Computer Vision 2 WS 2018/19

Part 18 – CNNs for Video Analysis III 23.01.2019

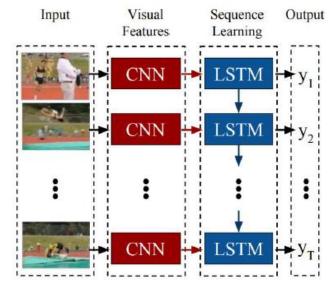
Guest Lecture: M.Sc. Jonathon Luiten

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

- Deep Learning for Video Analysis
 - CNNs for video analysis
 - CNNs for motion estimation
 - Video object segmentation



Video Object Segmentation (VOS)

- First-frame fine-tuning
- Online Adaptation
- Mask Refinement
- Optical Flow Mask Propagation
- Data Augmentation
- Object Appearance Re-Identification
- Proposal Generation
- Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Exciting Progress in Semantic Segmentation: 2017

- Full-Resolution Residual Network (FRRN) [CVPR'17]
 - Single-frame processing results

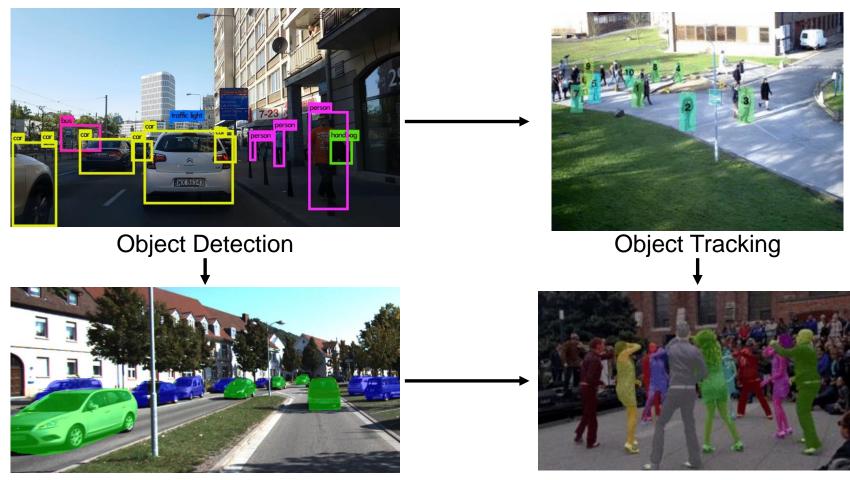
4

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 19 – CNNs for Video Analysis III [Pohlen, Hermans, Mathias, Leibe, CVPR'17]

Video Object Segmentation

 Generating accurate and consistent <u>pixel-masks</u> for <u>objects</u> in a <u>video</u> sequence

Video Object Segmentation



Object Segmentation

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 19 – CNNs for Video Analysis III

Video Object Segmentation

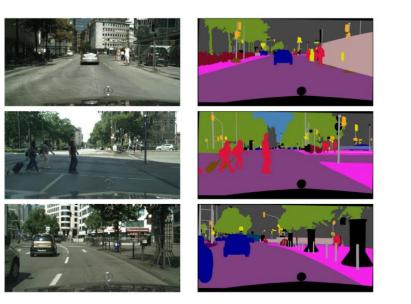
Video Object Segmentation – Task Formulation

Given: First-frame ground truth

Goal: Complete video segmentation

- Task formulation
 - Given: segmentation mask of target object(s) in the first frame
 - Goal: pixel-accurate segmentation of entire video
 - Currently a major testing ground for segmentation-based tracking

Other fields related to VOS



Semantic Segmentation

8

Person re-identification

Optical flow estimation

VOS Datasets

DAVIS 2016 (30/20, single objects, first frames) DAVIS 2017 (60/90, multiple objects, first frames)

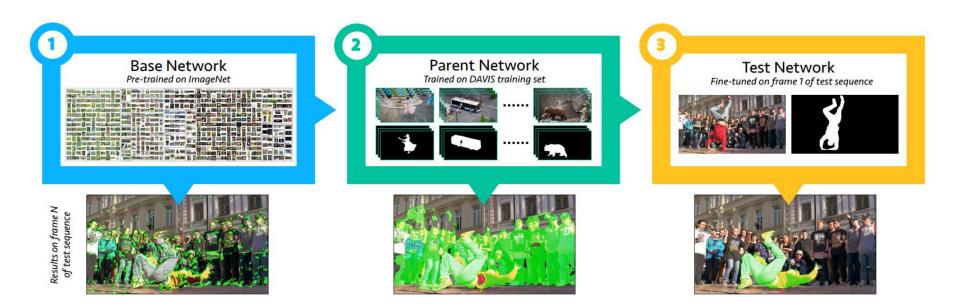
YouTube-VOS 2018 (3471/982, multiple objects, first frame where object appears)

