

Machine Learning – Lecture 2

Probability Density Estimation

10.10.2019

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements: Reminders

- Moodle electronic learning room
 - Slides, exercises, and supplementary material will be made available here
 - Lecture recordings will be uploaded 2-3 days after the lecture
 - > Moodle access should now be fixed for all registered participants!
- Course webpage
 - http://www.vision.rwth-aachen.de/courses/
 - Slides will also be made available on the webpage
- Please subscribe to the lecture on rwth online!
 - Important to get email announcements and moodle access!

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - > Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions
- Probability Density Estimation
 - General concepts
 - Gaussian distribution
- Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability

Recap: The Rules of Probability

• We have shown in the last lecture

Sum Rule $p(X) = \sum_{Y} p(X, Y)$ Product Rulep(X, Y) = p(Y|X)p(X)

• From those, we can derive

Bayes' Theorem $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$ where $p(X) = \sum_{Y} p(X|Y)p(Y)$

Probability Densities

• Probabilities over continuous variables are defined over their probability density function (pdf) p(x)

$$p(x \in (a, b)) = \int_{a}^{b} p(x) \, \mathrm{d}x$$

$$p(x)$$
 $P(x)$

 The probability that x lies in the interval (-∞, z) is given by the cumulative distribution function

$$P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$$

Expectations

• The average value of some function f(x) under a probability distribution p(x) is called its expectation

$$\mathbb{E}[f] = \sum_{x} p(x) f(x) \qquad \mathbb{E}[f] = \int p(x) f(x) \, \mathrm{d}x$$
 discrete case continuous case

• If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

We can also consider a conditional expectation

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Variances and Covariances

• The variance provides a measure how much variability there is in f(x) around its mean value $\mathbb{E}[f(x)]$.

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

 For two random variables x and y, the covariance is defined by

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\left\{ x - \mathbb{E}[x] \right\} \left\{ y - \mathbb{E}[y] \right\} \right] \\ = \mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

• If x and y are vectors, the result is a covariance matrix $cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right]$ $= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]$

Thomas Bayes, 1701-1761

"The theory of inverse probability is founded upon an error, and must be wholly rejected."

R.A. Fisher, 1925

• Example: handwritten character recognition

- Goal:
 - Classify a new letter such that the probability of misclassification is minimized.

RWTHAACHEN UNIVERSITY

Bayes Decision Theory

Concept 1: Priors (a priori probabilities)

- What we can tell about the probability before seeing the data.
- Example:

In general:

 $\sum_{k} p(C_{k}) = 1$

Machine Learning Winter '19

- Concept 2: Conditional probabilities
 - Let x be a feature vector.
 - > x measures/describes certain properties of the input.
 - E.g. number of black pixels, aspect ratio, ...
 - > $p(x|C_k)$ describes its likelihood for class C_k .

• Example:

- Question:
 - Which class?
 - Since p(x|b) is much smaller than p(x|a), the decision should be 'a' here.

• Example:

- Que ⊳ \
 - Question:
 - Which class?
 - Since p(x|a) is much smaller than p(x|b), the decision should be 'b' here.

• Example:

- Question:
 - Which class?
 - > Remember that p(a) = 0.75 and p(b) = 0.25...
 - I.e., the decision should be again 'a'.
 - \Rightarrow How can we formalize this?

Concept 3: Posterior probabilities

- > We are typically interested in the *a posteriori* probability, i.e., the probability of class C_k given the measurement vector x.
- Bayes' Theorem:

$$p(C_k | x) = \frac{p(x | C_k) p(C_k)}{p(x)} = \frac{p(x | C_k) p(C_k)}{\sum_i p(x | C_i) p(C_i)}$$

Interpretation

 $Posterior = \frac{Likelihood \times Prior}{Normalization \ Factor}$

Machine Learning Winter '19

Machine Learning Winter '19

• Goal: Minimize the probability of a misclassification

- Optimal decision rule
 - > Decide for C_1 if

$$p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x)$$

This is equivalent to

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1) > p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

Which is again equivalent to (Likelihood-Ratio test)

