
P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Machine Learning – Lecture 12

Tricks of the Trade

03.12.2018

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

4
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Recap: Computational Graphs

 Forward differentiation needs one pass per node. Reverse-mode

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

5
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Recap: Automatic Differentiation

• Approach for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
6

B. Leibe Image source: Christopher Olah, colah.github.io

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Recap: Choosing the Right Learning Rate

• Convergence of Gradient Descent

 Simple 1D example

 What is the optimal learning rate ´opt?

 If E is quadratic, the optimal learning rate is given by the inverse of

the Hessian

 Advanced optimization techniques try to

approximate the Hessian by a simplified form.

 If we exceed the optimal learning rate,

bad things happen!
7

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Don’t go beyond

this point!

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight

(determined empirically)
9

B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for different

weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign of the

gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)).

10
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Other Optimizers

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

11
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Example: Behavior in a Long Valley

12
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Example: Behavior around a Saddle Point

13
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Visualization of Convergence Behavior

14
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
15

B. Leibe Image source: Yoshua Bengio

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce

the random fluctuations in the error due to

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
16

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o

r

Epoch

Slide adapted from Geoff Hinton

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the lower

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of

nonlinearities, choice of learning rate, choice of optimizer,…

 In the following, we will take a look at the most important factors

17
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

18
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most

unfamiliar to the system.

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been learned

by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches,

make use of shuffling.
19

B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

20
B. Leibe Image source: Lucas Beyer

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
21

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Practical Advice

22
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive, all of

the updates of weights that feed into a node will be of the same sign.

 Weights can only all increase or decrease together.

 Slow convergence

23
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean,

unit covariance.

 If possible, try to decorrelate them using PCA (also known as

Karhunen-Loeve expansion).

24
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

25
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Choosing the Right Sigmoid

• Normalization is also important for intermediate layers

 Symmetric sigmoids, such as tanh, often converge faster than the

standard logistic sigmoid.

 Recommended sigmoid:

 When used with transformed inputs, the variance of the outputs will

be close to 1.
26

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Largest

curvature at 1

tanh 𝑎 = 2𝜎 2𝑎 − 1

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Usage

• Output nodes

 Typically, a sigmoid or tanh function is used here.

– Sigmoid for nice probabilistic interpretation (range [0,1]).

– tanh for regression tasks

• Internal nodes

 Historically, tanh was most often used.

 tanh is better than sigmoid for internal nodes, since it is

already centered.

 Internally, tanh is often implemented as piecewise linear function

(similar to hard tanh and maxout).

 More recently: ReLU often used for classification tasks.

27
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Effect of Sigmoid Nonlinearities

• Effects of sigmoid/tanh function

 Linear behavior around 0

 Saturation for large inputs

• If all parameters are too small

 Variance of activations will drop in each layer

 Sigmoids are approximately linear close to 0

 Good for passing gradients through, but...

 Gradual loss of the nonlinearity

 No benefit of having multiple layers

• If activations become larger and larger

 They will saturate and gradient will become zero

28

Image source: http://deepdish.io/2015/02/24/network-initialization/

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Another Note on Error Functions

• Squared error on sigmoid/tanh output function

 Avoids penalizing “too correct” data points.

 But: zero gradient for confidently incorrect classifications!

 Do not use L2 loss with sigmoid outputs (instead: cross-entropy)!

29
Image source: Bishop, 2006

Ideal misclassification error

Squared error

No penalty for

“too correct”

data points!

Zero gradient!

zn = tny(xn)

Squared error on tanh

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Advantages

 Much easier to propagate gradients through deep networks.

 We do not need to store the ReLU output separately

– Reduction of the required memory by half compared to tanh!

 ReLU has become the de-facto standard for deep networks.

30
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Disadvantages / Limitations

 A certain fraction of units will remain “stuck at zero”.

– If the initial weights are chosen such that the ReLU output is 0 for the

entire training set, the unit will never pass through a gradient to change

those weights.

 ReLU has an offset bias, since its outputs will always be positive

31
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Further Extensions

• Rectified linear unit (ReLU)

• Leaky ReLU

 Avoids stuck-at-zero units

 Weaker offset bias

• ELU

 No offset bias anymore

 BUT: need to store activations
32

B. Leibe

𝑔 𝑎 = max 𝛽𝑎, 𝑎

𝑔 𝑎 = ቊ
𝑎, 𝑥 < 0
𝑒𝑎 − 1, 𝑥 ≥ 0

𝑔 𝑎 = max 0, 𝑎

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

36
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Initializing the Weights

• Motivation

 The starting values of the weights can have a significant effect

on the training process.

