much noise

K-Nearest Neighbor Classification

- Bayesian Classification

$$
p\left(\mathcal{C}_{j} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{j}\right) p\left(\mathcal{C}_{j}\right)}{p(\mathbf{x})}
$$

- Here we have

$$
\begin{aligned}
p(\mathbf{x}) & \approx \frac{K}{N V} \\
p\left(\mathbf{x} \mid \mathcal{C}_{j}\right) & \approx \frac{K_{j}}{N_{j} V} \quad \longrightarrow p\left(\mathcal{C}_{j} \mid \mathbf{x}\right) \approx \frac{K_{j}}{N_{j} V} \frac{N_{j}}{N} \frac{N V}{K}=\frac{K_{j}}{K} \\
p\left(\mathcal{C}_{j}\right) & \approx \frac{N_{j}}{N}
\end{aligned} \quad \begin{gathered}
\text { k-Nearest Neighbor } \\
\text { classification }
\end{gathered}
$$

K-Nearest Neighbors for Classification

K-Nearest Neighbors for Classification

- Results on an example data set

- K acts as a smoothing parameter.
- Theoretical guarantee
- For $N \rightarrow \infty$, the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Bias-Variance Tradeoff

- Probability density estimation
, Histograms: bin size?
- Δ too large: too smooth
- Δ too small: not smooth enough

Too much bias
 Too much variance

, Kernel methods: kernel size?

- h too large: too smooth
- h too small: not smooth enough
, K-Nearest Neighbor: K ?
- K too large: too smooth
- K too small: not smooth enough
- This is a general problem of many probability density estimation methods
, Including parametric methods and mixture models

Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
, Histograms scale poorly with increasing dimensionality.
\Rightarrow Only suitable for relatively low-dimensional data.
, Both k-NN and kernel density estimation require the entire data set to be stored.
\Rightarrow Too expensive if the data set is large.
- Simple parametric models are very restricted in what forms of distributions they can represent.
\Rightarrow Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!
\Rightarrow Next topic...

Topics of This Lecture

- Recap: Parametric Methods
, Gaussian distribution
- Maximum Likelihood approach
- Non-Parametric Methods
, Histograms
, Kernel density estimation
, K-Nearest Neighbors
, k-NN for Classification
- Mixture distributions
- Mixture of Gaussians (MoG)
, Maximum Likelihood estimation attempt

Mixture Distributions

- A single parametric distribution is often not sufficient
, E.g. for multimodal data

Single Gaussian

Mixture of two
Gaussians

Mixture of Gaussians (MoG)

- Sum of M individual Normal distributions

- In the limit, every smooth distribution can be approximated this way (if M is large enough)

$$
p(x \mid \theta)=\sum_{j=1}^{M} p\left(x \mid \theta_{j}\right) p(j)
$$

Mixture of Gaussians

$$
\begin{aligned}
& p(x \mid \theta)=\sum_{j=1}^{M} p\left(x \mid \theta_{j}\right) p(j) \\
& p\left(x \mid \theta_{j}\right)=\mathcal{N}\left(x \mid \mu_{j}, \sigma_{j}^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{j}} \exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right\} \\
& p(j)=\pi_{j} \text { with } 0 \cdot \pi_{j} \cdot 1 \text { and } \sum_{j=1}^{M} \pi_{j}=1 \quad \begin{array}{c}
\text { Likelihood of measurement } x \\
\text { given mixture component } j
\end{array} \\
& \text { Prior of } \\
& \text { component } j
\end{aligned}
$$

- Notes
, The mixture density integrates to 1 :

$$
\int p(x) d x=1
$$

- The mixture parameters are

$$
\theta=\left(\pi_{1}, \mu_{1}, \sigma_{1}, \ldots,, \pi_{M}, \mu_{M}, \sigma_{M}\right)
$$

Mixture of Gaussians (MoG)

- "Generative model"

Mixture of Multivariate Gaussians

Mixture of Multivariate Gaussians

- Multivariate Gaussians

$$
\begin{aligned}
p(\mathbf{x} \mid \theta) & =\sum_{j=1}^{M} p\left(\mathbf{x} \mid \theta_{j}\right) p(j) \\
p\left(\mathbf{x} \mid \theta_{j}\right) & =\frac{1}{(2 \pi)^{D / 2}\left|\boldsymbol{\Sigma}_{j}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{j}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)\right\}
\end{aligned}
$$

, Mixture weights / mixture coefficients:

$$
p(j)=\pi_{j} \text { with } \quad 0 \cdot \pi_{j} \cdot 1 \text { and } \sum_{j=1}^{M} \pi_{j}=1
$$

Mixture of Multivariate Gaussians

- "Generative model"