Decision threshold θ

RWTHAACHEN UNIVERSITY Generalization to More Than 2 Classes

 Decide for class k whenever it has the greatest posterior probability of all classes:

$$p(\mathcal{C}_k|x) > p(\mathcal{C}_j|x) \quad \forall j \neq k$$

$$p(x|\mathcal{C}_k)p(\mathcal{C}_k) > p(x|\mathcal{C}_j)p(\mathcal{C}_j) \quad \forall j \neq k$$

Likelihood-ratio test

$$\frac{p(x|\mathcal{C}_k)}{p(x|\mathcal{C}_j)} > \frac{p(\mathcal{C}_j)}{p(\mathcal{C}_k)} \quad \forall j \neq k$$

Classifying with Loss Functions

- Generalization to decisions with a loss function
 - Differentiate between the possible decisions and the possible true classes.
 - Example: medical diagnosis
 - Decisions: sick or healthy (or: further examination necessary)
 - Classes: patient is *sick* or *healthy*
 - > The cost may be asymmetric:

loss(decision = healthy|patient = sick) >>loss(decision = sick|patient = healthy)

Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix L_{kj}

$$L_{kj} = loss for decision C_j if truth is C_k.$$

Example: cancer diagnosis

 $\begin{aligned} & \text{Decision} \\ & \text{cancer normal} \\ L_{cancer diagnosis} = \underbrace{\textbf{f}}_{normal} \begin{array}{c} \text{cancer} & 0 & 1000 \\ 0 & 1 & 0 \end{array} \end{aligned}$

Classifying with Loss Functions

• Loss functions may be different for different actors.

Example:

$$L_{stocktrader}(subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0\\ 0 & 0 \end{pmatrix}$$

$$(-\frac{1}{2}c_{gain} & 0\\ 0 & 0 \end{pmatrix}$$

$$L_{bank}(subprime) = \left(\begin{array}{cc} -\frac{1}{2}c_{gain} & 0\\ & & \\ \end{array}\right)$$

 \Rightarrow Different loss functions may lead to different Bayes optimal strategies.

Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, \mathrm{d}\mathbf{x}$$

• This can be done by choosing the regions \mathcal{R}_j such that

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

which is easy to do once we know the posterior class probabilities $p(C_k|\mathbf{x})$

Minimizing the Expected Loss

- Example:
 - > 2 Classes: C_1 , C_2
 - > 2 Decision: α_1 , α_2
 - > Loss function: $L(lpha_j | \mathcal{C}_k) = L_{kj}$
 - > Expected loss (= risk R) for the two decisions:

$$\mathbb{E}_{\alpha_1}[L] = R(\alpha_1 | \mathbf{x}) = L_{11} p(\mathcal{C}_1 | \mathbf{x}) + L_{21} p(\mathcal{C}_2 | \mathbf{x})$$
$$\mathbb{E}_{\alpha_2}[L] = R(\alpha_2 | \mathbf{x}) = L_{12} p(\mathcal{C}_1 | \mathbf{x}) + L_{22} p(\mathcal{C}_2 | \mathbf{x})$$

• Goal: Decide such that expected loss is minimized • I.e. decide α_1 if $R(\alpha_2 | \mathbf{x}) > R(\alpha_1 | \mathbf{x})$

Minimizing the Expected Loss

$$R(\alpha_{2}|\mathbf{x}) > R(\alpha_{1}|\mathbf{x})$$

$$L_{12}p(\mathcal{C}_{1}|\mathbf{x}) + L_{22}p(\mathcal{C}_{2}|\mathbf{x}) > L_{11}p(\mathcal{C}_{1}|\mathbf{x}) + L_{21}p(\mathcal{C}_{2}|\mathbf{x})$$

$$(L_{12} - L_{11})p(\mathcal{C}_{1}|\mathbf{x}) > (L_{21} - L_{22})p(\mathcal{C}_{2}|\mathbf{x})$$

$$\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(\mathcal{C}_{2}|\mathbf{x})}{p(\mathcal{C}_{1}|\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}$$

$$\frac{p(\mathbf{x}|\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})} > \frac{(L_{21} - L_{22})}{(L_{12} - L_{11})}\frac{p(\mathcal{C}_{2})}{p(\mathcal{C}_{1})}$$

 \Rightarrow Adapted decision rule taking into account the loss.

The Reject Option

- Classification errors arise from regions where the largest posterior probability $p(C_k|\mathbf{x})$ is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and, e.g., consult a human expert.

