
12.12.2018

1

Computer Vision 2
WS 2018/19

Part 13 – Visual Odometry II
04.12.2018

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group

http://www.vision.rwth-aachen.de

2
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

• Single-Object Tracking

• Bayesian Filtering

• Multi-Object Tracking
 Introduction

 MHT, (JPDAF)

 Network Flow Optimization

• Visual Odometry
 Sparse interest-point based methods

 Dense direct methods

• Visual SLAM & 3D Reconstruction

• Deep Learning for Video Analysis

Course Outline

•image source: [Zhang, Li, Nevatia, CVPR’08]
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Topics of This Lecture
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 Recap: 2D-to-2D Motion Estimation

 2D-to-3D Motion Estimation

 3D-to-3D Motion Estimation

 Further Considerations

• Direct Methods
 Direct image alignment

 Pose parametrization

 Lie group se(3) and the exponential map

 Residual linearization

 Optimization considerations
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Recap: What is Visual Odometry ?

Visual odometry (VO)… 

• … is a variant of tracking
 Track motion (position and orientation) of the camera from its images

 Only considers a limited set of recent images for real-time constraints

• … also involves a data association 

problem
 Motion is estimated from corresponding 

interest points or pixels in images, or by 

correspondences towards a local 3D 

reconstruction

R, t ?

Slide credit: Jörg Stückler
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Recap: Direct vs. Indirect Methods

• Direct methods 
 formulate alignment objective in terms of photometric error 

(e.g., intensities)

• Indirect methods 
 formulate alignment objective in terms of reprojection error of 

geometric primitives (e.g., points, lines)

Slide credit: Jörg Stückler
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Motion Estimation from Point Correspondences

• 2D-to-2D
 Reproj. error:

 Introduced linear algorithm: 8-point

• 2D-to-3D
 Reprojection error:

 Introduced linear algorithm: DLT PnP

• 3D-to-3D
 Reprojection error:

 Introduced linear algorithm: Arun‘s method

Slide credit: Jörg Stückler

http://www.vision.rwth-aachen.de/
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Recap: Eight-Point Algorithm for Essential Matrix Est.

• First proposed by Longuet and Higgins, 1981

• Algorithm:
1. Rewrite epipolar constraints as a linear system of equations

using Kronecker product 𝐚𝑖 = 𝐲𝑖 ⊗ 𝐲𝑖
′ and 𝐄𝑠 = 𝑒11, 𝑒12, 𝑒13, … , 𝑒33

⊤

2. Apply singular value decomposition (SVD) on 𝐀 = 𝐔𝐀𝐒𝐀𝐕𝐀
⊤ and 

unstack the 9th column of 𝐕𝐀 into ෨𝐄.

3. Project the approximate ෨𝐄 into the (normalized) essential space: 

Determine the SVD of ෨𝐄 = 𝐔 diag 𝜎1, 𝜎2, 𝜎3 𝐕⊤ with 𝐔,𝐕 ∈ 𝐒𝐎 3

and replace the singular values 𝜎1 ≥ 𝜎2 ≥ 𝜎3 with 1,1,0 to find

Slide credit: Jörg Stückler

𝐲𝑖𝐄𝐲𝒊
′ = 𝐚𝑖𝐄𝑠 = 0 𝐀𝐄𝑠 = 0 𝐀 = 𝐚1

⊤, … , 𝐚𝑁
⊤ ⊤

𝐄 = 𝐔 diag 1,1,0 𝐕⊤
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Recap: Eight-Point Algorithm cont.

• Algorithm (cont.):
 Determine one of the following 2 possible solutions that intersects the

points in front of both cameras:

• A derivation can be found in the MASKS textbook, Ch. 5

• Remarks
 Algebraic solution does not minimize geometric error

 Refine using non-linear least-squares of reprojection error

 Alternative: formulate epipolar constraints as „distance from epipolar
line“ and minimize this non-linear least-squares problem

Slide credit: Jörg Stückler
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Recap: Eight-Point Algorithm cont.

