Machine Learning - Lecture 2

Probability Density Estimation

10.10.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Announcements: Reminders

- Moodle electronic learning room
- Slides, exercises, and supplementary material will be made available here
, Lecture recordings will be uploaded 2-3 days after the lecture
, Moodle access should now be fixed for all registered participants!
- Course webpage
> http://www.vision.rwth-aachen.de/courses/
, Slides will also be made available on the webpage
- Please subscribe to the lecture on rwth online!
, Important to get email announcements and moodle access!

Course Outline

- Fundamentals
, Bayes Decision Theory
, Probability Density Estimation
- Classification Approaches
, Linear Discriminants
, Support Vector Machines
, Ensemble Methods \& Boosting
> Randomized Trees, Forests \& Ferns

- Deep Learning
, Foundations
, Convolutional Neural Networks
, Recurrent Neural Networks

Topics of This Lecture

- Bayes Decision Theory
, Basic concepts
- Minimizing the misclassification rate
> Minimizing the expected loss
, Discriminant functions
- Probability Density Estimation
, General concepts
, Gaussian distribution
- Parametric Methods
- Maximum Likelihood approach
- Bayesian vs. Frequentist views on probability

Recap: The Rules of Probability

- We have shown in the last lecture

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

- From those, we can derive

Bayes' Theorem $\quad p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}$ where

$$
p(X)=\sum_{Y} p(X \mid Y) p(Y)
$$

Probability Densities

- Probabilities over continuous variables are defined over their probability density function (pdf) $p(x)$

$$
p(x \in(a, b))=\int_{a}^{b} p(x) \mathrm{d} x
$$

- The probability that x lies in the interval $(-\infty, z)$ is given by the cumulative distribution function

$$
P(z)=\int_{-\infty}^{z} p(x) \mathrm{d} x
$$

Expectations

- The average value of some function $f(x)$ under a probability distribution $p(x)$ is called its expectation

$$
\mathbb{E}[f]=\sum_{\substack{x \\ \text { discrete case }}} p(x) f(x) \quad \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x
$$

- If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

$$
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

- We can also consider a conditional expectation

$$
\mathbb{E}_{x}[f \mid y]=\sum_{\substack{\uparrow \\ \text { B. Leibe }}} p(x \mid y) f(x)
$$

Variances and Covariances

- The variance provides a measure how much variability there is in $f(x)$ around its mean value $\mathbb{E}[f(x)]$.

$$
\operatorname{var}[f]=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
$$

- For two random variables x and y, the covariance is defined by

$$
\begin{aligned}
\operatorname{cov}[x, y] & =\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}] \\
& =\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
\end{aligned}
$$

- If x and y are vectors, the result is a covariance matrix

$$
\begin{aligned}
\operatorname{cov}[\mathbf{x}, \mathbf{y}] & =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\{\mathbf{x}-\mathbb{E}[\mathbf{x}]\}\left\{\mathbf{y}^{\mathrm{T}}-\mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]\right\}\right] \\
& =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\mathbf{x} \mathbf{y}^{\mathrm{T}}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]
\end{aligned}
$$

Bayes Decision Theory

Thomas Bayes, 1701-1761
"The theory of inverse probability is founded upon an error, and must be wholly rejected."

R.A. Fisher, 1925

Bayes Decision Theory

- Example: handwritten character recognition

- Goal:
, Classify a new letter such that the probability of misclassification is minimized.

Bayes Decision Theory

- Concept 1: Priors (a priori probabilities)
, What we can tell about the probability before seeing the data.
, Example:

- In general:

$$
\sum_{k} p\left(C_{k}\right)=1
$$

Bayes Decision Theory

- Concept 2: Conditional probabilities
, Let x be a feature vector.
> x measures/describes certain properties of the input.
- E.g. number of black pixels, aspect ratio, ...
» $p\left(x \mid C_{k}\right)$ describes its likelihood for class C_{k}.

$$
p(x \mid a)
$$

Bayes Decision Theory

- Example:

- Question:
, Which class?
> Since $p(x \mid b)$ is much smaller than $p(x \mid a)$, the decision should be 'a' here.

Bayes Decision Theory

- Example:

$$
x=25
$$

- Question:
, Which class?
. Since $p(x \mid a)$ is much smaller than $p(x \mid b)$, the decision should be 'b' here.

Bayes Decision Theory

- Example:

- Question:
, Which class?
, Remember that $p(a)=0.75$ and $p(b)=0.25 \ldots$
> I.e., the decision should be again 'a'.
\Rightarrow How can we formalize this?