35

Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

> Classify x as class C_k if

$$y_k(x) > y_j(x) \quad \forall j \neq k$$

• Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k | x)$$

$$y_k(x) = p(x | \mathcal{C}_k) p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x | \mathcal{C}_k) + \log p(\mathcal{C}_k)$$

Different Views on the Decision Problem

- $y_k(x) \propto p(x|\mathcal{C}_k)p(\mathcal{C}_k)$
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - Then use Bayes' theorem to determine class membership.
 - \Rightarrow Generative methods

•
$$y_k(x) = p(\mathcal{C}_k|x)$$

- First solve the inference problem of determining the posterior class probabilities.
- > Then use decision theory to assign each new x to its class.
- \Rightarrow Discriminative methods
- Alternative
 - > Directly find a discriminant function $y_k(x)$ which maps each input x directly onto a class label.

RWTHAACHEN UNIVERSITY

Topics of This Lecture

Bayes Decision Theory

- Basic concepts
- Minimizing the misclassification rate
- Minimizing the expected loss
- > Discriminant functions

Probability Density Estimation

- General concepts
- Gaussian distribution
- Parametric Methods
 - » Maximum Likelihood approach
 - > Bayesian vs. Frequentist views on probability
 - > Bayesian Learning

Probability Density Estimation

- Up to now
 - Bayes optimal classification
 - » Based on the probabilities $\,p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)\,$
- How can we estimate (= learn) those probability densities?
 - Supervised training case: data and class labels are known.
 - > Estimate the probability density for each class \mathcal{C}_k separately:

> (For simplicity of notation, we will drop the class label \mathcal{C}_k in the following.)

Probability Density Estimation

• Data: $x_1, x_2, x_3, x_4, ...$

• Estimate: p(x)

Methods

- Parametric representations
- Non-parametric representations
- Mixture models

(today)
(lecture 3)
(lecture 4)

The Gaussian (or Normal) Distribution

- One-dimensional case
 - > Mean μ
 - > Variance σ^2

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

 x_2

- Multi-dimensional case
 - > Mean μ
 - > Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

 x_1

41

Gaussian Distribution – Properties

- Central Limit Theorem
 - "The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows."
 - In practice, the convergence to a Gaussian can be very rapid.
 - > This makes the Gaussian interesting for many applications.
 - Example: N uniform [0,1] random variables.

RWTHAACHEN UNIVERSITY

Gaussian Distribution – Properties

- Quadratic Form
 - > \mathcal{N} depends on \mathbf{x} through the exponent

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- > Here, \triangle is often called the Mahalanobis distance from x to μ .
- Shape of the Gaussian
 - \succ Σ is a real, symmetric matrix.
 - We can therefore decompose it into its eigenvectors

$$\boldsymbol{\Sigma} = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}} \qquad \boldsymbol{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

and thus obtain $\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i}$ with $y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu})$

 \Rightarrow Constant density on ellipsoids with main directions along the eigenvectors \mathbf{u}_i and scaling factors $\sqrt{\lambda_i}$

43

Gaussian Distribution – Properties

- Special cases
 - Full covariance matrix

 $\mathbf{\Sigma} = [\sigma_{ij}]$

 \Rightarrow General ellipsoid shape

- > Diagonal covariance matrix ${old \Sigma}=diag\{\sigma_i\}$
 - \Rightarrow Axis-aligned ellipsoid
- > Uniform variance $\mathbf{\Sigma}=\sigma^2\mathbf{I}$
 - \Rightarrow Hypersphere

44

Gaussian Distribution – Properties

• The marginals of a Gaussian are again Gaussians:

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - > Discriminant functions
- Probability Density Estimation
 - > General concepts
 - Gaussian distribution

Parametric Methods

- Maximum Likelihood approach
- Bayesian vs. Frequentist views on probability

Probability Densities

• Probabilities over continuous variables are defined over their probability density function (pdf) p(x)

$$p(x \in (a, b)) = \int_{a}^{b} p(x) \,\mathrm{d}x$$

$$p(x)$$
 $P(x)$
 δx x

 The probability that x lies in the interval (-∞, z) is given by the cumulative distribution function

$$P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$$

Expectations

• The average value of some function f(x) under a probability distribution p(x) is called its expectation

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \qquad \mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$
 discrete case continuous case

• If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

We can also consider a conditional expectation

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

B. Leibe

Variances and Covariances

• The variance provides a measure how much variability there is in f(x) around its mean value $\mathbb{E}[f(x)]$.

