

Recap: RANSAC

	Reg. #points			0	utlier ra	atio ϵ	
	s	10%	20%	30%	40%	50%	60%
Line	2	3	5	7	11	17	27
Plane	3	4	7	11	19	35	70
Essential matrix	8	9	26	78	272	1177	7025

Correspondences	Monocular	Stereo	RGB-D
2D-to-2D	Х	Х	Х
2D-to-3D	х	Х	Х
3D-to-3D		Х	Х

Levenberg-Marquardt Method

- Due to linearization, \mathbf{H}_i may not be a good approximation of the Hessian far from the optimum (could even be degenerate)
- Idea: "damping" of step-length trades-off between Gauss-Newton and gradient descent

$$\boldsymbol{\xi}_{i+1} = \boldsymbol{\xi}_i - (\mathbf{H}_i + \lambda \mathbf{I})^{-1} \mathbf{J}_i^{\top} \mathbf{Wr}(\boldsymbol{\xi}_i)$$

- If error decreases, decrease $\,\lambda\,$ to shift towards Gauss-Newton
- If error increases, reject update and increase $\ \lambda$ to rather perform gradient descent
- Can converge from worse starting conditions than Gauss-Newton, but requires more iterations