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

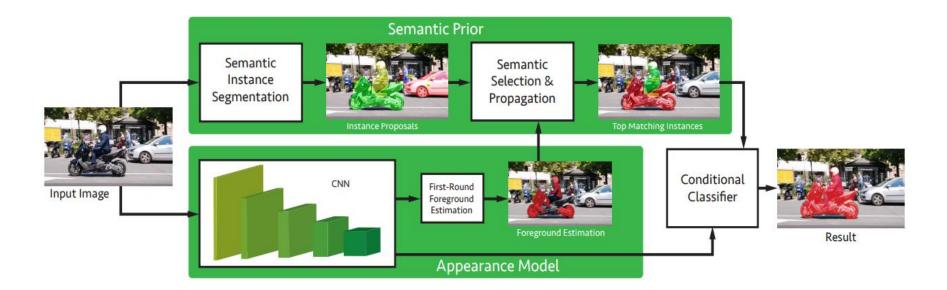
First-frame fine-tuning

- Idea
 - Semantic segmentation of one object (foreground) from background.
 - First-frame adaptation to specific object-of-interest using fine-tuning.
 - Pre-training for 'objectness'.

OSVOS [Caelles et al. CVPR2017]



OSVOS-S [Maninis et al. PAMI18]



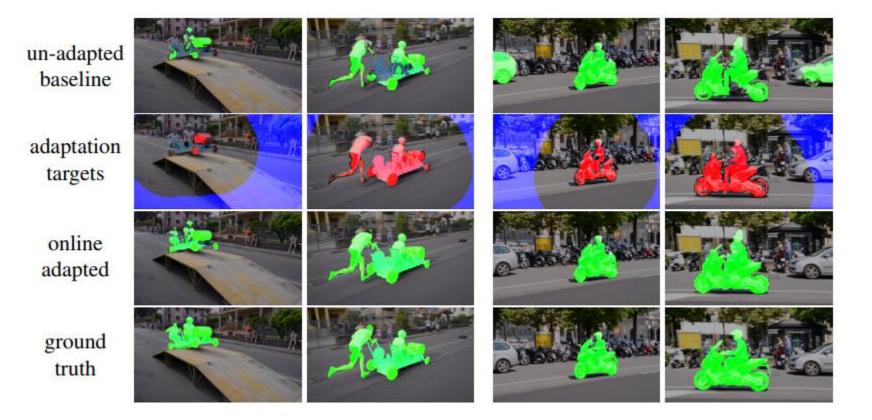
- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Online Adaptation

- Idea
 - adapt model to appearance changes every frame not just in the first frame.
 - Iteratively fine-tune the model on previous prediction every frame.
 - Extremely slow.

 You can think of this as a Deep Learning version of Tracking by Online Classification (Lecture 5)...

OnAVOS [Voigtlaender et al. BMVC17]



- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Mask Refinement

- Idea
 - We can often start with an approximate mask (either from previous frame or from coarse estimate).
 - Use a refinement network to accurately refine the mask estimate.
 - This can take advantage of crop-and-zoom to do segmentation at a higher resolution.

MaskTrack [Perazzi et al. CVPR17]

Input frame t

Mask estimate *t*-1

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Optical Flow Mask Propagation

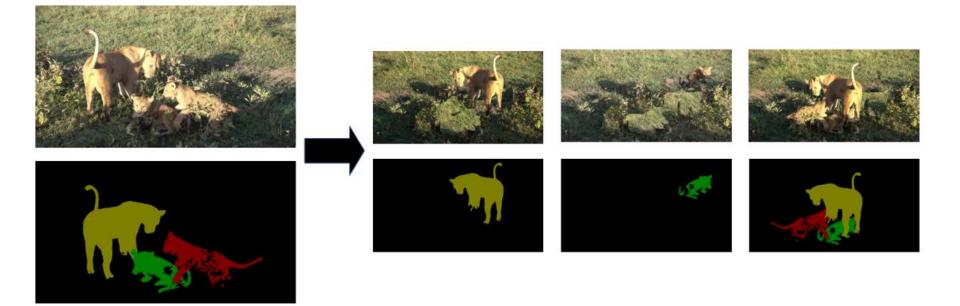
- Idea
 - Optical Flow defines correspondences between the pixels in neighboring frames.
 - Using these correspondences we can determine pixels in one frame that corresponded to a mask in the previous frame.
 - This enables us to 'warp' the segmentation mask from one frame to the next.
 - This propagated mask isn't perfect, and further refinement helps.