• Normalized essential matrix:

• Linear algorithms exist that require only 6 points for general motion

• Non-linear 5-point algorithm with up to 10 (possibly complex) 
solutions

• Points need to be in „general position“: certain degenerate 
configurations exists (e.g., all points on a plane)

• No translation, ideally:

• But: for small translations, signal-to-noise ratio of image parallax 
may be problematic: „spurious“ pose estimate 
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Normalized Eight-Point Algorithm

• Hartley, In Defense of the Eight-Point Algorithm, PAMI 1997

 Conditioning of 𝐀 can be improved by shifting and rescaling image 

coordinates

 Normalize coordinates to zero mean and unit variance

 Very important for estimating the fundamental matrix due to pixel 

coordinates
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• Goal: Reconstruct 3D point                                 from 2D image 
observations                  for known camera poses

• Linear solution: Find 3D point such that reprojections equal its
projections

 Each image provides one constraint

 Leads to system of linear equations , two approaches:
 Set             and solve nonhomogeneous system

 Find nullspace of      using SVD (this is what we did in CV I)

• Non-linear solution: Minimize least squares reprojection error
(more accurate)

Recap: Triangulation

Slide credit: Jörg Stückler

13
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

Relative Scale Recovery

• Problem: 
 Each subsequent frame-pair gives another solution for the reconstruction 

scale 

• Solution: 
 Triangulate overlapping points                          for current and last frame 

pair

 Rescale translation of current relative pose estimate to match the
reconstruction scale with the distance ratio between corresponding point
pairs

 Use mean or robust median over available pair ratios

Slide credit: Jörg Stückler
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Algorithm: 2D-to-2D Visual Odometry

Input: image sequence 

Output: aggregated camera poses

Algorithm:

For each current image :

1. Extract and match keypoints between and

2. Compute relative pose           from essential matrix between         

, 

3. Compute relative scale and rescale translation of

accordingly

4. Aggregate camera pose by

Slide credit: Jörg Stückler
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2D-to-3D Motion Estimation

• Given a local set of 3D points
and corresponding image observations

determine camera pose             
within the local map

• Minimize least squares geometric reprojection error

• Perspective-n-Points (PnP) problem, many approaches exist, e.g.,
 Direct linear transform (DLT)
 EPnP [Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 

2009]
 OPnP [Zheng et al., Revisiting the PnP Problem: A Fast, General and 

Optimal Solution, ICCV 2013]

Slide credit: Jörg Stückler
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• Goal: determine projection matrix

• Each 2D-to-3D point correspondence
3D:                                        2D:
gives two constraints

through

• Form linear system of equation with
from correspondences

• Solve for    : determine unit singular vector of     corresponding to 
its smallest eigenvalue

Direct Linear Transform for PnP

Slide credit: Jörg Stückler
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Algorithm: 2D-to-3D Visual Odometry

Input: image sequence 

Output: aggregated camera poses

Algorithm:

Initialize:

1. Extract and match keypoints between and

2. Determine camera pose (Essential matrix) and 
triangulate 3D keypoints

For each current image :

1. Extract and match keypoints between and

2. Compute camera pose using PnP from 2D-to-3D matches

3. Triangulate all new keypoint matches between          and        
and add them to the local map

Slide credit: Jörg Stückler
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3D-to-3D Motion Estimation

• Given 3D point coordinates of corresponding
points in two camera frames

determine relative camera pose

• Idea: determine rigid transformation that aligns the 3D points

• Geometric least squares error:

• Closed-form solutions available, e.g., [Arun et al., 1987]
 Applicable, e.g., for calibrated stereo cameras (triangulation of 3D points) 

or RGB-D cameras (measured depth)

Slide credit: Jörg Stückler
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3D Rigid-Body Motion from 3D-to-3D Matches

• [Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987]

• Corresponding 3D points,

• Determine means of 3D point sets

• Determine rotation from

• Determine translation as

Slide credit: Jörg Stückler
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Algorithm: 3D-to-3D Stereo Visual Odometry

Input: stereo image sequence 

Output: aggregated camera poses

Algorithm:

For each current stereo image ,    :

1. Extract and match keypoints between and

2. Triangulate 3D points between and

3. Compute camera pose           from 3D-to-3D 

point matches       to 

4. Aggregate camera poses by

Slide credit: Jörg Stückler
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Further Considerations

• How to detect keypoints?

• How to match keypoints?

• How to cope with outliers among keypoint matches?

• How to cope with noisy observations?

• When to create new 3D keypoints ? Which keypoints to use?

