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Machine Learning – Lecture 2

Probability Density Estimation

10.10.2019

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
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Announcements: Reminders

• Moodle electronic learning room

 Slides, exercises, and supplementary material will be made 

available here

 Lecture recordings will be uploaded 2-3 days after the lecture

 Moodle access should now be fixed for all registered participants!

• Course webpage

 http://www.vision.rwth-aachen.de/courses/

 Slides will also be made available on the webpage

• Please subscribe to the lecture on rwth online!

 Important to get email announcements and moodle access!

2
B. Leibe

http://www.vision.rwth-aachen.de/courses/
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
B. Leibe
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Topics of This Lecture

• Bayes Decision Theory
 Basic concepts

 Minimizing the misclassification rate

 Minimizing the expected loss

 Discriminant functions

• Probability Density Estimation
 General concepts

 Gaussian distribution

• Parametric Methods
 Maximum Likelihood approach

 Bayesian vs. Frequentist views on probability

4
B. Leibe
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Recap: The Rules of Probability

• We have shown in the last lecture

• From those, we can derive

5
B. Leibe

Sum Rule

Product Rule

Bayes’ Theorem

where
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Probability Densities

• Probabilities over continuous 

variables are defined over their

probability density function 

(pdf)        .

• The probability that x lies in the interval              is given by 

the cumulative distribution function

6

( , )z

B. Leibe Image source: C.M. Bishop, 2006
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Expectations

• The average value of some function          under a 

probability distribution         is called its expectation

• If we have a finite number N of samples drawn from a pdf, 

then the expectation can be approximated by

• We  can also consider a conditional expectation 

7

( )p x
( )f x

discrete case continuous case

B. Leibe
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Variances and Covariances

• The variance provides a measure how much variability there 

is in          around its mean value               .

• For two random variables x and y, the covariance is defined 

by

• If x and y are vectors, the result is a covariance matrix

8
B. Leibe
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Bayes Decision Theory

17
B. Leibe

Thomas Bayes, 1701-1761

Image source: Wikipedia

“The theory of inverse probability is founded upon an

error, and must be wholly rejected.”

R.A. Fisher, 1925
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Bayes Decision Theory

• Example: handwritten character recognition

• Goal: 

 Classify a new letter such that the probability of misclassification is 

minimized.

18
B. LeibeSlide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Bayes Decision Theory

• Concept 1: Priors (a priori probabilities)

 What we can tell about the probability before seeing the data.

 Example:

• In general:

19
B. Leibe
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Slide credit: Bernt Schiele
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Bayes Decision Theory

• Concept 2: Conditional probabilities

 Let x be a feature vector.

 x measures/describes certain properties of the input.

– E.g. number of black pixels, aspect ratio, …

 p(x|Ck) describes its likelihood for class Ck.

20
B. Leibe

 | kp x C

x

 |p x b

 |p x a

x

Slide credit: Bernt Schiele
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Since               is much smaller than               , the decision 

should be ‘a’ here.

21
B. Leibe

 |p x a  |p x b

15x 

Slide credit: Bernt Schiele

 |p x a |p x b
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Since                is much smaller than               , the decision 

should be ‘b’ here.

22
B. Leibe

 |p x a  |p x b

25x 

 |p x a  |p x b

Slide credit: Bernt Schiele
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Remember that p(a) = 0.75 and p(b) = 0.25…

 I.e., the decision should be again ‘a’.

 How can we formalize this?

23
B. Leibe

 |p x a  |p x b

20x 

Slide credit: Bernt Schiele



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Bayes Decision Theory

• Concept 3: Posterior probabilities

 We are typically interested in the a posteriori probability, i.e., the 
probability of class Ck given the measurement vector x.

• Bayes’ Theorem:

• Interpretation

24
B. Leibe
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Slide credit: Bernt Schiele
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Bayes Decision Theory

25
B. Leibe

x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele
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Bayesian Decision Theory

• Goal: Minimize the probability of a misclassification

26
B. Leibe

=

Z

R1

p(C2jx)p(x)dx+

Z

R2

p(C1jx)p(x)dx

The green and blue

regions stay constant.

Only the size of the 

red region varies!

Image source: C.M. Bishop, 2006

How does

𝑝(mistake) change 

when we move ො𝑥?

