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• Single-Object Tracking

• Bayesian Filtering

• Multi-Object Tracking

• Visual Odometry

• Visual SLAM & 3D Reconstruction
 Online SLAM methods

 Full SLAM methods

• Deep Learning for Video Analysis
 CNNs for video analysis

 Optical flow

 Video object segmentation

Course Outline
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Topics of This Lecture

• Recap: Full SLAM methods

• CNNs for Video Analysis
 Motivation

 Example: Video classification

• CNN + RNN
 RNN, LSTM

 Example: Video captioning

• Matching and correspondence estimation
 Metric learning

 Correspondence networks
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Recap: Full SLAM Approaches

• SLAM graph optimization:
 Joint optimization for poses and 

map elements from image 

observations of map elements 

and control inputs

• Pose graph optimization: 
 Optimization of poses from relative 

pose constraints deduced from the 

image observations

 Map recovered from the optimized 

poses

Slide credit: Jörg Stückler
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Pose Graph Optimization

• Optimization of poses 
 From relative pose constraints deduced from the image observations

 Map recovered from the optimized poses

• Deduce relative

constraints between

poses from image

observations, e.g.,
 8-point algorithm

 Direct image alignment

Slide credit: Jörg Stückler
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Pose Graph Optimization Example

Kerl et al., Dense Visual SLAM for RGB-D Cameras, IROS 2013

Slide credit: Jörg Stückler

https://jsturm.de/publications/data/kerl13iros.pdf
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Video Analysis with CNNs

• Modeling perspective
 What architecture to use to best capture temporal patterns?

• Computational perspective
 Video processing is expensive!

 How to reduce computation cost without sacrificing accuracy

Slide credit: Fei-Fei Li
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Large-Scale Video Classification with CNNs

• Architecture
 Different ways to fuse features from multiple frames

Slide credit: Fei-Fei Li Image source: Andrej Karpathy
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Large-Scale Video Classification with CNNs

• Computational cost
 Reduce spatial dimension to reduce model complexity

 Multi-resolution: low-res context + high-res foveate

Image source: Andrej Karpathy
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Recap: Recurrent Networks

• Feed-forward networks
 Simple neural network structure: 1-to-1 mapping of inputs to outputs

• Recurrent Neural Networks
 Generalize this to arbitrary mappings

Image source: Andrej Karpathy
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Recap: RNNs

• RNNs are regular NNs whose

hidden units have additional

forward connections over time.
 You can unroll them to create

a network that extends over

time.

 When you do this, keep in mind

that the weights for the hidden

units are shared between 

temporal layers.  

Image source: Andrej Karpathy
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Extension: Long Short-Term Memory (LSTM)

• LSTMs
 Inspired by the design of memory cells

 Each module has 4 layers, interacting in a special way.

 Effect: LSTMs can learn longer dependencies (~100 steps) than RNNs

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: RNNs for Text Generation

• RNN for text generation

Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Andrej Karpathy

Word embedding

(300D vector for 

each word)

Hidden layer

(e.g., 500D vectors)

10,001D class scores

(Softmax over 10k 

words and a special

<END> token)
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Recap: RNNs for Text Generation

• Training this on a

lot of sentences 

would give us a 

language model.

• I.e., a way to 

predict

p(next word |

previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li
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Recap: RNNs for Text Generation

• Training this on a

lot of sentences 

would give us a 

language model.

• I.e., a way to 

predict

p(next word |

previous words)

sample!

Slide credit: Andrej Karpathy, Fei-Fei Li
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Recap: RNNs for Text Generation

• Training this on a

lot of sentences 

would give us a 

language model.

• I.e., a way to 

predict

p(next word |

previous words)

samples <END>? Done!

Slide credit: Andrej Karpathy, Fei-Fei Li
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Applications: Image Tagging

• Simple combination of CNN and RNN

 Use CNN to define initial state h0 of an RNN.

 Use RNN to produce text description of the image.

Slide adapted from Andrej Karpathy
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Applications: Image Tagging

• Setup
 Train on corpus of images

with textual descriptions

 E.g. Microsoft CoCo

 120k images

 5 sentences each

Slide adapted from Andrej Karpathy
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Results: Image Tagging

Spectacular results!

Slide adapted from Andrej Karpathy
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Results: Image Tagging

• Wrong, but one can still see why those results were 

selected...

Slide adapted from Andrej Karpathy
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Application: Video to Text Description

Source: Subhashini Venugopalan, ICCV’15
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Video-to-Text Results

Source: Subhashini Venugopalan, ICCV’15
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Learning Similarity Functions

• Siamese Network
 Present the two stimuli to two

identical copies of a network

(with shared parameters)

 Train them to output similar 

values if the inputs are 

(semantically) similar.

• Used for many matching tasks
 Face identification

 Stereo estimation

 Optical flow

 …
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Metric Learning: Contrastive Loss

• Mapping an image to a metric embedding space
 Metric space: distance relationship = class membership

Yi et al., LIFT: Learned Invariant Feature Transform, ECCV 16

Slide credit: Christopher Choy
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Metric Learning: Triplet Loss

• Learning a discriminative embedding 
 Present the network with triplets of examples

 Apply triplet loss to learn an embedding 𝑓(∙) that groups the positive 
example closer to the anchor than the negative one.

 Used with great success in Google’s FaceNet face identification

Anchor PositiveNegative
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Patch Normalization with Spatial Transformer Nets

• Patch Normalization
 Key component of local feature matching

 Finding the scale and rotation

 Invariant to perspective transformation

• Spatial Transformer Network
 Adaptively apply transfomation

[SIFT patch normalization]

[Spatial Transformer Network]

Jaderberg et al., Spatial Transformer Network, NIPS 2015Slide credit: Christopher Choy
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Universal Correspondence Network

• Computing a patch descriptor

Slide credit: Christopher Choy
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Universal Correspondence Network

• Siamese architecture for matching patches

Slide credit: Christopher Choy
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Universal Correspondence Network

• UCN Training

• Contrastive loss

Slide credit: Christopher Choy
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Semantic Correspondences with UCN

Ground truth UCN VGG Conv4

Slide credit: Christopher Choy
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Exact Correspondences with UCN (Disparity Estimation) 

Slide credit: Christopher Choy

C. Choy, J.Y. Gwak, S. Savarese, M. Chandraker, Universal Correspondence Network, NIPS’16 

http://cvgl.stanford.edu/projects/ucn/
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