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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
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Topics of This Lecture

• Recap: Recurrent Neural Networks (RNNs)
 Backpropagation through Time (BPTT) 

 Problems with RNN Training

 Handling Vanishing Gradients

• Improved hidden units for RNNs
 Long Short-Term Memory (LSTM)

 Gated Recurrent Units (GRU)

• Applications of RNNs

3
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Recurrent Neural Networks

• Up to now

 Simple neural network structure: 1-to-1 mapping of inputs to outputs

• This lecture: Recurrent Neural Networks

 Generalize this to arbitrary mappings

4
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Image source: Andrej Karpathy
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Recap: Recurrent Neural Networks (RNNs)

• RNNs are regular NNs whose

hidden units have additional

connections over time.

 You can unroll them to create

a network that extends over

time.

 When you do this, keep in mind

that the weights for the hidden

are shared between temporal

layers.  

• RNNs are very powerful

 With enough neurons and time, they can compute anything that can 

be computed by your computer.

5
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Image source: Andrej Karpathy
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Recap: Backpropagation Through Time (BPTT)

• Configuration

• Backpropagated gradient

 For weight wij:

6
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Recap: Backpropagation Through Time (BPTT)

• Analyzing the terms

 For weight wij:

 This is the “immediate” partial derivative (with hk-1 as constant)

7
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Recap: Backpropagation Through Time (BPTT)

• Analyzing the terms

 For weight wij:

 Propagation term:
8
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Recap: Exploding / Vanishing Gradient Problem

• BPTT equations:

(if t goes to infinity and l = t – k.)

 We are effectively taking the weight matrix to a high power.

 The result will depend on the eigenvalues of Whh.

– Largest eigenvalue > 1  Gradients may explode.

– Largest eigenvalue < 1  Gradients will vanish.

– This is very bad...
10
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Recap: Gradient Clipping

• Trick to handle exploding gradients

 If the gradient is larger than a threshold, clip it to that threshold.

 This makes a big difference in RNNs

11
B. LeibeSlide adapted from Richard Socher
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Handling Vanishing Gradients

• Vanishing Gradients are a harder problem

 They severely restrict the dependencies the RNN can learn.

 The problem gets more severe the deeper the network is.

 It can be very hard to diagnose that Vanishing Gradients occur

(you just see that learning gets stuck).

• Ways around the problem

 Glorot/He initialization (see Lecture 12)

 ReLU

 More complex hidden units (LSTM, GRU)

12
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ReLU to the Rescue

• Idea

 Initialize Whh to identity matrix

 Use Rectified Linear Units (ReLU)

• Effect

 The gradient is propagated with

a constant factor

 Huge difference in practice!

13
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Topics of This Lecture

• Recap: Recurrent Neural Networks (RNNs)
 Backpropagation through Time (BPTT) 

 Problems with RNN Training

 Handling Vanishing Gradients

• Improved hidden units for RNNs
 Long Short-Term Memory (LSTM)

 Gated Recurrent Units (GRU)

• Applications of RNNs

14
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More Complex Hidden Units

• Target properties

 Want to achieve constant error flow through a single unit

 At the same time, want the unit to be able to pick up long-term 

connections or focus on short-term ones, as the problem demands.

• Ideas behind LSTMs

 Take inspiration from the design of memory cells 

 Keep around memories to capture long distance dependencies

 Allow error messages to flow at different strengths depending on 

the inputs

15
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Long Short-Term Memory

• RNNs can be seen as chains of repeating modules

 In a standard RNN, the repeating module has a very simple structure 

(e.g., a tanh)
16

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

• LSTMs

 Repeating modules have 4 layers, interacting in a special way.

17
Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs: Core Ideas

• Cell state

 This is the key to LSTMs.

 It acts like a conveyor belt,

information can flow along it

unchanged.

• Gates

 The cell state can be modified 

through gates.

 Structure: sigmoid net layer + 

pointwise multiplication

 The sigmoid outputs values between 0 and 1

– 0: Let nothing through

– 1: Let everything through

 The gate layers are learned together with all other parameters.

18
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Elements of LSTMs

• Forget gate layer

 Look at ht-1 and xt and output a 

number between 0 and 1 for each

dimension in the cell state Ct-1.

0: completely delete this,

1: completely keep this.

• Example

 Task: try to predict the next word

 Cell state could include the gender of the present subject

 When we see a new subject, want to forget the gender of the 

old subject.