Decision rule:

𝑥 < ො𝑥  𝒞1
𝑥 ≥ ො𝑥  𝒞2



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Bayes Decision Theory

• Optimal decision rule

 Decide for C1 if

 This is equivalent to 

 Which is again equivalent to (Likelihood-Ratio test)

27
B. Leibe

p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold 

Slide credit: Bernt Schiele
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Generalization to More Than 2 Classes

• Decide for class k whenever it has the greatest posterior 

probability of all classes:

• Likelihood-ratio test

28
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p(Ckjx) > p(Cjjx) 8j 6= k

p(xjCk)p(Ck) > p(xjCj)p(Cj) 8j 6= k

p(xjCk)
p(xjCj)

>
p(Cj)
p(Ck)

8j 6= k

Slide credit: Bernt Schiele
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Classifying with Loss Functions

• Generalization to decisions with a loss function

 Differentiate between the possible decisions and the possible true 

classes.

 Example: medical diagnosis

– Decisions: sick or healthy (or: further examination necessary)

– Classes: patient is sick or healthy

 The cost may be asymmetric:

29
B. Leibe

loss(decision = healthyjpatient = sick) >>

loss(decision = sick jpatient = healthy)

Slide credit: Bernt Schiele
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Classifying with Loss Functions

• In general, we can formalize this by introducing a 
loss matrix Lkj

• Example: cancer diagnosis

30
B. Leibe

Decision
T
ru

thLcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:
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Classifying with Loss Functions

• Loss functions may be different for different actors.

 Example:

 Different loss functions may lead to different Bayes optimal 

strategies.

31
B. Leibe

Lstocktrader (subprime) =

µ
¡1
2
cgain 0

0 0

¶

Lbank (subprime) =

µ
¡1
2
cgain 0

0

¶

“invest”
“don’t

invest”
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Minimizing the Expected Loss

• Optimal solution is the one that minimizes the loss.

 But: loss function depends on the true class, which is unknown.

• Solution: Minimize the expected loss

• This can be done by choosing the regions      such that

which is easy to do once we know the posterior class 

probabilities            .

32
B. Leibe

Rj

p(Ckjx)
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Minimizing the Expected Loss

• Example:

 2 Classes:    C1, C2

 2 Decision:   ®1, ®2

 Loss function:

 Expected loss (= risk R) for the two decisions:

• Goal: Decide such that expected loss is minimized

 I.e. decide ®1 if 

33
B. Leibe

L(®jjCk) = Lkj

Slide credit: Bernt Schiele
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Minimizing the Expected Loss

 Adapted decision rule taking into account the loss.

34
B. Leibe

R(®2jx) > R(®1jx)
L12p(C1jx) +L22p(C2jx) > L11p(C1jx) +L21p(C2jx)

(L12 ¡L11)p(C1jx) > (L21¡L22)p(C2jx)
(L12 ¡L11)

(L21 ¡L22)
>

p(C2jx)
p(C1jx)

=
p(xjC2)p(C2)
p(xjC1)p(C1)

p(xjC1)
p(xjC2)

>
(L21 ¡L22)

(L12 ¡L11)

p(C2)
p(C1)

Slide credit: Bernt Schiele
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The Reject Option

• Classification errors arise from regions where the largest 

posterior probability              is significantly less than 1.

 These are the regions where we are relatively uncertain about 

class membership.

 For some applications, it may be better to reject the automatic 

decision entirely in such a case and, e.g., consult a human expert.
35

B. Leibe

p(Ckjx)

Image source: C.M. Bishop, 2006
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Discriminant Functions

• Formulate classification in terms of comparisons

 Discriminant functions

 Classify x as class Ck if

• Examples (Bayes Decision Theory)

36
B. Leibe

y1(x); : : : ; yK(x)

yk(x) > yj(x) 8j 6= k

yk(x) = p(Ckjx)
yk(x) = p(xjCk)p(Ck)
yk(x) = log p(xjCk) + log p(Ck)

Slide credit: Bernt Schiele
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Different Views on the Decision Problem

•
 First determine the class-conditional densities for each class 

individually and separately infer the prior class probabilities.

 Then use Bayes’ theorem to determine class membership.

 Generative methods

•
 First solve the inference problem of determining the posterior class 

probabilities.

 Then use decision theory to assign each new x to its class.

 Discriminative methods

• Alternative

 Directly find a discriminant function           which maps each input x

directly onto a class label.