Mixture of Gaussians - $1^{\text {st }}$ Estimation Attempt

- Maximum Likelihood
, Minimize $E=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \theta\right)$
, Let's first look at μ_{j} :

$$
\frac{\partial E}{\partial \boldsymbol{\mu}_{j}}=0
$$

, We can already see that this will be difficult, since

$$
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{\text {This will cause problems! }}^{K} \boldsymbol{\pi}_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

Mixture of Gaussians - $1^{\text {st }}$ Estimation Attempt

- Minimization:

$$
\begin{aligned}
& \begin{aligned}
& \frac{\partial E}{\partial \boldsymbol{\mu}_{j}}=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \boldsymbol{\mu}_{j}} p\left(\mathbf{x}_{n} \mid \theta_{j}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x}_{n} \mid \theta_{k}\right)} \\
&=-\sum_{n=1}^{N}\left(\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right)\right. \\
&=-z^{-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \\
& \text { le thus obtain } \\
& \Rightarrow \boldsymbol{\mu}_{j}=\frac{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)}
\end{aligned} .
\end{aligned}
$$

$$
\frac{\partial}{\partial \boldsymbol{\mu}_{j}} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\nu}_{k}\right)=
$$

$$
\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

$$
=-\sum_{n=1}^{N}\left(\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \frac{p\left(\mathbf{x}_{n} \mid \theta_{j}\right)}{\sum_{k=1}^{K} p\left(\mathbf{x}_{n} \mid \theta_{k}\right)}\right)
$$

$$
\begin{aligned}
& =-\boldsymbol{F}^{\prime 1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{j}\right) \frac{\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)} \\
& =\gamma_{j}\left(\mathbf{x}_{n}\right)
\end{aligned}
$$

"responsibility" of component j for \mathbf{x}_{n}

Mixture of Gaussians - $1^{\text {st }}$ Estimation Attempt

- But...

$$
\boldsymbol{\mu}_{j}=\frac{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}\left(\mathbf{x}_{n}\right)} \gamma_{j}\left(\mathbf{x}_{n}\right)=\frac{\pi_{j} \mathcal{N}\left(\mathbf{x}_{n}\left(\boldsymbol{\mu}_{j}\right) \mathbf{\Sigma}_{j}\right)}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n}\left(\boldsymbol{\mu}_{k}\right), \mathbf{\Sigma}_{k}\right)}
$$

- I.e. there is no direct analytical solution!

$$
\frac{\partial E}{\partial \boldsymbol{\mu}_{j}}=f\left(\pi_{1}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}, \ldots, \pi_{M}, \boldsymbol{\mu}_{M}, \boldsymbol{\Sigma}_{M}\right)
$$

- Complex gradient function (non-linear mutual dependencies)
, Optimization of one Gaussian depends on all other Gaussians!
, It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Mixture of Gaussians - Other Strategy

- Other strategy:
, Observed data:
, Unobserved data:

- Unobserved = "hidden variable": j|x

$$
\begin{array}{llllll}
h\left(j=1 \mid x_{n}\right)= & 1 & 111 \tag{0}\\
h\left(j=2 \mid x_{n}\right) & = & 0 & 000 & 11 & 1
\end{array}
$$

Mixture of Gaussians - Other Strategy

- Assuming we knew the values of the hidden variable...

$$
\begin{array}{rrrr}
\text { assumed known } \longrightarrow 1 & 111 & 22 & 2 \\
1 & 2 & j \\
\left.h\left(j=1 \mid x_{n}\right)=\begin{array}{ll}
1 & 111 \\
h\left(j=2 \mid x_{n}\right)= & 00 \\
0 & 0
\end{array}\right) \\
\mu_{1}=\frac{11}{} \frac{\sum_{n=1}^{N} h\left(j=1 \mid x_{n}\right) x_{n}}{\sum_{i=1}^{N} h\left(j=1 \mid x_{n}\right)} & \mu_{2}=\frac{\sum_{n=1}^{N} h\left(j=2 \mid x_{n}\right) x_{n}}{\sum_{i=1}^{N} h\left(j=2 \mid x_{n}\right)}
\end{array}
$$

Mixture of Gaussians - Other Strategy

- Assuming we knew the mixture components...

- Bayes decision rule: Decide $j=1$ if

$$
p\left(j=1 \mid x_{n}\right)>p\left(j=2 \mid x_{n}\right)
$$

Mixture of Gaussians - Other Strategy

- Chicken and egg problem - what comes first?

- In order to break the loop, we need an estimate for j.
, E.g. by clustering...
\Rightarrow Next lecture...

References and Further Reading

- More information in Bishop's book
, Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
, Bayesian Learning: Ch. 1.2.3 and 2.3.6.
, Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