• 2D-to-2D, 2D-to-3D or 3D-to-3D?

• Optimize over more than two frames?

• …

Slide credit: Jörg Stückler
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Recap: Keypoint Detectors

• Corners

 Image locations with locally

prominent intensity variation

 Intersections of edges

• Examples: Harris, FAST

• Scale-selection: Harris-Laplace

• Blobs

 Image regions that stick out from

their surrounding in intensity/texture

 Circular high-contrast regions

• E.g.: LoG, DoG (SIFT), SURF

• Scale-space extrema in LoG/DoG

Image source: Svetlana Lazebnik

Harris Corners DoG (SIFT) Blobs

Slide credit: Jörg Stückler
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Recap: Keypoint Detectors

• Desirable properties of keypoint detectors for VO:
 High repeatability, 

 Localization accuracy, 

 Robustness, 

 Invariance, 

 Computational efficiency

Harris Corners DoG (SIFT) Blobs

Slide credit: Jörg Stückler Image source: Svetlana Lazebnik
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Recap: Keypoint Detectors

• Corners vs. blobs for visual odometry:
 Typically corners provide higher spatial localization accuracy, 

but are less well localized in scale

 Corners are typically detected in less distinctive local image

regions

 Highly run-time efficient corner detectors exist (e.g., FAST)

Harris Corners DoG (SIFT) Blobs

Slide credit: Jörg Stückler Image source: Svetlana Lazebnik

28
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

Recap: Keypoint Matching

• Desirable properties for VO:
 High recall, 

 Precision, 

 Robustness, 

 Computational efficiency

Slide credit: Jörg Stückler
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Recap: Keypoint Matching

• Several data association principles:
 Matching by reprojection error / distance to epipolar line

 Assumes an initial guess for camera motion 

 (e.g., Kalman filter prediction, IMU, or wheel odometry)

 Detect-then-track (e.g., KLT-tracker):  

 Correspondence search by local image alignment

 Assumes incremental small (but unknown) motion between images

 Matching by descriptor: 

 Scale-/viewpoint-invariant local descriptors allow for wider image baselines

 Robustness through RANSAC for motion estimation

Slide credit: Jörg Stückler
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Recap: Local Feature Descriptors

• Extract signatures that describe local image regions:
 Histograms over image gradients (SIFT)

 Histograms over Haar-wavelet responses (SURF)

 Binary patterns (BRIEF, BRISK, FREAK, etc.)

 Learning-based descriptors (e.g., Calonder et al., ECCV 2008)

• Rotation-invariance: Align with dominant orientation 

• Scale-invariance: Adapt local region extent to keypoint scale

SIFT gradient pooling BRIEF test locations

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010Slide credit: Jörg Stückler
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Recap: RANSAC

• Model fitting in presence of noise and outliers

• Example: fitting a line through 2D points

Slide credit: Jörg Stückler
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• Least-squares solution, assuming constant noise for all 

points

Recap: RANSAC

Bad!

Slide credit: Jörg Stückler
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• We only need 2 points to fit a line. Let’s try 2 random points

Recap: RANSAC

Quite ok..

7 inliers

4 outliers

Slide credit: Jörg Stückler
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• Let’s try 2 other random points

Recap: RANSAC

Quite bad..

3 inliers

8 outliers
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• Let’s try yet another 2 random points

Recap: RANSAC

Quite good!

9 inliers

2 outliers

Slide credit: Jörg Stückler

36
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

• Let’s use the inliers of the best trial to perform least squares 

fitting

Recap: RANSAC

Even better!

Slide credit: Jörg Stückler
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• RANdom SAmple Consensus algorithm formalizes this idea

• Algorithm:
Input: data    ,   required data points for fitting, success probability    , 

outlier ratio

Output: inlier set

1. Compute required number of iterations

2. For      iterations do:

1. Randomly select a subset of     data points

2. Fit model on the subset

3. Count inliers and keep model/subset with largest number of inliers

3. Refit model using found inlier set

Recap: RANSAC

Slide credit: Jörg Stückler
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Recap: RANSAC

• Required number of iterations
 N for p = 0.99

Req. #points
s

Outlier ratio 𝜖

10% 20% 30% 40% 50% 60% 70%

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188

Slide credit: Jörg Stückler
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• Model image point observation likelihood