37
B. Leibe

yk(x) / p(xjCk)p(Ck)

yk(x) = p(Ckjx)

yk(x)
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Topics of This Lecture

• Bayes Decision Theory
 Basic concepts

 Minimizing the misclassification rate

 Minimizing the expected loss

 Discriminant functions

• Probability Density Estimation
 General concepts

 Gaussian distribution

• Parametric Methods
 Maximum Likelihood approach

 Bayesian vs. Frequentist views on probability

 Bayesian Learning

38
B. Leibe
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Probability Density Estimation

• Up to now

 Bayes optimal classification

 Based on the probabilities

• How can we estimate (= learn) those probability densities?

 Supervised training case: data and class labels are known.

 Estimate the probability density for each class       separately:

 (For simplicity of notation, we will drop the class label       in the 

following.)

39
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p(xjCk)p(Ck)

p(xjCk)
Ck

Ck

Slide credit: Bernt Schiele
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Probability Density Estimation

• Data: x1, x2, x3, x4, …

• Estimate: p(x)

• Methods

 Parametric representations (today)

 Non-parametric representations (lecture 3)

 Mixture models (lecture 4)

40
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x

x

Slide credit: Bernt Schiele
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The Gaussian (or Normal) Distribution

• One-dimensional case

 Mean ¹

 Variance ¾2

• Multi-dimensional case

 Mean ¹

 Covariance §

41
B. Leibe

N (xj¹; ¾2) = 1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006
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Gaussian Distribution – Properties

• Central Limit Theorem

 “The distribution of the sum of N i.i.d. random variables becomes 

increasingly Gaussian as N grows.”

 In practice, the convergence to a Gaussian can be very rapid.

 This makes the Gaussian interesting for many applications.

• Example: N uniform [0,1] random variables.

42
B. Leibe Image source: C.M. Bishop, 2006



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

9

Gaussian Distribution – Properties

• Quadratic Form
 N depends on x through the exponent

 Here, M is often called the 

Mahalanobis distance from x to ¹.

• Shape of the Gaussian

 § is a real, symmetric matrix.

 We can therefore decompose it into its eigenvectors

and thus obtain                        with                         .

 Constant density on ellipsoids with main directions along the 
eigenvectors ui and scaling factors       . 43

§ =

DX

i=1

¸iuiu
T
i

p
¸i

Image source: C.M. Bishop, 2006
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Gaussian Distribution – Properties

• Special cases

 Full covariance matrix

 General ellipsoid shape

 Diagonal covariance matrix

 Axis-aligned ellipsoid

 Uniform variance

 Hypersphere

44
B. Leibe

§= diagf¾ig

§= ¾2I

§= [¾ij]

Image source: C.M. Bishop, 2006
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Gaussian Distribution – Properties

• The marginals of a Gaussian are again Gaussians: 

45
B. Leibe Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Bayes Decision Theory
 Basic concepts

 Minimizing the misclassification rate

 Minimizing the expected loss

 Discriminant functions

• Probability Density Estimation
 General concepts

 Gaussian distribution

• Parametric Methods
 Maximum Likelihood approach

 Bayesian vs. Frequentist views on probability

46
B. Leibe
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Probability Densities

• Probabilities over continuous 

variables are defined over their

probability density function 

(pdf)        .

• The probability that x lies in the interval              is given by 

the cumulative distribution function

47

( , )z

B. Leibe Image source: C.M. Bishop, 2006
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Expectations

• The average value of some function          under a 

probability distribution         is called its expectation

• If we have a finite number N of samples drawn from a pdf, 

then the expectation can be approximated by

• We  can also consider a conditional expectation 

48

( )p x
( )f x

discrete case continuous case

B. Leibe
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Variances and Covariances

• The variance provides a measure how much variability there 

is in          around its mean value               .

• For two random variables x and y, the covariance is defined 

by

• If x and y are vectors, the result is a covariance matrix

49
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Parametric Methods

• Given 

 Data

 Parametric form of the distribution

with parameters µ

 E.g. for Gaussian distrib.:

• Learning

 Estimation of the parameters µ

• Likelihood of µ

 Probability that the data X have indeed been generated from a 

probability density with parameters µ

50
B. Leibe

x

x
X = fx1; x2; : : : ; xNg

µ = (¹;¾)

L(µ) = p(Xjµ)

Slide adapted from Bernt Schiele
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

Maximum Likelihood Approach

• Computation of the likelihood

 Single data point:

 Assumption: all data points are independent

 Log-likelihood

 Estimation of the parameters µ (Learning)

– Maximize the likelihood

– Minimize the negative log-likelihood

51
B. Leibe

L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele
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Maximum Likelihood Approach

• Likelihood:

• We want to obtain    such that          is maximized.
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L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

L(µ̂)µ̂

µ̂

p(Xjµ)

µ

Slide credit: Bernt Schiele
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Maximum Likelihood Approach

• Minimizing the log-likelihood

 How do we minimize a function?