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Data Augmentation

- Idea
 - Approaches based on fine-tuning networks on the given first frame masks work quite well – but often overfit to first frame appearance.
 - We can get around this by doing large-scale data augmentations.
 - We can crop out the objects-of-interest, fill in the background, and place objects back into the scene randomly with blending.

Lucid Data Dreaming [Khoreva et al. CVPRW17]

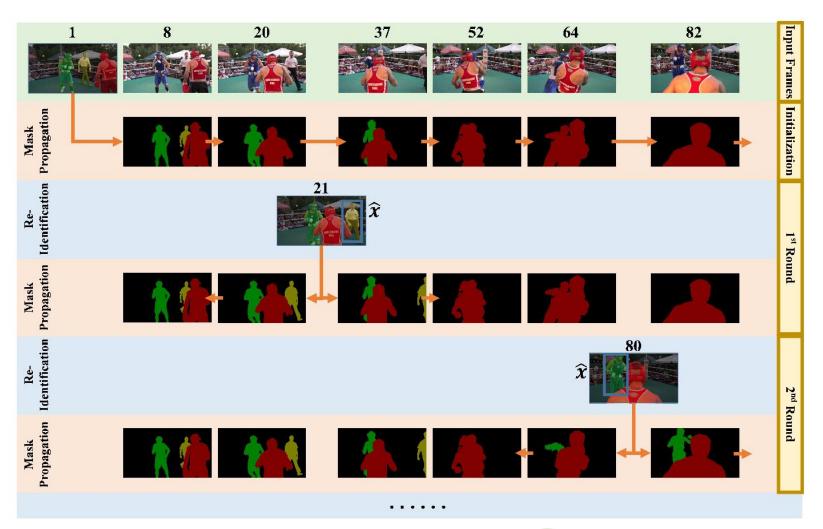


- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Object Appearance Re-Identification

- Idea
 - Often objects go in and out of view, or become extremely occluded.
 - In such situations, a mask-propagation based approach fails.
 - We need to re-identify objects based only on their appearance similarity.
 - We can use Siamese or Triplet Loss (see Lecture 18) based ReID networks to determine an appearance similarity score for object proposals.

ReID-VOS [Li et al. CVPRW17]



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 19 – CNNs for Video Analysis III

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Proposal Generation

- Idea
 - Instance Segmentation Networks (E.g. Mask-RCNN) give excellent single image object instance segmentation proposal results.
 - One can approach video object segmentation as taking these proposals in each frame and then linking them over time using a merging algorithm.

PReMVOS [Luiten et al. ACCV18]

- An approach that combines all of the previous VOS principles and gives state-of-the-art results.
- Combines the following principles:
 - First-frame fine-tuning
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation

PReMVOS – Overview

Proposal generation

Refinement

Merging

- Proposal generation
 - Category-agnostic Mask R-CNN proposals
 - ResNet101 backbone, joint training on COCO and Mapillary
- Refinement

- Fully-convolutional segmentation network trained to refine the segmentation given a proposal bounding box
- DeepLabV3+ backbone

PReMVOS – Overview

Proposal generation

Refinement

Merging

- Merging
 - Greedy decision process, chooses proposal(s) with best score
 - Optional proposal expansion through Optical Flow propagation
 - Proposal score as combination of
 - Objectness score
 - Mask propagation IoU score (Optical Flow warping)
 - ReID score
 - Object-Object interaction scores

PReMVOS – Results on Benchmarks

• DAVIS			Ours (Ens)	Ours	Lixx	Dawns	ILC_R	Apata	UIT
Challenge 2018	$\mathcal{J}\&\mathcal{F}$	Mean	74.7	71.8	73.8	69.7	69.5	67.8	66.3
	${\mathcal J}$	Mean	71.0	67.9	71.9	66.9	67.5	65.1	64.1
Winner 17/18		Recall	79.5	75.9	79.4	74.1	77.0	72.5	75.0
T-C		Decay	19.0	23.2	19.8	23.1	15.0	27.7	11.7
		Mean	78.4	75.6	75.8	72.5	71.5	70.6	68.6
	${\cal F}$	Recall	86.7	82.9	83.0	80.3	82.2	79.8	80.7
		Decay	20.8	24.7	20.3	25.9	18.5	30.2	13.5
Youtube-VOS		Overall		\mathcal{J} seen	${\cal J}$ unseen		\mathcal{F} seen	\mathcal{F} unseen	
Challenge	Our	Ours		73.7	64.8		77.8	72.5	
2018 Winner	Seq-2-S	Seq-2-Seq []		66.9	66.8		74.1	72.3	
	2nd	2nd		72.5	6	6.3	75.2	74.1	
	3rd	3rd		73.6	6	2.1	75.5	68.4	
	4th	4th		70.6	62.3		72.8	67.7	

