Computer Vision 2 WS 2018/19

Part 10 – Multi-Object Tracking 27.11.2018

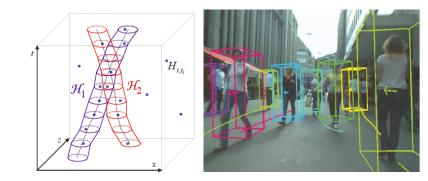
Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

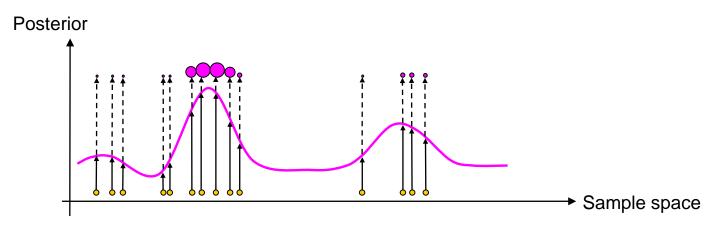
- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
 - Introduction
 - MHT, JPDAF

- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.

Slide adapted from Michael Rubinstein

Recap: Sequential Importance Sampling

$$\begin{aligned} \mathbf{function} & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ \eta &= 0 \\ \text{Initialize} \\ \mathbf{for} \quad i = 1:N \end{aligned}$$

$$\begin{aligned} \mathbf{x}_{t}^{i} &\sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) \\ w_{t}^{i} &= w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} \\ \eta &= \eta + w_{t}^{i} \end{aligned}$$

end

for i = 1:N $w_t^i = w_t^i / \eta$

end

4

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Michael Rubinstein

Sample from proposal pdf

Update weights

Update norm. factor

Normalize weights

Recap: Sequential Importance Sampling

$$\begin{aligned} & \text{function } \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{For a concrete algorithm,} \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

end

5

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Michael Rubinstein

Recap: SIS Algorithm with Transitional Prior

$$\begin{aligned} & \textbf{function} \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \textbf{for } i = 1:N \\ & \mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \textbf{end} & \\ & \textbf{for } i = 1:N \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

end

6

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Michael Rubinstein

Recap: Resampling

- Degeneracy problem with SIS
 - After a few iterations, most particles have negligible weights.
 - Large computational effort for updating particles with very small contribution to $p(\mathbf{x}_t | \mathbf{y}_{1:t})$.
- Idea: Resampling
 - Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow \left\{\mathbf{x}_{t}^{i*}, \frac{1}{N}\right\}_{i=1}^{N}$$

– The new set is generated by sampling with replacement from the discrete representation of $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ such that

$$\Pr\left\{\mathbf{x}_t^{i*} = \mathbf{x}_t^j\right\} = w_t^j$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

isual Computing

Recap: Efficient Resampling Approach

• From Arulampalam paper:

Algorithm 2: Resampling Algorithm $[\{\mathbf{x}_{k}^{j*}, w_{k}^{j}, i^{j}\}_{i=1}^{N_{s}}] = \text{RESAMPLE} [\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}]$ • Initialize the CDF: $c_1 = 0$ • FOR $i = 2: N_*$ - Construct CDF: $c_i = c_{i-1} + w_k^i$ END FOR Start at the bottom of the CDF: i = 1 • Draw a starting point: $u_1 \sim \mathbb{U}[0, N_s^{-1}]$ • For $j = 1: N_s$ - Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$ - WHILE $u_i > c_i$ * i = i + 1- END WHILE - Assign sample: $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ - Assign weight: $w_k^j = N_s^{-1}$ - Assign parent: $i^{j} = i$

• END FOR

8

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Robert Collins

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is $\mathcal{O}(N)$!