 E.g., Gaussian: 

• Optimize maximum a-posteriori likelihood of estimates

 Neg. log-likelihood:

 Gaussian prior and observation likelihood:

Probabilistic Modelling

Slide credit: Jörg Stückler
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Drift in Motion Estimates

• Estimation errors
accumulate: Drift

• Noisy observations in 
2D image point location

• Motion estimation and
triangulation accuracy
depend on ratio of
baseline to depth

• 3D-to-3D vs. 2D-to-3D:
 Low 3D triangulation

accuracy for small baseline

 3D-to-3D: 2x triangulation,
typically less accurate than
2D-to-3D

baseline << depth baseline ~ depth

Slide credit: Jörg Stückler
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Keyframes

• Popular approach to reduce drift: 
Keyframes

• Carefully select reference
images for motion estimation / 
triangulation

• Incrementally estimate motion
towards keyframe

• If baseline sufficient (and/or
image overlap small), create
next keyframe [and triangulate
3D positions of keypoints]

keyframes

Slide credit: Jörg Stückler

42
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

Motion Estimation for Input Type

Correspondences Monocular Stereo RGB-D

2D-to-2D X X X

2D-to-3D X X X

3D-to-3D X X

Slide credit: Jörg Stückler

43
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

Local Optimization Windows

• Can we do better than optimization over two images?

• Optimize motion / reconstruction

on a local current window of images

 Local bundle adjustment

 Local motion-only bundle adjustment

(3D keypoint positions held fixed)

 Initialize with algebraic approaches
optimization window

Slide credit: Jörg Stückler
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Summary

• Visual odometry estimates relative camera motion from 

image sequences

• Indirect point-based methods 
 Minimize geometric reprojection error

 2D-to-2D, 2D-to-3D, 3D-to-3D motion estimation

 RANSAC for robust keypoint matching

 Keyframes can reduce drift

 Local optimization window can further increase accuracy

• Next: direct methods

Slide credit: Jörg Stückler
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• Avoid manually designed

keypoint detection

and matching

• Instead: direct image

alignment

• Warping requires depth

 RGB-D

 Fixed-baseline stereo

 Temporal stereo, tracking

and (local) mapping

Direct Visual Odometry Pipeline

Slide credit: Jörg Stückler
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Direct Visual Odometry Example (RGB-D)

Slide credit: Jörg Stückler
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Direct Image Alignment Principle

• If we know pixel depth, we can „simulate“ an image from a 

different view point

• Ideally, the warped image is the same as the image taken 

from that pose:

Slide credit: Jörg Stückler
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Images from Kerl et al., ICRA 2013

-

Slide credit: Jörg Stückler

Derivative of Image Warp
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• RGB-D cameras measure depth, we only need to estimate camera motion!

• In addition to the photometric error

we can measure geometric error directly

Slide credit: Jörg Stückler

Direct RGB-D Image Alignment
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• Measurements are affected by noise

• A convenient assumption is Gaussian noise

• If we further assume that pixel measurements are stochastically independent, 

we can formulate the a-posteriori probability

Probabilistic Direct Image Alignment

Slide credit: Jörg Stückler
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Optimization Approach

• Optimize negative log-likelihood 
 Product of exponentials becomes a summation over quadratic terms

 Normalizers are independent of the pose

, stacked residuals:

• Non-linear least squares problem can be efficiently 

optimized using standard second-order tools 

(Gauss-Newton, Levenberg-Marquardt)

Slide credit: Jörg Stückler
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• Gauss-Newton method, iterate: 

 Linearize residuals:

 Find minimum of linearized system, linearize and set :

Slide credit: Jörg Stückler

Gauss-Newton for Non-Linear Least Squares

54
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

• Due to linearization,       may not be a good approximation of the

Hessian far from the optimum (could even be degenerate)

• Idea: „damping“ of step-length trades-off between Gauss-Newton and

gradient descent

 If error decreases, decrease to shift towards Gauss-Newton

 If error increases, reject update and increase to rather perform gradient

descent

 Can converge from worse starting conditions than Gauss-Newton, but 

requires more iterations

Slide credit: Jörg Stückler

Levenberg-Marquardt Method
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• Requirements on pose parametrization 