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 19 – CNNs for Video Analysis III [Luiten, Voigtlaender, Leibe, ACCV'18]

PReMVOS – Visual Results

- Challenge 1: How to generate proposals?
 - Deep-learning based region proposal generators are fit for the task
 - Experimented with SharpMask and Mask R-CNN
- Challenge 2: How to track region proposals?
 - Region overlap works as a consistency measure
 - Optical flow based propagation really helps
 - ReID score also helpful
- Open issues

- PReMVOS has no notion of 3D objects moving through 3D space.
- Track initialization / termination logic needed for real tracking.
- How to obtain the initial segmentation?

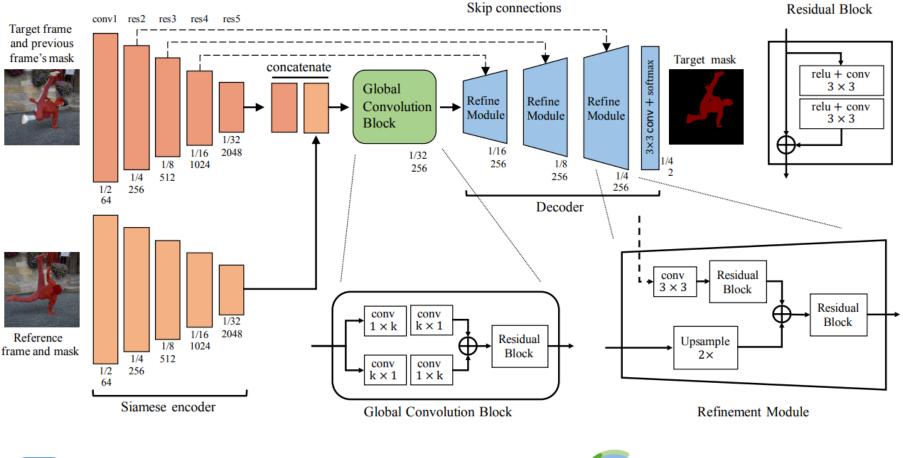
- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

Combining Mask Propagation and Re-ID

- Idea
 - Mask propagation networks give segmentation dependent on previous frame prediction.
 - Re-ID networks try to match the appearance of the 1st frame to the current frame.
 - We can combine both together by having input from the previous frame and the first frame and concatenating these together before decoding the output.

RGMP [Oh et al. CVPR2018]

Region Guided Mask Propagation



Instance Embedding Vectors

- Idea
 - Re-Identification networks based on bounding-box region proposals work really well.
 - This idea can be extended to a Re-Identification embedding for every pixel.
 - This pixel-wise Re-ID embedding vectors can then be used to directly extract a mask by taking the pixel with an embedding similar to the first frame embeddings.

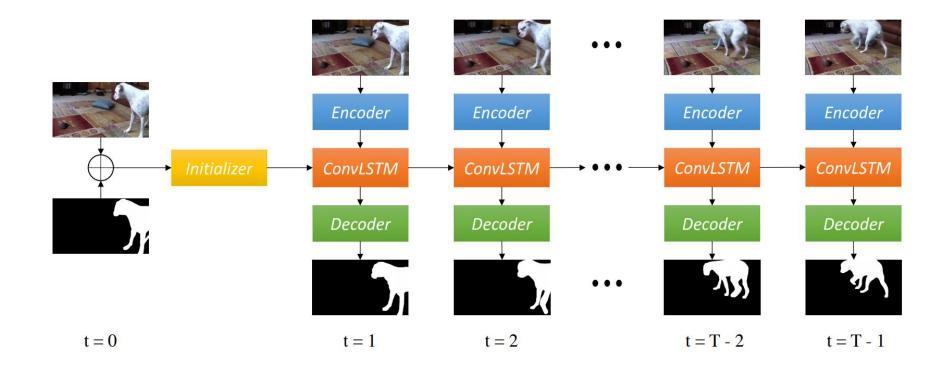
Blazingly Fast [Chen et al. CVPR18]



Using Recurrent Neural Networks

- Idea
 - Most of the approaches use neural networks trained to output results based on either only the current frame, or maybe the previous and/or first frames.
 - Using recurrent neural networks we can directly train our neural networks to learn to produce the results based on the entire sequence of images in a video in an end-to-end manner.

