

Machine Learning – Lecture 18

Recurrent Neural Networks II

24.01.2019

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - > Recurrent Neural Networks

Topics of This Lecture

- Recap: Recurrent Neural Networks (RNNs)
 - Backpropagation through Time (BPTT)
 - Problems with RNN Training
 - Handling Vanishing Gradients
- Improved hidden units for RNNs
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
 - Applications of RNNs

Recurrent Neural Networks

- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- This lecture: Recurrent Neural Networks
 - Generalize this to arbitrary mappings

Recap: Recurrent Neural Networks (RNNs)

- RNNs are regular NNs whose hidden units have additional connections over time.
 - You can unroll them to create a network that extends over time.
 - When you do this, keep in mind that the weights for the hidden are shared between temporal layers.

RNNs are very powerful

With enough neurons and time, they can compute anything that can be computed by your computer.

Recap: Backpropagation Through Time (BPTT)

Configuration

 $\mathbf{h}_{t} = \sigma \left(\mathbf{W}_{xh} \mathbf{x}_{t} + \mathbf{W}_{hh} \mathbf{h}_{t-1} + b \right)$ $\hat{\mathbf{y}}_{t} = \operatorname{softmax} \left(\mathbf{W}_{hy} \mathbf{h}_{t} \right)$

6

- Backpropagated gradient
 - > For weight w_{ij} :

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$

Recap: Backpropagation Through Time (BPTT)

- Analyzing the terms
 - > For weight w_{ij} :

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$

> This is the "immediate" partial derivative (with h_{k-1} as constant)

Recap: Backpropagation Through Time (BPTT)

- Analyzing the terms
 - > For weight w_{ij} :
 - Propagation term:

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t > i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

8

Recap: Exploding / Vanishing Gradient Problem

• BPTT equations:

$$\begin{aligned} \frac{\partial E_t}{\partial w_{ij}} &= \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right) \\ \frac{\partial h_t}{\partial h_k} &= \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_{hh}^\top diag \left(\sigma'(\mathbf{h}_{i-1}) \right) \\ &= \left(\mathbf{W}_{hh}^\top \right)^l \end{aligned}$$

(if t goes to infinity and l = t - k.)

- \Rightarrow We are effectively taking the weight matrix to a high power.
- > The result will depend on the eigenvalues of \mathbf{W}_{hh} .
 - Largest eigenvalue > 1 \Rightarrow Gradients *may* explode.
 - Largest eigenvalue < 1 \Rightarrow Gradients *will* vanish.
 - This is very bad...

Recap: Gradient Clipping

- Trick to handle exploding gradients
 - If the gradient is larger than a threshold, clip it to that threshold.

> This makes a big difference in RNNs

Handling Vanishing Gradients

- Vanishing Gradients are a harder problem
 - They severely restrict the dependencies the RNN can learn.
 - > The problem gets more severe the deeper the network is.
 - It can be very hard to diagnose that Vanishing Gradients occur (you just see that learning gets stuck).
- Ways around the problem
 - Glorot/He initialization (see Lecture 12)
 - ReLU
 - More complex hidden units (LSTM, GRU)

ReLU to the Rescue

Idea

- Initialize \mathbf{W}_{hh} to identity matrix
- Use Rectified Linear Units (ReLU)

 $g(a) ~=~ \max\left\{0,a\right\}$

Effect

Machine Learning Winter '18

The gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0\\ 0, & \text{else} \end{cases}$$

 \Rightarrow Huge difference in practice!

Slide adapted from Richard Socher

B. Leibe

Topics of This Lecture

- Recap: Recurrent Neural Networks (RNNs)
 - Backpropagation through Time (BPTT)
 - > Problems with RNN Training
 - Handling Vanishing Gradients

• Improved hidden units for RNNs

- Long Short-Term Memory (LSTM)
- Gated Recurrent Units (GRU)
- Applications of RNNs

More Complex Hidden Units

- Target properties
 - Want to achieve constant error flow through a single unit
 - At the same time, want the unit to be able to pick up long-term connections or focus on short-term ones, as the problem demands.
- Ideas behind LSTMs
 - > Take inspiration from the design of memory cells
 - Keep around memories to capture long distance dependencies
 - Allow error messages to flow at different strengths depending on the inputs

Long Short-Term Memory

- RNNs can be seen as chains of repeating modules
 - In a standard RNN, the repeating module has a very simple structure (e.g., a tanh)

17

Long Short-Term Memory

- LSTMs
 - > Repeating modules have 4 layers, interacting in a special way.

LSTMs: Core Ideas

Cell state

- This is the key to LSTMs.
- It acts like a conveyor belt, information can flow along it unchanged.

Gates

- The cell state can be modified through gates.
- Structure: sigmoid net layer + pointwise multiplication
- > The sigmoid outputs values between 0 and 1
 - 0: Let nothing through
 - 1: Let everything through
- The gate layers are learned together with all other parameters.

19

Elements of LSTMs

- Forget gate layer
 - > Look at \mathbf{h}_{t-1} and \mathbf{x}_t and output a number between 0 and 1 for each dimension in the cell state \mathbf{C}_{t-1} .
 - 0: completely delete this,
 - 1: completely keep this.