Bayes Decision Theory

- Concept 3: Posterior probabilities
- We are typically interested in the a posteriori probability, i.e., the probability of class C_{k} given the measurement vector x.
- Bayes' Theorem:

$$
p\left(C_{k} \mid x\right)=\frac{p\left(x \mid C_{k}\right) p\left(C_{k}\right)}{p(x)}=\frac{p\left(x \mid C_{k}\right) p\left(C_{k}\right)}{\sum_{i} p\left(x \mid C_{i}\right) p\left(C_{i}\right)}
$$

- Interpretation

$$
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Normalization Factor }}
$$

Bayes Decision Theory

Bayesian Decision Theory

- Goal: Minimize the probability of a misclassification Decision rule:

$$
\begin{aligned}
& x<\hat{x} \Rightarrow \mathcal{C}_{1} \\
& x \geq \hat{x} \Rightarrow \mathcal{C}_{2}
\end{aligned}
$$

How does p (mistake) change when we move \hat{x} ?

$$
\begin{aligned}
p(\text { mistake }) & =p\left(\mathbf{x} \in \mathcal{R}_{1}, \mathcal{C}_{2}\right)+p\left(\mathbf{x} \in \mathcal{R}_{2}, \mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\mathbf{x}, \mathcal{C}_{2}\right) \mathrm{d} \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathbf{x}, \mathcal{C}_{1}\right) \mathrm{d} \mathbf{x} \\
& =\int_{\mathcal{R}_{1}} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) p(\mathbf{x}) d \mathbf{x}+\int_{\mathcal{R}_{2}} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Bayes Decision Theory

- Optimal decision rule
- Decide for C_{1} if

$$
p\left(\mathcal{C}_{1} \mid x\right)>p\left(\mathcal{C}_{2} \mid x\right)
$$

, This is equivalent to

$$
p\left(x \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)>p\left(x \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)
$$

, Which is again equivalent to (Likelihood-Ratio test)

$$
\frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}>\underbrace{\frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}}_{\text {Decision threshold } \theta}
$$

RW

Generalization to More Than 2 Classes

- Decide for class k whenever it has the greatest posterior probability of all classes:

$$
\begin{aligned}
p\left(\mathcal{C}_{k} \mid x\right) & >p\left(\mathcal{C}_{j} \mid x\right) \quad \forall j \neq k \\
p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right) & >p\left(x \mid \mathcal{C}_{j}\right) p\left(\mathcal{C}_{j}\right) \quad \forall j \neq k
\end{aligned}
$$

- Likelihood-ratio test

$$
\frac{p\left(x \mid \mathcal{C}_{k}\right)}{p\left(x \mid \mathcal{C}_{j}\right)}>\frac{p\left(\mathcal{C}_{j}\right)}{p\left(\mathcal{C}_{k}\right)} \forall j \neq k
$$

Classifying with Loss Functions

- Generalization to decisions with a loss function
, Differentiate between the possible decisions and the possible true classes.
- Example: medical diagnosis
- Decisions: sick or healthy (or: further examination necessary)
- Classes: patient is sick or healthy
, The cost may be asymmetric:

$$
\begin{aligned}
& \operatorname{loss}(\text { decision }=\text { healthy } \mid \text { patient }=\text { sick }) \gg \\
& \quad \operatorname{loss}(\text { decision }=\text { sick } \mid \text { patient }=\text { healthy })
\end{aligned}
$$

Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix $L_{k j}$

$$
L_{k j}=\text { loss for decision } \mathcal{C}_{j} \text { if truth is } \mathcal{C}_{k}
$$

- Example: cancer diagnosis

Decision
cancer normal

Classifying with Loss Functions

- Loss functions may be different for different actors.
, Example:

$$
\begin{aligned}
& \text { aont } \\
& \text { invest" }
\end{aligned}
$$

$$
\begin{aligned}
L_{\text {stocktrader }}(\text { subprime }) & =\left(\begin{array}{cc}
-\frac{1}{2} c_{\text {gain }} & 0 \\
0 & 0
\end{array}\right) \\
L_{\text {bank }}(\text { subprime }) & =\left(\begin{array}{cc}
-\frac{1}{2} c_{\text {gain }} & 0 \\
3 & 0
\end{array}\right)
\end{aligned}
$$

\Rightarrow Different loss functions may lead to different Bayes optimal strategies.

Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
, But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$
\mathbb{E}[L]=\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{k j} p\left(\mathbf{x}, \mathcal{C}_{k}\right) \mathrm{d} \mathbf{x}
$$

- This can be done by choosing the regions \mathcal{R}_{j} such that

$$
\mathbb{E}[L]=\sum_{k} L_{k j} p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)
$$

which is easy to do once we know the posterior class probabilities $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)$

Minimizing the Expected Loss

- Example:
, 2 Classes: C_{1}, C_{2}
> 2 Decision: α_{1}, α_{2}
, Loss function: $L\left(\alpha_{j} \mid \mathcal{C}_{k}\right)=L_{k j}$
, Expected loss (= risk R) for the two decisions:

$$
\begin{aligned}
& \mathbb{E}_{\alpha_{1}}[L]=R\left(\alpha_{1} \mid \mathbf{x}\right)=L_{11} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{21} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
& \mathbb{E}_{\alpha_{2}}[L]=R\left(\alpha_{2} \mid \mathbf{x}\right)=L_{12} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{22} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right)
\end{aligned}
$$

- Goal: Decide such that expected loss is minimized
, l.e. decide α_{1} if $R\left(\alpha_{2} \mid \mathbf{x}\right)>R\left(\alpha_{1} \mid \mathbf{x}\right)$

Minimizing the Expected Loss

$$
\begin{aligned}
R\left(\alpha_{2} \mid \mathbf{x}\right) & >R\left(\alpha_{1} \mid \mathbf{x}\right) \\
L_{12} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{22} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) & >L_{11} p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)+L_{21} p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
\left(L_{12}-L_{11}\right) p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) & >\left(L_{21}-L_{22}\right) p\left(\mathcal{C}_{2} \mid \mathbf{x}\right) \\
\frac{\left(L_{12}-L_{11}\right)}{\left(L_{21}-L_{22}\right)} & >\frac{p\left(\mathcal{C}_{2} \mid \mathbf{x}\right)}{p\left(\mathcal{C}_{1} \mid \mathbf{x}\right)}=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)} \\
\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right)} & >\frac{\left(L_{21}-L_{22}\right)}{\left(L_{12}-L_{11}\right)} \frac{p\left(\mathcal{C}_{2}\right)}{p\left(\mathcal{C}_{1}\right)}
\end{aligned}
$$

\Rightarrow Adapted decision rule taking into account the loss.

The Reject Option

- Classification errors arise from regions where the largest posterior probability $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)$ is significantly less than 1.
- These are the regions where we are relatively uncertain about class membership.
. For some applications, it may be better to reject the automatic decision entirely in such a case and, e.g., consult a human expert.

Discriminant Functions

- Formulate classification in terms of comparisons
, Discriminant functions

$$
y_{1}(x), \ldots, y_{K}(x)
$$

, Classify x as class C_{k} if

$$
y_{k}(x)>y_{j}(x) \quad \forall j \neq k
$$

- Examples (Bayes Decision Theory)

$$
\begin{aligned}
& y_{k}(x)=p\left(\mathcal{C}_{k} \mid x\right) \\
& y_{k}(x)=p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right) \\
& y_{k}(x)=\log p\left(x \mid \mathcal{C}_{k}\right)+\log p\left(\mathcal{C}_{k}\right)
\end{aligned}
$$

Different Views on the Decision Problem

- $y_{k}(x) \propto p\left(x \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)$
, First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
, Then use Bayes' theorem to determine class membership.
\Rightarrow Generative methods
- $y_{k}(x)=p\left(\mathcal{C}_{k} \mid x\right)$
, First solve the inference problem of determining the posterior class probabilities.
, Then use decision theory to assign each new x to its class.
\Rightarrow Discriminative methods
- Alternative
- Directly find a discriminant function $y_{k}(x)$ which maps each input x directly onto a class label.

Topics of This Lecture

- Bayes Decision Theory
, Basic concepts
. Minimizing the misclassification rate
> Minimizing the expected loss
, Discriminant functions
- Probability Density Estimation
, General concepts
, Gaussian distribution
- Parametric Methods
, Maximum Likelihood approach
, Bayesian vs. Frequentist views on probability
- Bayesian Learning

Probability Density Estimation

- Up to now
, Bayes optimal classification
, Based on the probabilities $p\left(\mathbf{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)$
- How can we estimate (= learn) those probability densities?
, Supervised training case: data and class labels are known.
, Estimate the probability density for each class \mathcal{C}_{k} separately:

$$
p\left(\mathbf{x} \mid \mathcal{C}_{k}\right)
$$

> (For simplicity of notation, we will drop the class label \mathcal{C}_{k} in the following.)