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

 For two random variables x and y, the covariance is defined by

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[\left\{ x - \mathbb{E}[x] \right\} \left\{ y - \mathbb{E}[y] \right\} \right] \\ = \mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

• If x and y are vectors, the result is a covariance matrix $cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right]$ $= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]$

Parametric Methods

- Given
 - > Data $X=\{x_1,x_2,\ldots,x_N\}$
 - Parametric form of the distribution with parameters θ
 - > E.g. for Gaussian distrib.: $heta=(\mu,\sigma)$

- Learning
 - > Estimation of the parameters θ
- Likelihood of θ
 - > Probability that the data X have indeed been generated from a probability density with parameters θ

$$L(\theta) = p(X|\theta)$$

- Computation of the likelihood Single data point: $p(x_n|\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$
 - Assumption: all data points are independent ≻

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

- Log-likelihood $E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$ $n \equiv 1$
- Estimation of the parameters θ (Learning) \succ
 - Maximize the likelihood
 - Minimize the negative log-likelihood

- Likelihood: $L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$
- We want to obtain $\hat{\theta}$ such that $L(\hat{\theta})$ is maximized.

<u> Machine Learning Winter '19</u>

- Minimizing the log-likelihood
 - How do we minimize a function?
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n | \theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Log-likelihood for Normal distribution (1D case)

$$E(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \mu, \sigma)$$
$$= -\sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left\{ -\frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)$$

B. Leibe

Minimizing the log-likelihood $\frac{\partial}{\partial \mu} E(\mu, \sigma) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p(x_n | \mu, \sigma)}{p(x_n | \mu, \sigma)}$ $= -\sum_{n=1}^{N} -\frac{2(x_n-\mu)}{2\sigma^2}$ $= \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu)$ $= \frac{1}{\sigma^2} \left(\sum_{n=1}^{N} x_n - N\mu \right)$ $\frac{\partial}{\partial \mu} E(\mu, \sigma) \stackrel{!}{=} 0 \qquad \Leftrightarrow \qquad \hat{\mu} = \frac{1}{N} \sum^{N} x_{n}$ B. Leibe

 $p(x_n|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{||x_n-\mu||^2}{2\sigma^2}}$

54

• We thus obtain

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

"sample mean"

In a similar fashion, we get

$$\hat{\sigma}^2 = rac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$
 "sample variance"

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
- This is a very important result.
- Unfortunately, it is wrong...

56

Maximum Likelihood Approach

- Or not wrong, but rather biased...
- Assume the samples $x_1, x_2, ..., x_N$ come from a true Gaussian distribution with mean μ and variance σ^2
 - We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

$$\mathbb{E}(\mu_{\rm ML}) = \mu$$
$$\mathbb{E}(\sigma_{\rm ML}^2) = \left(\frac{N-1}{N}\right)\sigma^2$$

 \Rightarrow The ML estimate will underestimate the true variance.

Corrected estimate:

$$\tilde{\sigma}^2 = \frac{N}{N-1} \sigma_{\mathrm{ML}}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$
B. Leibe

λT

Maximum Likelihood – Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case

 $N=1, X=\{x_1\}$

 \Rightarrow Maximum-likelihood estimate:

- > We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Machine Learning Winter 19

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

- To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior,
 e.g., from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g., from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $\textit{Posterior} \propto \textit{Likelihood} \times \textit{Prior}$

- This generally allows to get better uncertainty estimates for many situations.
- Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
 - > Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - > In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
 - \succ i.e. to use a prior for θ
 - > Training data then converts this prior distribution on θ into a posterior probability density.

> The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Machine Learning Winter '19

B. Leibe

posterior

Bayesian Learning

- Bayesian Learning is an important concept
 - However, it would lead to far here.
 - \Rightarrow I will introduce it in more detail in the Advanced ML lecture.

References and Further Reading

- More information in Bishop's book
 - Gaussian distribution and ML:
 - Bayesian Learning:
 - Nonparametric methods:

Ch. 1.2.4 and 2.3.1-2.3.4. Ch. 1.2.3 and 2.3.6. Ch. 2.5.

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

