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Machine Learning – Lecture 16

Word Embeddings

17.01.2019

Bastian Leibe

RWTH Aachen
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
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Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Outlook: Recurrent Neural Networks

4
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Recap: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

 This makes it possible

to train (much) deeper

networks.
5
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Recap: Analysis of ResNets

• The effective paths in ResNets

are relatively shallow

 Effectively only 5-17 active modules

• This explains the resilience to deletion

 Deleting any single layer only affects a 

subset of paths (and the shorter ones

less than the longer ones).

• New interpretation of ResNets

 ResNets work by creating an ensemble 

of relatively shallow paths

 Making ResNets deeper increases the

size of this ensemble

 Excluding longer paths from training 

does not negatively affect the results. 6
Image source: Veit et al., 2016
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Recap: R-CNN for Object Detection

7
B. LeibeSlide credit: Ross Girshick
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Recap: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

8
Slide credit: Ross Girshick
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Recap: Fully Convolutional Networks

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

10
Image source: Long, Shelhamer, Darrell
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Recap: Semantic Image Segmentation

• Encoder-Decoder Architecture

 Problem: FCN output has low resolution

 Solution: perform upsampling to get back to desired resolution

 Use skip connections to preserve higher-resolution information

11
Image source: Newell et al.
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Topics of This Lecture

• Recap
 ResNets

 Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Outlook: Recurrent Neural Networks

12
B. Leibe

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
8

Neural Networks for Sequence Data

• Up to now

 Simple structure: Input vector  Processing  Output

• In the following, we will look at sequence data

 Interesting new challenges

 Varying input/output length, need to memorize state, 

long-term dependencies, ...

• Currently a hot topic

 Early successes of NNs for text / language processing.

 Very good results for part-of-speech tagging, automatic translation, 

sentiment analysis, etc.

 Recently very interesting developments for video understanding, 

image+text modeling (e.g., creating image descriptions), and even 

single-image understanding (attention processes).

13
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Motivating Example

• Predicting the next word in a sequence

 Important problem for speech recognition, text autocorrection, etc.

• Possible solution: The trigram (n-gram) method

 Take huge amount of text and count the frequencies of all triplets (n-

tuples) of words.

 Use those frequencies to predict the relative probabilities of words 

given the two previous words

 State-of-the-art until not long ago...

14
B. LeibeSlide adapted from Geoff Hinton
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Problems with N-grams

• Problem: Scalability

 We cannot easily scale this to large N.

 The number of possible combinations increases exponentially

 So does the required amount of data

• Problem: Partial Observability

 With larger N, many counts would be zero.

 The probability is not zero, just because the count is zero!

 Need to back off to (N-1)-grams when the count for N-grams is too 

small.

 Necessary to use elaborate techniques, such as Kneser-Ney 

smoothing, to compensate for uneven sampling frequencies.

15
B. LeibeSlide adapted from Geoff Hinton
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Let’s Try Neural Networks for this Task

• Important issues

 How should we encode the words to use them as input?

 What internal NN structure do we need?

 How can we perform classification (softmax) with so many 

possible outputs?

16
B. Leibe

index of word at t-2 index of word at t-1

internal NN structure

“softmax” units (one per possible next word)
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Neural Probabilistic Language Model

• Core idea

 Learn a shared distributed encoding (word embedding) for the words 

in the vocabulary.

17
B. LeibeSlide adapted from Geoff Hinton Image source: Geoff Hinton

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language 
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Word Embedding

• Idea

 Encode each word as a vector in a

d-dimensional feature space.

 Typically, V » 1M, d 2 (50, 300)

• Learning goal

 Determine weight matrix WV£d that

performs the embedding.

 Shared between all input words

• Input

 Vocabulary index x in 1-of-K encoding.

 For each input x, only one row of WV£d is needed.

WV£d is effectively a look-up table.

18
B. Leibe

Image source: Xin Rong, 2015
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Word Embedding: Full Network

• Train on large corpus of data, learn WV£d .

 Shown to outperform n-grams by [Bengio et al., 2003].
19
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skip connections

Many parameters:

W2d£V gets huge!

mapping to hidden units

𝐖𝟐𝒅×𝑽
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Visualization of the Resulting Embedding

(part of a 2.5D map of the most common 2500 words)
20

B. Leibe
Image source: Geoff Hinton

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Visualization of the Resulting Embedding

21
B. Leibe

Image source: Geoff Hinton
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Visualization of the Resulting Embedding

22
B. Leibe

Image source: Geoff Hinton
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Popular Word Embeddings

• Open issue

 What is the best setup for learning such an embedding from large 

amounts of data (billions of words)?

• Several recent improvements

 word2vec [Mikolov 2013]

 GloVe [Pennington 2014]

 Pretrained embeddings available for everyone to download.

23
B. Leibe

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
8

word2vec

• Goal

 Make it possible to learn high-quality

word embeddings from huge data sets

(billions of words in training set).