Probability Density Estimation

- Data: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$

- Estimate: $p(x)$

- Methods
- Parametric representations
, Non-parametric representations
, Mixture models
(today)
(lecture 3)
(lecture 4)

The Gaussian (or Normal) Distribution

- One-dimensional case
- Mean μ
, Variance σ^{2}

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

- Multi-dimensional case
- Mean μ
, Covariance Σ

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Gaussian Distribution - Properties

- Central Limit Theorem
, "The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows."
- In practice, the convergence to a Gaussian can be very rapid.
. This makes the Gaussian interesting for many applications.
- Example: N uniform $[0,1]$ random variables.

Gaussian Distribution - Properties

- Quadratic Form
- \mathcal{N} depends on x through the exponent

- Shape of the Gaussian
> $\boldsymbol{\Sigma}$ is a real, symmetric matrix.
, We can therefore decompose it into its eigenvectors

$$
\boldsymbol{\Sigma}=\sum_{i=1}^{D} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}}
$$

$$
\boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}}
$$

and thus obtain $\Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}}$ with $y_{i}=\mathbf{u}_{i}^{\mathrm{T}}(\mathbf{x}-\boldsymbol{\mu})$
\Rightarrow Constant density on ellipsoids with main directions along the eigenvectors \mathbf{u}_{i} and scaling factors $\sqrt{\lambda_{i}}$

Gaussian Distribution - Properties

- Special cases
, Full covariance matrix

$$
\boldsymbol{\Sigma}=\left[\sigma_{i j}\right]
$$

\Rightarrow General ellipsoid shape
, Diagonal covariance matrix

$$
\begin{aligned}
& \quad \mathbf{\Sigma}=\operatorname{diag}\left\{\sigma_{i}\right\} \\
& \Rightarrow \text { Axis-aligned ellipsoid }
\end{aligned}
$$

, Uniform variance

$$
\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}
$$

\Rightarrow Hypersphere

Gaussian Distribution - Properties

- The marginals of a Gaussian are again Gaussians:

Topics of This Lecture

- Bayes Decision Theory
, Basic concepts
, Minimizing the misclassification rate
> Minimizing the expected loss
, Discriminant functions
- Probability Density Estimation
> General concepts
. Gaussian distribution
- Parametric Methods
- Maximum Likelihood approach
, Bayesian vs. Frequentist views on probability

Probability Densities

- Probabilities over continuous variables are defined over their probability density function (pdf) $p(x)$

$$
p(x \in(a, b))=\int_{a}^{b} p(x) \mathrm{d} x
$$

- The probability that x lies in the interval $(-\infty, z)$ is given by the cumulative distribution function

$$
P(z)=\int_{-\infty}^{z} p(x) \mathrm{d} x
$$

Expectations

- The average value of some function $f(x)$ under a probability distribution $p(x)$ is called its expectation

$$
\mathbb{E}[f]=\sum_{\substack{x \\ \text { discrete case }}} p(x) f(x) \quad \mathbb{E}[f]=\int p(x) f(x) \mathrm{d} x
$$

- If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

$$
\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

- We can also consider a conditional expectation

$$
\mathbb{E}_{x}^{x}[f \mid y]=\sum_{\substack{\hat{L}--x}} p(x \mid y) f(x)
$$

Variances and Covariances

- The variance provides a measure how much variability there is in $f(x)$ around its mean value $\mathbb{E}[f(x)]$.

$$
\operatorname{var}[f]=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
$$

- For two random variables x and y, the covariance is defined by

$$
\begin{aligned}
\operatorname{cov}[x, y] & =\mathbb{E}_{x, y}[\{x-\mathbb{E}[x]\}\{y-\mathbb{E}[y]\}] \\
& =\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
\end{aligned}
$$

- If x and y are vectors, the result is a covariance matrix

$$
\begin{aligned}
\operatorname{cov}[\mathbf{x}, \mathbf{y}] & =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\{\mathbf{x}-\mathbb{E}[\mathbf{x}]\}\left\{\mathbf{y}^{\mathrm{T}}-\mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]\right\}\right] \\
& =\mathbb{E}_{\mathbf{x}, \mathbf{y}}\left[\mathbf{x} \mathbf{y}^{\mathrm{T}}\right]-\mathbb{E}[\mathbf{x}] \mathbb{E}\left[\mathbf{y}^{\mathrm{T}}\right]
\end{aligned}
$$