19
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Elements of LSTMs

• Update gate layer

 Decide what information to store

in the cell state.

 Sigmoid network (input gate layer)

decides which values are updated.

 tanh layer creates a vector of new

candidate values      that could be 

added to the state.

• In the example

 Add the gender of the new subject to the cell state.

20
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Elements of LSTMs

• Updating the state

 Multiply the old state by ft, 

forgetting the things we decided

to forget. 

 Then add           , the new candidate

values, scaled by how much we

decided to update each value.

• In the example

 Combined effect: replace the old gender by the new one.

21
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Elements of LSTMs

• Output gate layer

 Output is a filtered version of our

gate state. 

 First, apply sigmoid layer to decide

what parts of the cell state to

output.

 Then, pass the cell state through a

tanh (to push the values to be

between -1 and 1) and multiply it

with the output of the sigmoid gate.

• In the example

 Since we just saw a subject, might want to output information

relevant to a verb (e.g., whether the subject is singular or plural).

22
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN vs. LSTM

• LSTM just changes the form of the 
equation for h such that:

1. More expressive multiplicative 

interactions become possible

2. Gradients flow nicer

3. The network can explicitly decide to 

reset the hidden state

• Those changes have a huge effect in

practice

 LSTMs perform much better than regular

RNNs

 Many applications have become possible

with LSTMs that weren’t feasible before.

23
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LSTMs in Practice

• LSTMs are currently highly en vogue

 Popular default model for most sequence labeling tasks.

 Very powerful, especially when stacked and made even deeper.

 Most useful if you have lots and lots of data.

 Very active research field

• Here are also some other ways of illustrating them

24
B. LeibeSlide adapted from Richard Socher
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Extension: Gated Recurrent Units (GRU)

• Simpler model than LSTM

 Combines the forget and input

gates into a single update gate zt.

 Similar definition for a reset gate rt, 

but with different weights.

 In both cases, merge the cell state 

and hidden state.

• Empirical results

 Performance similar to LSTM 

(no clear winner yet)

 But GRU has fewer parameters.

25
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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GRUs: Intuition

• Effects

 If reset is close to 0, ignore

previous hidden state.

 Allows model to drop information

that is irrelevant in the future.

 Update gate z controls how much

of past state should matter now.

 If z is close to 0, then we can copy

information in that unit through

many time steps!

 Less vanishing gradients!

26
B. LeibeSlide adapted from Richard Socher
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GRUs: Intuition

• Typical learned behaviors

 Units with short-term dependencies often have active reset gate

 Units with long-term dependencies have inactive update gates.

27
B. LeibeSlide adapted from Richard Socher
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Topics of This Lecture

• Recap: Recurrent Neural Networks (RNNs)
 Backpropagation through Time (BPTT) 

 Problems with RNN Training

 Handling Vanishing Gradients

• Improved hidden units for RNNs
 Long Short-Term Memory (LSTM)

 Gated Recurrent Units (GRU)

• Applications of RNNs

28
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Applications

• Machine Translation [Sutskever et al., 2014]

29
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Application: Character-Level Language Model

• Setup

 RNN trained on huge

amounts of text

 Task: model the prob.

distribution of the 

next character in the

sequence.

• Main advantage of

RNN here

 RNN can learn varying

amount of context

30
B. LeibeSlide adapted from Andrej Karpathy
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Language Model Results

• Example: Generating Shakespeare

 Trained on all works of Shakespeare (4.4 MB of data)

 Using a 3-Layer RNN with 512 hidden units per layer
31
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Language Model Results

• Example: Generating Wikipedia pages

 Trained on 100MB of Wikipedia data

 Using an LSTM
32
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Language Model Results

• Example: Hallucinating Algebraic Geometry

 Trained on an Algebraic Geometry book

 Using a multilayer LSTM
33
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Language Model Results

• Example: 

Hallucinating C Code

 Trained on the Linux source code 

(474MB from github)

 Using a large 3-layer LSTM

34
B. LeibeSlide adapted from Andrej Karpathy
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Applications: Image Tagging

• Simple combination of CNN and RNN

 Use CNN to define initial state h0 of an RNN.

 Use RNN to produce text description of the image.

35
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Applications: Image Tagging

• Setup

 Train on corpus of images

with textual descriptions

 E.g. Microsoft CoCo

– 120k images

– 5 sentences each

36
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Results: Image Tagging

Spectacular results!