• Approach

 Define two alternative learning tasks

for learning the embedding:

– “Continuous Bag of Words” (CBOW)

– “Skip-gram”

 Designed to require fewer parameters.

25
B. Leibe

Image source: Mikolov et al., 2015
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word2vec: CBOW Model

• Continuous BOW Model

 Remove the non-linearity

from the hidden layer

 Share the projection layer 

for all words (their vectors

are averaged)

 Bag-of-Words model

(order of the words does not 

matter anymore)

26
B. Leibe

Image source: Xin Rong, 2015
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word2vec: Skip-Gram Model

• Continuous Skip-Gram Model

 Similar structure to CBOW

 Instead of predicting the current

word, predict words 

within a certain range of

the current word.

 Give less weight to the more

distant words

• Implementation

 Randomly choose a number R 2 [1,C].

 Use R words from history and R words

from the future of the current word

as correct labels.

 R+R word classifications for each input.
27

B. Leibe
Image source: Xin Rong, 2015
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Interesting property

• Embedding often preserves linear regularities between 

words

 Analogy questions can be answered through simple algebraic 

operations with the vector representation of words.

• Example

 What is the word that is similar to small in the same sense as 

bigger is to big?

 For this, we can simply compute

X = vec(“bigger”) – vec(“big”) + vec(“small”)

 Then search the vector space for the word closes to X using the 

cosine distance.

 Result (when words are well trained): vec(“smaller”).

• Other example

 E.g., vec(“King”) – vec(“Man”) + vec(“Woman”) ¼ vec(“Queen”)
28
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Evaluation on Analogy Questions

29
B. Leibe

Image source: Mikolov et al., 2015
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Results

• Results

 word2vec embedding is able to correctly answer many of those 

analogy questions.

 CBOW structure better for syntactic tasks

 Skip-gram structure better for semantic tasks

30
B. Leibe

Image source: Mikolov et al., 2015
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Problems with 100k-1M outputs

• Weight matrix gets huge!

• Example: CBOW model

 One-hot encoding for inputs

 Input-hidden connections are

just vector lookups.

 This is not the case for the

hidden-output connections!

 State h is not one-hot, and 

vocabulary size is 1M.

W’N£V has 300£1M entries

 All of those need to be

updated by backprop.

31
B. Leibe

Image source: Xin Rong, 2015
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Problems with 100k-1M outputs

• Softmax gets expensive!

 Need to compute normaliza-

tion over 100k-1M outputs

32
B. Leibe

Image source: Xin Rong, 2015
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Solution: Hierarchical Softmax

• Idea

 Organize words in binary search tree, words are at leaves

 Factorize probability of word w0 as a product of node probabilities 

along the path.

 Learn a linear decision function y = vn(w,j)¢h at each node to decide 

whether to proceed with left or right child node.

 Decision based on output vector of hidden units directly.
33

B. Leibe
Image source: Xin Rong, 2015
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Topics of This Lecture

• Recap: CNN Architectures

• Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks

34
B. Leibe
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Siamese Networks

• Similar idea to word embeddings

 Learn an embedding network that preserves (semantic) similarity 

between inputs

 E.g., used for patch matching
35
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Recap: Discriminative Face Embeddings

• Learning an embedding using a Triplet Loss Network

 Present the network with triplets of examples

 Apply triplet loss to learn an embedding 𝑓(∙) that groups the positive 

example closer to the anchor than the negative one.

 Used with great success in Google’s FaceNet face recognition

36
B. Leibe

Anchor PositiveNegative
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Triplet Loss – Practical Implementation

• Triplet loss formulation

• Practical Issue: How to select the triplets?
 The number of possible triplets grows cubically with the dataset size.

 Most triplets are uninformative

 Mining hard triplets becomes crucial for learning.

 Actually want medium-hard triplets for best training efficiency

• Popular solution: Offline hard triplet mining
 Process the dataset to find hard triplets

 Use those for learning

 Iterate
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Triplet Loss – Practical Implementation (2)

• Popular solution: Offline hard triplet mining

 Process the dataset to find hard triplets

 Use those for learning

 Iterate

Embed data

with 𝑓𝜃

Update 

embedding 𝑓𝜃

Mine hard

triplets
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Topics of This Lecture

• Recap: CNN Architectures

• Applications of CNNs

• Word Embeddings
 Neuroprobabilistic Language Models

 word2vec

 GloVe

 Hierarchical Softmax

• Embeddings in Vision
 Siamese networks

 Triplet loss networks

• Outlook: Recurrent Neural Networks
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Outlook: Recurrent Neural Networks

• Up to now

 Simple neural network structure: 1-to-1 mapping of inputs to outputs

• Next lecture: Recurrent Neural Networks

 Generalize this to arbitrary mappings
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Image source: Andrej Karpathy
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