Parametric Methods

- Given
- Data $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
, Parametric form of the distribution with parameters θ
, E.g. for Gaussian distrib.: $\theta=(\mu, \sigma)$
- Learning

- Estimation of the parameters θ
- Likelihood of θ
. Probability that the data X have indeed been generated from a probability density with parameters θ

$$
L(\theta)=p(X \mid \theta)
$$

Maximum Likelihood Approach

- Computation of the likelihood
, Single data point: $\quad p\left(x_{n} \mid \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$
, Assumption: all data points are independent

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

, Log-likelihood

$$
E(\theta)=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)
$$

, Estimation of the parameters θ (Learning)

- Maximize the likelihood
- Minimize the negative log-likelihood

Maximum Likelihood Approach

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

- We want to obtain $\hat{\theta}$ such that $L(\hat{\theta})$ is maximized.

Maximum Likelihood Approach

- Minimizing the log-likelihood
, How do we minimize a function?
\Rightarrow Take the derivative and set it to zero.

$$
\frac{\partial}{\partial \theta} E(\theta)=-\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p\left(x_{n} \mid \theta\right)}{p\left(x_{n} \mid \theta\right)} \stackrel{!}{=} 0
$$

- Log-likelihood for Normal distribution (1D case)

$$
\begin{aligned}
E(\theta) & =-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \mu, \sigma\right) \\
& =-\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left\|x_{n}-\mu\right\|^{2}}{2 \sigma^{2}}\right\}\right)
\end{aligned}
$$

Maximum Likelihood Approach

- Minimizing the log-likelihood

$$
\begin{aligned}
\frac{\partial}{\partial \mu} E(\mu, \sigma) & =-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p\left(x_{n} \mid \mu, \sigma\right)}{p\left(x_{n} \mid \mu, \sigma\right)} \\
& =-\sum_{n=1}^{N}-\frac{2\left(x_{n}-\mu\right)}{2 \sigma^{2}} \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right) \\
& =\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}-N \mu\right) \\
\frac{\partial}{\partial \mu} E(\mu, \sigma) & \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& p\left(x_{n} \mid \mu, \sigma\right)= \\
& \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left\|x_{n}-\mu\right\|^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximum Likelihood Approach

- We thus obtain

$$
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

"sample mean"

- In a similar fashion, we get

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

"sample variance"

- $\hat{\theta}=(\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- This is a very important result.
- Unfortunately, it is wrong...

Maximum Likelihood Approach

- Or not wrong, but rather biased...
- Assume the samples $x_{1}, x_{2}, \ldots, x_{N}$ come from a true Gaussian distribution with mean μ and variance σ^{2}
, We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$
\begin{aligned}
& \mathbb{E}\left(\mu_{\mathrm{ML}}\right)=\mu \\
& \mathbb{E}\left(\sigma_{\mathrm{ML}}^{2}\right)=\left(\frac{N-1}{N}\right) \sigma^{2}
\end{aligned}
$$

\Rightarrow The ML estimate will underestimate the true variance.

- Corrected estimate:

$$
\tilde{\sigma}^{2}=\frac{N}{N-1} \sigma_{\mathrm{ML}}^{2}=\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
, It systematically underestimates the variance of the distribution!
, E.g. consider the case

$$
N=1, X=\left\{x_{1}\right\}
$$

\Rightarrow Maximum-likelihood estimate:

, We say ML overfits to the observed data.
, We will still often use ML, but it is important to know about this effect.

Deeper Reason

- Maximum Likelihood is a Frequentist concept
, In the Frequentist view, probabilities are the frequencies of random, repeatable events.
- These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
- In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
- This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- To see the difference...
> Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
- This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
, In the Bayesian view, we generally have a prior, e.g., from calculations how fast the polar ice is melting.
, If we now get fresh evidence, e.g., from a new satellite, we may revise our opinion and update the uncertainty from the prior.

Posterior \propto Likelihood \times Prior
, This generally allows to get better uncertainty estimates for many situations.

- Main Frequentist criticism
, The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
- Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
, In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
, i.e. to use a prior for θ

- Training data then converts this prior distribution on θ into a posterior probability density.
, The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.

Bayesian Learning

- Bayesian Learning is an important concept
> However, it would lead to far here.
\Rightarrow I will introduce it in more detail in the Advanced ML lecture.

References and Further Reading

- More information in Bishop's book
, Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
, Bayesian Learning: Ch. 1.2.3 and 2.3.6.
, Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