Seq2Seq [Xu et al. ECCV18]



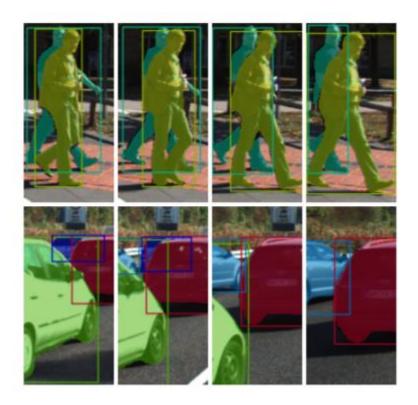
Topics of This Lecture

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

VOS -> MOTS

- Video Object Segmentation (VOS) is restricted in a number of ways.
 - First frame mask given
 - Short video clips with objects present in almost all frames
 - Few objects to track (max around 7 per video)
- Multi-Object Tracking and Segmentation (MOTS) is an extension of VOS that deals with all of these short comings.

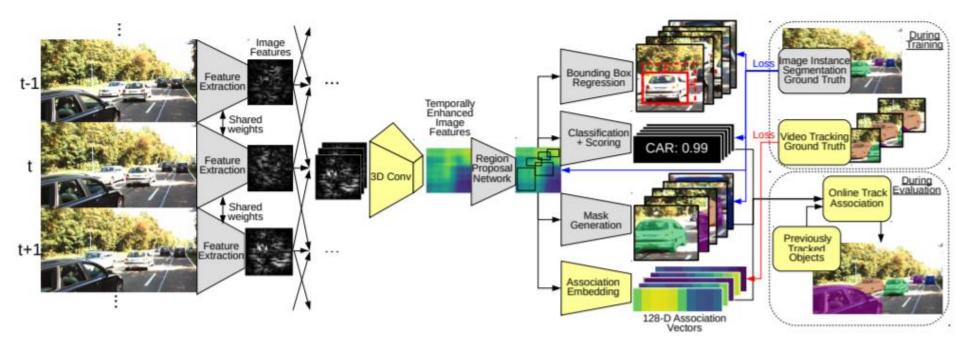
MOTS dataset



Solving MOTS

- Idea
 - Very similar approach to PReMVOS.
 - Proposal-generation followed by merging using optical flow and Re-ID vector.
 - 3D Convolutions for temporally consistent object proposals.
 - Re-ID vector built into the proposal network.
 - New tracks started by confident proposals that don't match well to previous tracks.

MOTS [Voigtlaender et al. sub.]



Topics of This Lecture

- Video Object Segmentation (VOS)
 - First-frame fine-tuning
 - Online Adaptation
 - Mask Refinement
 - Optical Flow Mask Propagation
 - Data Augmentation
 - Object Appearance Re-Identification
 - Proposal Generation
 - Further Approaches
- Multi-object Tracking and Segmentation (MOTS)
 - The future of segmentation based tracking

References and Further Reading

- Caelles, Sergi, et al. "One-shot video object segmentation." CVPR 2017. IEEE, 2017.
- Maninis, Kevis-Kokitsi, et al. "Video Object Segmentation Without Temporal Information." arXiv preprint arXiv:1709.06031 (2017).
- Voigtlaender, Paul, and Bastian Leibe. "Online adaptation of convolutional neural networks for video object segmentation." arXiv preprint arXiv:1706.09364 (2017).
- Perazzi, Federico, et al. "Learning video object segmentation from static images." Computer Vision and Pattern Recognition. 2017.
- Li, Xiaoxiao, et al. "Video object segmentation with re-identification." arXiv preprint arXiv:1708.00197 (2017).
- Khoreva, Anna, et al. "Lucid Data Dreaming for Multiple Object Tracking." arXiv preprint arXiv:1703.09554 (2017).
- Li, Xiaoxiao, and Chen Change Loy. "Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation." arXiv preprint arXiv:1803.04242 (2018).

References and Further Reading

- Oh, Seoung Wug et al. "Fast Video Object Segmentation by Reference-Guided Mask Propagation". CVPR 2018.
- Chen, Yuhua et al. "Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning". CVPR 2018.
- Xu, Ning et al. "YouTube-VOS: Sequence-to-Sequence Video Object Segmentation". ECCV 2018.
- Luiten, Jonathon et al. "PReMVOS: Proposal Generation, Refinement and Merging for Video Object Segmentation". ACCV 2018.

