



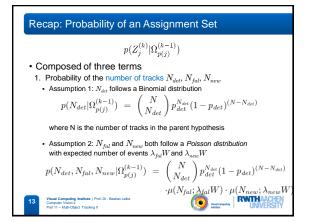
Recap: Measurement Likelihood Use KF prediction Assume that a measurement y^(k)_i associated to a track x_j has a

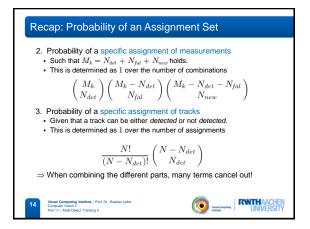
- Gaussian pdf centered around the measurement prediction $\hat{\mathbf{x}}_j^{(k)}$ with innovation covariance $\widehat{\mathbf{\Sigma}}_j^{(k)}$.
- Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability W⁻¹.
- Thus, the measurement likelihood can be expressed as

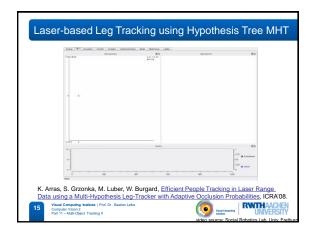
$$p\left(\mathbf{Y}^{(k)}|Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}\right) = \prod_{i=1}^{M_{h}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)}; \hat{\mathbf{x}}_{j}, \widehat{\mathbf{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} W^{-(1-\delta_{i})}$$

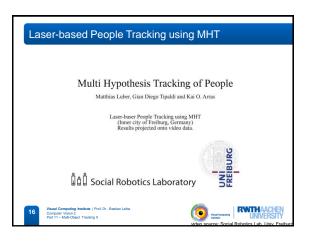
$$= W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_{h}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)}; \hat{\mathbf{x}}_{j}, \widehat{\mathbf{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}$$

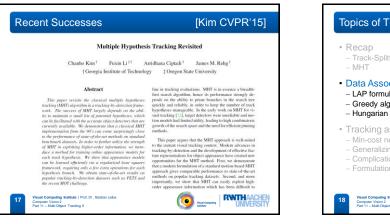
$$W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_{h}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)}; \hat{\mathbf{x}}_{j}, \widehat{\mathbf{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}$$
With Comparison of the station lattice of the stationary of the station

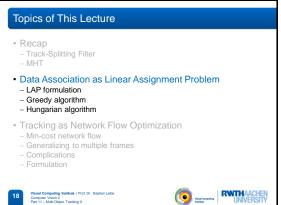


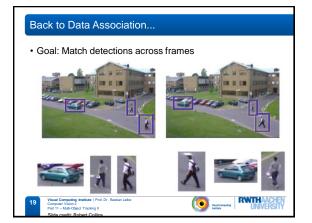


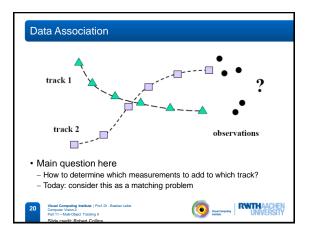






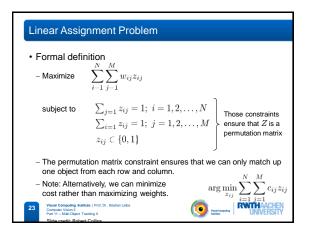






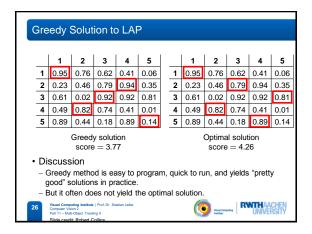
Linear Assignment Formulation									
• Form a matrix of pairwi		ity opprov							
• Form a matrix of pairwise similarity scores									
 Similarity could be based on motion prediction section 		X							
 based on appearance based on both 		0.11	0.95	0.23					
- Frame	- -	0.85	0.25	0.89					
-	K	0.90	0.12	0.81					
• Goal									
- Choose one match from each row and column to maximize the sum of									
scores									
21 Visual Computing Institutes [Prof. Dr. Bastian Lable Silder gradit Profest Collisis Silder gradit Profest Collisis									