Recap: Generic Particle Filter

$$\begin{aligned} \mathbf{function} & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = PF\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Apply SIS filtering & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Calculate N_{eff} \end{aligned}$$

$$\begin{array}{ll} \mathbf{if} & N_{eff} < N_{thr} \\ & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = RESAMPLE \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] \\ \mathbf{end} \end{array}$$

- We can also apply resampling selectively
 - Only resample when it is needed, i.e., N_{eff} is too low.
 - \Rightarrow Avoids drift when the tracked state is stationary.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Recap: Sampling-Importance-Resampling (SIR)

function $[\mathcal{X}_t] = SIR[\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability $\propto w_t^i$ Add \mathbf{x}_{t}^{i} to \mathcal{X}_{t}

end

10

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Michael Rubinstein

Initialize

Generate new samples

Update weights

Resample

Recap: Sampling-Importance-Resampling (SIR)

function
$$[\mathcal{X}_t] = SIR [\mathcal{X}_{t-1}, \mathbf{y}_t]$$

 $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$
for $i = 1:N$
 $Sample \ \mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$
 $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$
end
for $i = 1:N$

Draw i with probability $\propto w_t^i$ Add \mathbf{x}_t^i to \mathcal{X}_t

end

11

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Slide adapted from Michael Rubinstein

Important property:

Particles are distributed according to pdf from previous time step.

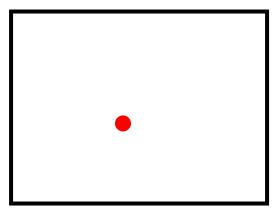
Particles are distributed according to posterior from this time step.

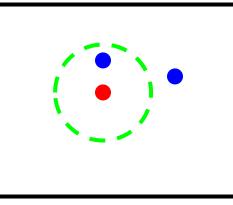
Today: Multi-Object Tracking

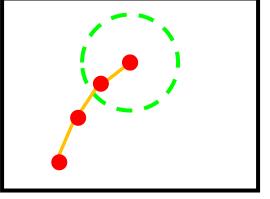
Topics of This Lecture

- Multi-Object Tracking
 - Motivation
 - Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - Nearest-Neighbor Filter
- Track-Splitting Filter
 - Derivation
 - Properties
- Outlook

Elements of Tracking







Detection

Data association

Prediction

- Detection
 - Where are candidate objects?
- Data association
 - Which detection corresponds to which object?
- Prediction

14

- Where will the tracked object be in the next time step?

Lectures 7-9

Lectures 2-6

Today's topic

Visual Computing

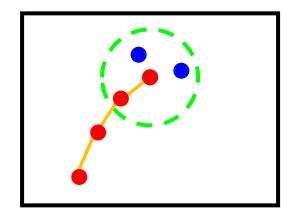
Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

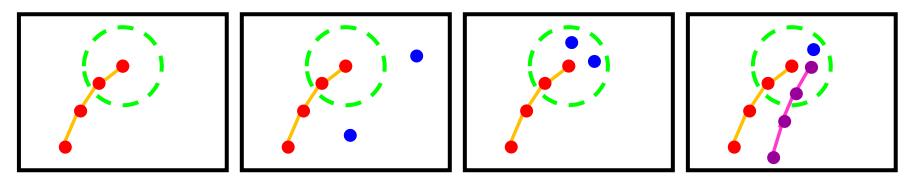
Motion Correspondence

- Motion correspondence problem
 - Do two measurements at different times originate from the same object?
- Why is it hard?

- First make predictions for the expected locations of the current set of objects
- Match predictions to actual measurements
- This is where ambiguities may arise...



Motion Correspondence Ambiguities



- 1. Predictions may not be supported by measurements
 - Have the objects ceased to exist, or are they simply occluded?
- 2. There may be unexpected measurements
 - Newly visible objects, or just noise?
- 3. More than one measurement may match a prediction
 - Which measurement is the correct one (what about the others)?
- 4. A measurement may match to multiple predictions
 - Which object shall the measurement be assigned to?

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Topics of This Lecture

- Multi-Object Tracking
 - Motivation
 - Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - Nearest-Neighbor Filter
- Track-Splitting Filter
 - Derivation
 - Properties
- Outlook

Let's Formalize This

- Multi-Object Tracking problem
 - We represent a track by a state vector \mathbf{x} , e.g.,

$$\mathbf{x} = [x, y, v_x, v_y]^T$$

– As the track evolves, we denote its state by the time index k:

$$\mathbf{x}^{(k)} = \left[x^{(k)}, y^{(k)}, v_x^{(k)}, v_y^{(k)} \right]$$

- At each time step, we get a set of observations (measurements)

$$\mathbf{Y}^{(k)} = \left\{ \mathbf{y}_1^{(k)}, \dots, \mathbf{y}_{M_k}^{(k)}
ight\}$$