 Weights should be chosen randomly, but in a way that the sigmoid

is primarily activated in its linear region.

• Guideline (from [LeCun et al., 1998] book chapter)

 Assuming that

– The training set has been normalized

– The recommended sigmoid is used

the initial weights should be randomly drawn from a distribution

(e.g., uniform or Normal) with mean zero and variance

where nin is the fan-in (#connections into the node).

37
B. Leibe

𝜎𝑤
2 = 1

𝑛𝑖𝑛

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Historical Sidenote

• Apparently, this guideline was either little known or

misunderstood for a long time

 A popular heuristic (also the standard in Torch) was to use

𝑊~𝑈 −
1

𝑛𝑖𝑛
,
1

𝑛𝑖𝑛

 This looks almost like LeCun’s rule. However…

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 If we do that for the above formula, we obtain

𝜎2 = 1

12

2

𝑛𝑖𝑛

2
=

1

3

1

𝑛𝑖𝑛

 Activations & gradients will be attenuated with each layer! (bad)
38

B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Glorot Initialization

• Breakthrough results

 In 2010, Xavier Glorot published an analysis of what went wrong in

the initialization and derived a more general method for automatic

initialization.

 This new initialization massively improved results and made direct

learning of deep networks possible overnight.

 Let’s look at his analysis in more detail...

39
B. Leibe

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep

Feedforward Neural Networks, AISTATS 2010.

jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Analysis

• Variance of neuron activations

 Suppose we have an input X with n components and a linear

neuron with random weights W that spits out a number Y.

 What is the variance of Y ?

 If inputs and outputs have both mean 0, the variance is

 If the Xi and Wi are all i.i.d, then

 The variance of the output is the variance of the input, but scaled

by n Var(Wi).
40

B. Leibe

𝑉𝑎𝑟 𝑊𝑖𝑋𝑖 = 𝐸 𝑋𝑖
2𝑉𝑎𝑟 𝑊𝑖 + 𝐸 𝑊𝑖

2𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

= 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟 𝑌 = 𝑉𝑎𝑟 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛 = nVar Wi Var(Xi)

𝑌 = 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Analysis (cont’d)

• Variance of neuron activations

 if we want the variance of the input and output of a unit to be the

same, then n Var(Wi) should be 1. This means

 If we do the same for the backpropagated gradient, we get

 As a compromise, Glorot & Bengio proposed to use

 Randomly sample the weights with this variance. That’s it.

41
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Sidenote

• When sampling weights from a uniform distribution [a,b]

 Again keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

 Or when only taking into account the fan-in

𝑊~𝑈 −
3

𝑛𝑖𝑛
,

3

𝑛𝑖𝑛

 If this had been implemented correctly in Torch from the beginning,

the Deep Learning revolution might have happened a few years

earlier…
42

B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Extension to ReLU

• Important for learning deep models

 Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• We can also improve them with proper initialization

 However, the Glorot derivation was based on tanh units,

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, derived to use instead

43
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

44
B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Batch Normalization [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

 Complication: centering + normalization also needs to be done

at test time, but minibatches are no longer available at that point.

– Learn the normalization parameters to compensate for the expected

bias of the previous layer (usually a simple moving average)

• Effect

 Much improved convergence (but parameter values are important!)

 Widely used in practice
45

B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training (a form of regularization).

 Change network architecture for each minibatch, effectively training

many different variants of the network.

 When applying the trained network, multiply activations with the

probability that the unit was set to zero during training.

 Greatly improved performance
46

B. Leibe

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

References and Further Reading

• More information on many practical tricks can be found in

Chapter 1 of the book

47
B. Leibe

G. Montavon, G. B. Orr, K-R Mueller (Eds.)

Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

References

• ReLu

 X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural

networks, AISTATS 2011.

• Initialization

 X. Glorot, Y. Bengio, Understanding the difficulty of training deep

feedforward neural networks, AISTATS 2010.

 K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,

ArXiV 1502.01852v1, 2015.

 A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks, ArXiV

1312.6120v3, 2014.

48
B. Leibe

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120

P
e
rc

e
p

tu
a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r
‘1

8

References and Further Reading

• Batch Normalization

 S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift, ArXiV

1502.03167, 2015.

• Dropout

 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks

from Overfitting, JMLR, Vol. 15:1929-1958, 2014.

49
B. Leibe

http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