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

• Example

- Task: try to predict the next word
- Cell state could include the gender of the present subject
- \Rightarrow When we see a new subject, want to forget the gender of the old subject.

Elements of LSTMs

- Update gate layer
 - Decide what information to store in the cell state.
 - Sigmoid network (input gate layer) decides which values are updated.
 - > tanh layer creates a vector of new candidate values \tilde{C}_t that could be added to the state.

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- In the example
 - > Add the gender of the new subject to the cell state.

Elements of LSTMs

- Updating the state
 - > Multiply the old state by f_t , forgetting the things we decided to forget.
 - Then add i_t * C_t the new candidate values, scaled by how much we decided to update each value.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

21

- In the example
 - Combined effect: replace the old gender by the new one.

Elements of LSTMs

- Output gate layer
 - Output is a filtered version of our gate state.
 - First, apply sigmoid layer to decide what parts of the cell state to output.
 - Then, pass the cell state through a tanh (to push the values to be between -1 and 1) and multiply it with the output of the sigmoid gate.

$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + b_{o} \right)$$
$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

22

In the example

Since we just saw a subject, might want to output information relevant to a verb (e.g., whether the subject is singular or plural).

RNN vs. LSTM

- LSTM just changes the form of the equation for h such that:
 - 1. More expressive multiplicative interactions become possible
 - 2. Gradients flow nicer
 - 3. The network can explicitly decide to reset the hidden state
- Those changes have a huge effect in practice
 - LSTMs perform much better than regular RNNs
 - Many applications have become possible with LSTMs that weren't feasible before.

LSTMs in Practice

- LSTMs are currently highly en vogue
 - Popular default model for most sequence labeling tasks.
 - Very powerful, especially when stacked and made even deeper.
 - Most useful if you have lots and lots of data.
 - \Rightarrow Very active research field
- Here are also some other ways of illustrating them

Machine Learning Winter 18

Extension: Gated Recurrent Units (GRU)

- Simpler model than LSTM
 - > Combines the forget and input gates into a single update gate z_t .
 - > Similar definition for a reset gate r_t , but with different weights.
 - In both cases, merge the cell state and hidden state.

- Performance similar to LSTM (no clear winner yet)
- > But GRU has fewer parameters.

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

25

 \neg

GRUs: Intuition

- Effects
 - If reset is close to 0, ignore previous hidden state.
 - \Rightarrow Allows model to drop information that is irrelevant in the future.
 - Update gate z controls how much of past state should matter now.
 - \Rightarrow If z is close to 0, then we can copy information in that unit through many time steps!
 - \Rightarrow Less vanishing gradients!

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

GRUs: Intuition

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

- Typical learned behaviors
 - Units with short-term dependencies often have active reset gate
 - Units with long-term dependencies have inactive update gates.

Topics of This Lecture

- Recap: Recurrent Neural Networks (RNNs)
 - Backpropagation through Time (BPTT)
 - Problems with RNN Training
 - Handling Vanishing Gradients
- Improved hidden units for RNNs
 - > Long Short-Term Memory (LSTM)
 - Gated Recurrent Units (GRU)
- Applications of RNNs

Applications

Machine Translation [Sutskever et al., 2014]

• Setup target chars: "e" "|"

Application: Character-Level Language Model

- RNN trained on huge amounts of text
- Task: model the prob. distribution of the next character in the sequence.

- Main advantage of RNN here
 - RNN can learn varying amount of context

Language Model Results

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator: They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

- Example: Generating Shakespeare
 - Trained on all works of Shakespeare (4.4 MB of data)
 - > Using a 3-Layer RNN with 512 hidden units per layer

Language Model Results

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripad of aid exile.]]

- Example: Generating Wikipedia pages
 - > Trained on 100MB of Wikipedia data
 - > Using an LSTM

Language Model Results

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparison in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is

Example: Hallucinating Algebraic Geometry

- Trained on an Algebraic Geometry book
- > Using a multilayer LSTM

Language Model Results

```
* Increment the size file of the new incorrect UI FILTER group information
* of the size generatively.
 */
static int indicate_policy(void)
 int error;
 if (fd == MARN_EPT) {
    * The kernel blank will coeld it to userspace.
    */
   if (ss->segment < mem total)</pre>
     unblock graph and set blocked();
   else
     ret = 1;
   goto bail;
                                         • Example:
                                            Hallucinating C Code
 segaddr = in_SB(in.addr);
 selector = seg / 16;
                                              Trained on the Linux source code
 setup works = true;
                                                 (474MB from github)
 for (i = 0; i < blocks; i++) {</pre>
   seq = buf[i++];
                                              Using a large 3-layer LSTM
   bpf = bd->bd.next + i * search;
   if (fd) {
```


Applications: Image Tagging

- Simple combination of CNN and RNN
 - > Use CNN to define initial state \mathbf{h}_0 of an RNN.
 - > Use RNN to produce text description of the image.