37
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Results: Image Tagging

• Wrong, but one can still see why those results were 

selected...

38
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Results: Image Tagging

• Not sure what happened here...

39
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Fun Application: Image to Story

• Example: Generating a story from an image

 Trained on corpus of adventure novels

40
Source: Ryan Kiros http://www.cs.toronto.edu/~rkiros/adv_L.html

Later on the eighth day , Billy was a friend 

of a man who lived on his own . He did n't

know how far away they were , and if he 

was to survive the fall . His mind raced , 

trying not to show any signs of weakness . 

The wind ruffled the snow and ice in the 

snow . He had no idea how many times he 

was going to climb into the mountains . He 

told me to stay on the ground for a while , 

but if I find out what s going on , we 

should go on foot . Sam and Si Lei joined 

us in the army .

http://www.cs.toronto.edu/~rkiros/adv_L.html
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More Results

41
Source: Ryan Kiros http://www.cs.toronto.edu/~rkiros/adv_L.html

Having lain on the bed , I did n't know 

what to say . He turned his attention to 

the room and saw a large room . The 

room was furnished with a single bed , 

a dresser and a large bed with a table 

in the center of the room . It was a long 

time ago . The room was designed 

with the most powerful and efficient 

ones . As far as I m concerned , it was 

a long time ago . On the other side of 

the room was a beautiful picture of a 

woman who had been abducted by the 

fireplace and their own personal 

belongings in order to keep it safe , but 

it didn t take too long . Feeling helpless 

, he turned his attention back to me . ``

http://www.cs.toronto.edu/~rkiros/adv_L.html
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More Results

42
Source: Ryan Kiros http://www.cs.toronto.edu/~rkiros/adv_L.html

Only Prince Darin knew how to run 

from the mountains , and once more , 

he could see the outline of a rider on 

horseback . The wind ruffled his hair in 

an attempt to locate the forest . He 

hadn t been in such a state of mind 

before , but it was a good thing . All of 

them seemed to be doing the same 

thing . They did n't know where they 

came from . The wind blew up the 

mountain peaks and disappeared into 

the sky , leaving trails behind the 

peaks of the mountains on Mount Fuji .

http://www.cs.toronto.edu/~rkiros/adv_L.html
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Application: Video to Text Description

43
B. Leibe

Source: Subhashini Venugopalan, ICCV’15
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Video-to-Text Results

44
B. Leibe

Source: Subhashini Venugopalan, ICCV’15
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Memory Networks

• Soft, differentiable memory

 Stores <key, value> pairs

 Input is matched to the stored

keys

 Output is the average over all

values that correspond to the

matched keys

• Key Idea

 Make all steps differentiable.

 Then all parameters (including

access keys, stored values, etc.)

can be learned with end-to-end

supervised learning.

45
B. Leibe
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End-to-End Memory Networks

46

Keys 𝑚𝑖

Values 𝑐𝑖

Selection 

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑢𝑇𝑚𝑖

Output

𝑜 = σ𝑖 𝑝𝑖𝑐𝑖

Input query 𝑢

Image from [Sukhbaatar et al., 2015]

• A closer look at the memory mechanism

 Rely on sparsity of softmax to 

select a unique output value.

S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-to-End Memory Networks. 

In NIPS 2015.

http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
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Memory Networks

• Problem with this design

 Softmax used for the selection involves

a normalization over all stored keys.

 Memory cells that are not accessed get 

almost zero gradient.

 When a backpropagation step causes the

accessed memory cell to change, this

massively affects the gradient flow.

 Together, this results in bad gradient propagation during learning.

 Very finicky behavior...

47
B. Leibe

Selection 

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑢𝑇𝑚𝑖

Output

𝑜 = σ𝑖 𝑝𝑖𝑐𝑖
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Improved Design

• Gated memory (e.g., Recurrent Entity Network)

48

𝑠𝑡𝑠

M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, Tracking the World State 

with Recurrent Entity Networks. arXiv 1612.03969, 2016.

Gating 

mechanism

https://arxiv.org/abs/1612.03969
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Neural Turing Machines

• Goal: Enable general computation with Neural Nets

 Again key is to make all operations differentiable.

 Memory + Access operators + Controller

 Learn entire algorithms from examples.

49

A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines. arXiv 1410.5401, 2014.

https://arxiv.org/abs/1410.5401
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