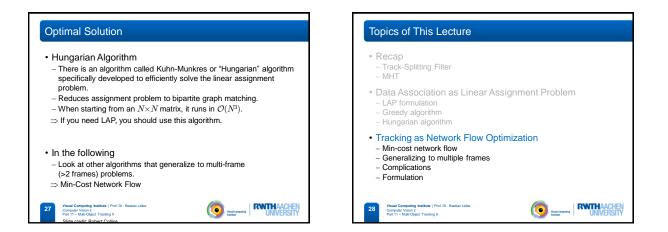
Linear Assignment Formulation · Example: Similarity based on motion prediction - Predict motion for each trajectory and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores. ai1 ai2 3.0 track1 -1 2 3 5.0 6.0 1.0 4 9.0 8.0 5 3.0 track2 Choose at most one match in each row and column to maximize sum of scores RWITHAACHEN UNIVERSITY Co (

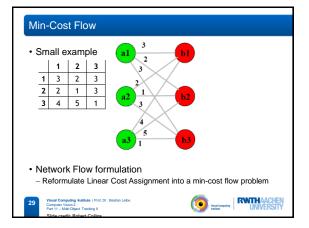


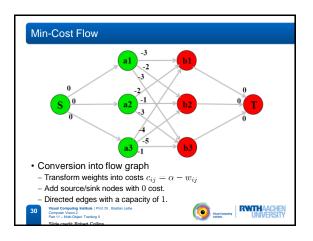
		1	2	3	4	5		
	1	0.95	0.76	0.62	0.41	0.06		
	2	0.23	0.46	0.79	0.94	0.35		
	3	0.61	0.02	0.92	0.92	0.81		
	4	0.49	0.82	0.74	0.41	0.01		
	5	0.89	0.44	0.18	0.89	0.14		
Greedy algorit – Find the largest – Remove scorest – Repeat	t sc	ore	ow an	d colur	nn fror	n cons	ideration	

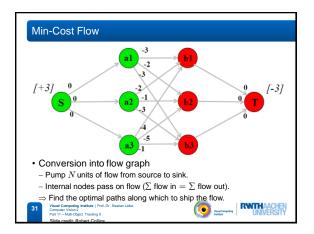
Greedy Solution to LAP				
	1 2 3 4 5			
	1 0.95 0.70 0.92 0.41 0.90			
	2 0.23 0.40 0.79 0.94 0.05			
	3 0.01 0.02 0.92 0.01			
	4 0.49 0.82 0.74 0.41 0.91			
	5 0.99 0.44 0.18 0.99 0.14			
 Greedy algor Find the large Remove score Repeat 				
 Result: score 	= 0.95 + 0.94 + 0.92 + 0.82 + 0.14 $=$ 3.77			
_	Is this the best we can do?			
25 Visual Computing Institute Computer Vision 2 Part 11 – Multi-Object Traci				