Applications: Image Tagging

Setup

- Train on corpus of images with textual descriptions
- E.g. Microsoft CoCo
 - 120k images
 - 5 sentences each

a man riding a bike on a dirt path through a forest. bicyclist raises his fist as he rides on desert dirt trail. this dirt bike rider is smiling and raising his fist in triumph. a man riding a bicycle while pumping his fist in the air. a mountain biker pumps his fist in celebration.

Results: Image Tagging

a group of people standing around a room with remotes logprob: -9.17

a young boy is holding a baseball bat logprob: -7.61

a cow is standing in the middle of a street logprob: -8.84

Spectacular results!

Results: Image Tagging

a baby laying on a bed with a stuffed bear logprob: -8.66

a young boy is holding a baseball bat logprob: -7.65

a cat is sitting on a couch with a remote control logprob: -12.45

Wrong, but one can still see why those results were selected...

Results: Image Tagging

a toilet with a seat up in bathroom logprob: -13.44

a horse is standing in the middle of a road logprob: -10.34

Not sure what happened here...

Fun Application: Image to Story

Later on the eighth day , Billy was a friend of a man who lived on his own . He did n't know how far away they were , and if he was to survive the fall . His mind raced , trying not to show any signs of weakness . The wind ruffled the snow and ice in the snow . He had no idea how many times he was going to climb into the mountains . He told me to stay on the ground for a while , but if I find out what s going on , we should go on foot . Sam and Si Lei joined us in the army .

- Example: Generating a story from an image
 - Trained on corpus of adventure novels

More Results

Having lain on the bed, I did n't know what to say . He turned his attention to the room and saw a large room . The room was furnished with a single bed, a dresser and a large bed with a table in the center of the room . It was a long time ago . The room was designed with the most powerful and efficient ones. As far as I m concerned, it was a long time ago . On the other side of the room was a beautiful picture of a woman who had been abducted by the fireplace and their own personal belongings in order to keep it safe, but it didn t take too long . Feeling helpless , he turned his attention back to me . ``

42

More Results

Only Prince Darin knew how to run from the mountains, and once more, he could see the outline of a rider on horseback. The wind ruffled his hair in an attempt to locate the forest . He hadn t been in such a state of mind before, but it was a good thing. All of them seemed to be doing the same thing . They did n't know where they came from . The wind blew up the mountain peaks and disappeared into the sky, leaving trails behind the peaks of the mountains on Mount Fuji.

Application: Video to Text Description

RNTHAAC

Video-to-Text Results

Correct descriptions.

S2VT: A man is doing stunts on his bike.

2VT: A herd of zebras are walking in a field.

S2VT: A young woman is doing her hair.

S2VT: A man is shooting a gun at a target.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.

S2VT: A man is spreading butter on a tortilla. S2VT: A black clip to walking through a path.

Irrelevant descriptions.

S2VT: A man is pouring liquid in a pan.

S2VT: A polar bear is walking on a hill.

S2VT: A man is doing a pencil.

Memory Networks

- Soft, differentiable memory
 - Stores <key, value> pairs
 - Input is matched to the stored keys
 - Output is the average over all values that correspond to the matched keys
- Key Idea
 - Make all steps differentiable.
 - ⇒ Then all parameters (including access keys, stored values, etc.) can be learned with end-to-end supervised learning.

End-to-End Memory Networks

• A closer look at the memory mechanism

S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, <u>End-to-End Memory Networks</u>. In NIPS 2015. Image from [Sukhbaatar et al., 2015]

Memory Networks

- Problem with this design
 - Softmax used for the selection involves a normalization over all stored keys.
 - Memory cells that are not accessed get almost zero gradient.
 - When a backpropagation step causes the accessed memory cell to change, this massively affects the gradient flow.

Selection $p_i = softmax(u^T m_i)$

 \Rightarrow Together, this results in bad gradient propagation during learning. \Rightarrow Very finicky behavior...

Improved Design

Gated memory (e.g., Recurrent Entity Network)

M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, <u>Tracking the World State</u> 48 with <u>Recurrent Entity Networks</u>. arXiv 1612.03969, 2016.

Neural Turing Machines

Goal: Enable general computation with Neural Nets

- Again key is to make all operations differentiable.
- Memory + Access operators + Controller
- Learn entire algorithms from examples.

A. Graves, G. Wayne, I. Danihelka, Neural Turing Machines. arXiv 1410.5401, 2014.

References and Further Reading

RNNs

- R. Pascanu, T. Mikolov, Y. Bengio, <u>On the difficulty of training</u> recurrent neural networks, JMLR, Vol. 28, 2013.
- A. Karpathy, <u>The Unreasonable Effectiveness of Recurrent Neural</u> <u>Networks</u>, blog post, May 2015.
- LSTM
 - S. Hochreiter, J. Schmidhuber, <u>Long short-term memory</u>, Neural Computation, Vol. 9(8): 1735–1780, 1997.
 - A. Graves, <u>Generating Sequences With Recurrent Neural Networks</u>, ArXiV 1308.0850v5, 2014.
 - > C. Olah, <u>Understanding LSTM Networks</u>, blog post, August 2015.