 Take the derivative and set it to zero.

• Log-likelihood for Normal distribution (1D case)
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E(µ) = ¡
NX

n=1

ln p(xnj¹; ¾)

= ¡
NX

n=1

ln

µ
1p
2¼¾

exp

½
¡jjxn ¡ ¹jj2

2¾2

¾¶

@

@µ
E(µ) = ¡ @

@µ

NX

n=1

lnp(xnjµ) = ¡
NX

n=1

@
@µ
p(xnjµ)
p(xnjµ)

!
= 0
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Maximum Likelihood Approach

• Minimizing the log-likelihood
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Maximum Likelihood Approach

• We thus obtain

• In a similar fashion, we get

• is the Maximum Likelihood estimate for the 

parameters of a Gaussian distribution.

• This is a very important result.

• Unfortunately, it is wrong…

55
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¹̂ =
1

N

NX

n=1

xn

¾̂2 =
1

N

NX

n=1

(xn ¡ ¹̂)2

“sample mean”

“sample variance”

µ̂ = (¹̂; ¾̂)
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Maximum Likelihood Approach

• Or not wrong, but rather biased…

• Assume the samples x1, x2, …, xN come from a true 

Gaussian distribution with mean ¹ and variance ¾2

 We can now compute the expectations of the ML estimates with 

respect to the data set values. It can be shown that

 The ML estimate will underestimate the true variance.

• Corrected estimate:

56
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E(¹ML) = ¹

E(¾2ML) =

µ
N ¡ 1

N

¶
¾2

~¾2 =
N

N ¡ 1
¾2ML =

1

N ¡ 1

NX

n=1

(xn ¡ ¹̂)2
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Maximum Likelihood – Limitations

• Maximum Likelihood has several significant limitations

 It systematically underestimates the variance of the distribution!

 E.g. consider the case 

 Maximum-likelihood estimate:

 We say ML overfits to the observed data.

 We will still often use ML, but it is important to know about 

this effect.
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x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele
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Deeper Reason

• Maximum Likelihood is a Frequentist concept

 In the Frequentist view, probabilities are the frequencies of random, 

repeatable events.

 These frequencies are fixed, but can be estimated more precisely 

when more data is available.

• This is in contrast to the Bayesian interpretation

 In the Bayesian view, probabilities quantify the uncertainty about 

certain states or events.

 This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like

each other too well…

58
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Bayesian vs. Frequentist View

• To see the difference…

 Suppose we want to estimate the uncertainty whether the Arctic ice 

cap will have disappeared by the end of the century.

 This question makes no sense in a Frequentist view, since the event 

cannot be repeated numerous times.

 In the Bayesian view, we generally have a prior, 

e.g., from calculations how fast the polar ice is melting.

 If we now get fresh evidence, e.g., from a new satellite, we may 

revise our opinion and update the uncertainty from the prior.

 This generally allows to get better uncertainty estimates for 

many situations.

• Main Frequentist criticism

 The prior has to come from somewhere and if it is wrong, the result 

will be worse.
59
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Bayesian Approach to Parameter Learning

• Conceptual shift

 Maximum Likelihood views the true parameter vector µ to be 

unknown, but fixed.

 In Bayesian learning, we consider µ to be a random variable.

• This allows us to use knowledge about the parameters µ

 i.e. to use a prior for µ

 Training data then converts this

prior distribution on µ into 

a posterior probability density.

 The prior thus encodes knowledge we have about the type of 

distribution we expect to see for µ.
60
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Bayesian Learning

• Bayesian Learning is an important concept

 However, it would lead to far here.

 I will introduce it in more detail in the Advanced ML lecture.
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References and Further Reading

• More information in Bishop’s book

 Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

 Bayesian Learning: Ch. 1.2.3 and 2.3.6. 

 Nonparametric methods: Ch. 2.5.
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