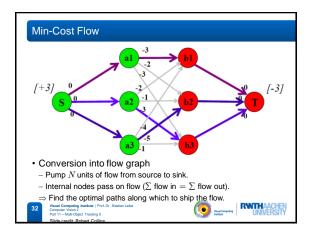


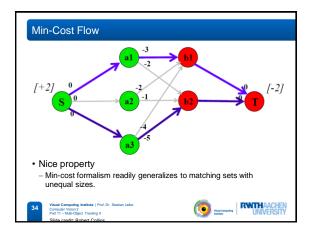


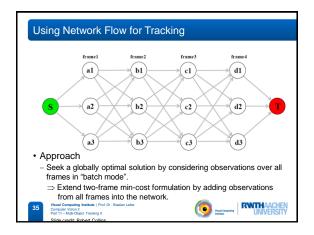


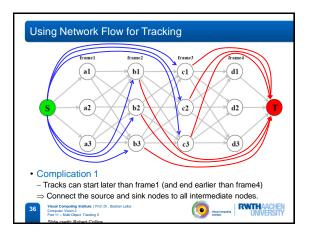


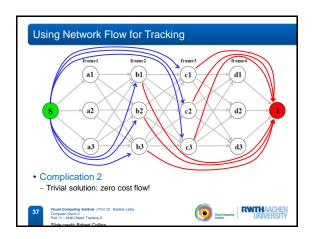


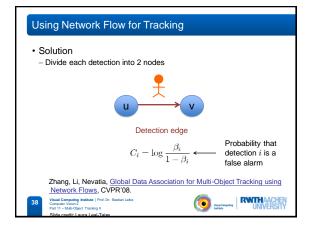


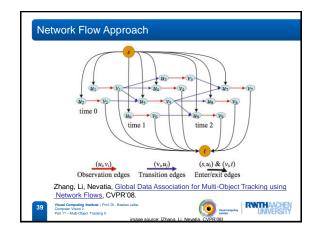


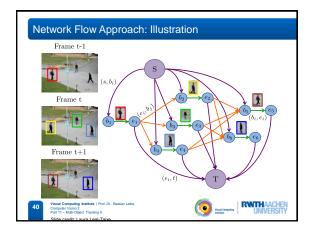


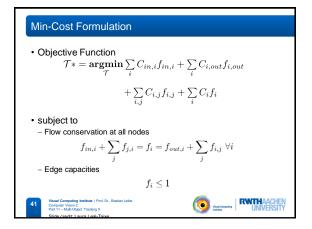


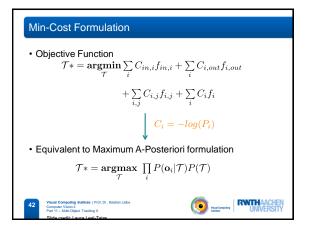


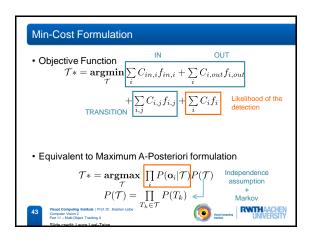












Network Flow Solutions

- Push-relabel method
 - Zhang, Li, Nevatia, <u>Global Data Association for Multi-Object Tracking</u> using Network Flows, CVPR'08.
- Successive shortest path algorithm
- Berclaz, Fleuret, Turetken, Fua, <u>Multiple Object Tracking using K-shortest Paths Optimization</u>, IEEE PAMI, Sep 2011. (code)
- Pirsiavash, Ramanan, Fowlkes, <u>Globally Optimal Greedy Algorithms for</u> <u>Tracking a Variable Number of Objects</u>, CVPR'11.
- These both include approximate dynamic programming solutions

Summary · Tracking as network flow optimization Pros - Clear algorithmic framework, equivalence to probabilistic formulation Well-understood LP optimization problem, efficient algorithms available - Globally optimal solution · Cons / Limitations - Only applicable to restricted problem setting due to LP formulation Not possible to encode exclusion constraints between detections (e.g., to penalize physical overlap) · Motion model can only draw upon information from pairs of detections (i.e., only zero-velocity model possible, no constant velocity models) Cin and Cout cost terms are quite fiddly to set in practice • Too low \Rightarrow fragmentations, too high \Rightarrow ID switches Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 11 – Multi-Object Tracking II **RWTH**AACHEN UNIVERSITY Visad Ce Institute

References and Further Reading

- The original network flow tracking paper
 Zhang, Li, Nevatia, <u>Global Data Association for Multi-Object Tracking</u> <u>using Network Flows</u>, CVPR'08.
- Extensions and improvements
 Berclaz, Fleuret, Turetken, Fua, <u>Multiple Object Tracking using K-shortest Paths Optimization</u>, IEEE PAMI, Sep 2011. (code)
 - Pirsiavash, Ramanan, Fowlkes, <u>Globally Optimal Greedy Algorithms for</u> <u>Tracking a Variable Number of Objects</u>, CVPR'11.
- A recent extension to incorporate social walking models

 L. Leal-Taixe, G. Pons-Moll, B. Rosenhahn, <u>Everybody Needs</u> Somebody: Modeling Social and Grouping Behavior on a Linear <u>Programming Multiple People Tracker</u>, ICCV Workshops 2011.

RWTHAACHEN