 No singularities 

 Minimal to avoid constraints

• Various pose parametrizations available

 Direct matrix representation => not minimal

 Quaternion / translation => not minimal

 Euler angles / translation => singularities

 Twist coordinates of elements in Lie Algebra se(3) of SE(3)

(axis-angle / translation)

Slide credit: Jörg Stückler

Pose Parametrization for Optimization
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• is a smooth manifold, i.e. a Lie group

• Its Lie algebra            provides an elegant way to parametrize poses for 

optimization

• Its elements                  form the tangent space of         at  at identity 

• The           elements can be interpreted as rotational and translational 

velocities (twists) 

Lie algebra

Lie group log

exp

Slide credit: Jörg Stückler

Representing Motion using Lie Algebra se(3)
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Insights into se(3)

• Let‘s look at rotations first and assume time-continuous motion
 We know that

 Taking the derivative for time yields

 This means there exists a skew-symmetric matrix

such that

 Assume constant and solve linear ordinary differential equation
(ODE):

 Further assuming , we obtain

 Matrix exponential has a closed-form solution;       corresponds to minimal 
axis-angle representation

Slide credit: Jörg Stückler
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Further Insights into se(3)

 For continuous rigid-body motion we can write

 Interpretation: tangent vector along curve of

 Again, for constant this linear ODE has a unique solution:

 For initial condition , we have

 To reduce clutter in notation, we will absorb into and

Slide credit: Jörg Stückler
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Lie group

Lie algebra

log

exp

• The exponential map finds the transformation matrix for a twist:

Slide credit: Jörg Stückler

Exponential Map of SE(3)
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Lie group

Lie algebra

• The logarithm maps twists to transformation matrices:

log

exp

Slide credit: Jörg Stückler

Logarithm Map of SE(3)
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Some Notation for Twist Coordinates

• Let’s define the following notation:

 Inversion of hat operator:

 Conversion:                                             ,

 Pose inversion:

 Pose concatenation:

 Pose difference:

Slide credit: Jörg Stückler
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• Twists provide a minimal local representation without singularities 

• Since            is a smooth manifold, we can decompose transformations

in each optimization step into the transformation itself and an 

infinitesimal increment

• Example: Gradient descent on the auxiliary variable

But!

Slide credit: Jörg Stückler

Optimization with Twist Coordinates

64
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 11 – Multi-Object Tracking II

• Linearizing residuals yields

with

 Linearization is only valid for motions that change the projection in a 

small image neighborhood that is captured by the local gradient

-

Slide credit: Jörg Stückler

Properties of Residual Linearization
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Topics of This Lecture

• Point-based Visual Odometry
 Recap: 2D-to-2D Motion Estimation

 2D-to-3D Motion Estimation

 3D-to-3D Motion Estimation

 Further Considerations

• Direct Methods
 Direct image alignment

 Pose parametrization

 Lie group se(3) and the exponential map

 Residual linearization

 Optimization considerations
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coarse motion

fine motion

Slide credit: Jörg Stückler

Coarse-To-Fine Optimization
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• Gaussian noise assumption on photometric residuals oversimplifies

• Outliers (occlusions, motion, etc.):

Residuals are distributed with more mass on the larger values

- Normal distribution

- Laplace distribution

- Student-t distribution

r

p
(r

)

Images from Kerl et al., ICRA 2013Slide credit: Jörg Stückler

Residual Distributions
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• Can we change the residual distribution in least squares optimization?

• For specific types of distributions: yes!

• Iteratively reweighted least squares: Reweight residuals in each iteration

- Normal distribution

- Laplace distribution

- Student-t distribution

r

w
(r

)r
²

Laplace distribution:

Slide credit: Jörg Stückler

Optimizing Non-Gaussian Measurement Noise
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• Huber-loss „switches“ between Gaussian (locally at mean) 

and Laplace distribution

Huber-loss for = 1

- Normal distribution

- Laplace distribution

- Student-t distribution

Slide credit: Jörg Stückler

Huber Loss
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• MASKS and MVG textbooks

• D. Scaramuzza / F. Fraundorfer, Visual Odometry: Part I & 

II, IEEE Robotics and Automation Magazine, 2011/2012
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Y. Ma, S. Soatto, 

J. Kosecka, and
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Springer, 2004
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