- We now need to make the data association between tracks

$$\begin{cases} \mathbf{x}_{1}^{(k)}, \dots, \mathbf{x}_{N_{k}}^{(k)} \end{cases} \text{ and observations } \begin{cases} \mathbf{y}_{1}^{(k)}, \dots, \mathbf{y}_{M_{k}}^{(k)} \end{cases} \text{:} \\ z_{l}^{(k)} = j \text{ iff } \mathbf{y}_{j}^{(k)} \text{ is associated with } \mathbf{x}_{l}^{(k)} \end{cases}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Reducing Ambiguities: Simple Approaches

- Gating
 - Only consider measurements within a certain area around the predicted location.
 - \Rightarrow Large gain in efficiency, since only a small region needs to be searched
- Nearest-Neighbor Filter
 - Among the candidates in the gating region, only take the one closest to the prediction \mathbf{x}_p

$$z_l^{(k)} = rgmin_j (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})^T (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})^T$$

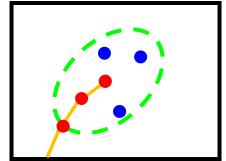
- Better: the one most likely under a Gaussian prediction model

$$z_l^{(k)} = \operatorname{arg\,max}_j \mathcal{N}(\mathbf{y}_j^{(k)}; \mathbf{x}_{p,l}^{(k)}, \mathbf{\Sigma}_{p,l}^{(k)})$$

which is equivalent to taking the Mahalanobis distance

$$z_l = \arg \min_j (\mathbf{x}_{p,l} - \mathbf{y}_j)^T \mathbf{\Sigma}_{p,l}^{-1} (\mathbf{x}_{p,l} - \mathbf{y}_j)$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking



lisual Computing

Gating with Mahalanobis Distance

- Recall: Kalman filter
 - Provides exactly the quantities necessary to perform this
 - Predicted mean location \mathbf{x}_p
 - Prediction covariance Σ_p
 - The Kalman filter prediction covariance also defines a useful gating area.
 - \Rightarrow E.g., choose the gating area size such that 95% of the probability mass is covered.
- Side note

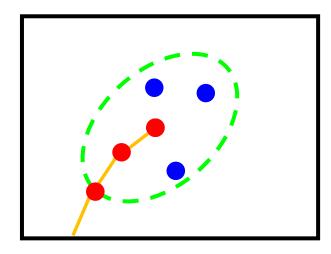
- The Mahalanobis distance is χ^2 distributed with the number of degrees of freedom n_z equal to the dimension of \mathbf{x} .
- For a given probability bound, the corresponding threshold on the Mahalanobis distance can be obtained from χ^2 distribution tables.

Mahalanobis Distance

- Additional notation
 - Our KF state of track \mathbf{x}_l is given by

the prediction $\hat{\mathbf{x}}_{l}^{(k)}$ and covariance $\boldsymbol{\Sigma}_{p,l}^{(k)}$.

- We define the innovation that measurement \mathbf{y}_j brings to track \mathbf{x}_l at time k as $\mathbf{v}_{j,l}^{(k)} = (\mathbf{y}_j^{(k)} - \mathbf{x}_{p,l}^{(k)})$



- With this, we can write the observation likelihood shortly as

$$p(\mathbf{y}_{j}^{(k)}|\mathbf{x}_{l}^{(k)}) \sim \exp\left\{-\frac{1}{2}\mathbf{v}_{j,l}^{(k)^{T}}\boldsymbol{\Sigma}_{p,l}^{(k)^{-1}}\mathbf{v}_{j,l}^{(k)}\right\}$$

- We define the ellipsoidal gating or validation volume as

$$V^{(k)}(\gamma) = \left\{ \mathbf{y} | (\mathbf{y} - \mathbf{x}_{p,l}^{(k)})^T \mathbf{\Sigma}_{p,l}^{(k)^{-1}} (\mathbf{y} - \mathbf{x}_{p,l}^{(k)}) \le \gamma \right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Problems with NN Assignment

- Limitations
 - For NN assignments, there is always a finite chance that the association is incorrect, which can lead to serious effects.
 - ⇒ If a Kalman filter is used, a misassigned measurement may lead the filter to lose track of its target.
 - The NN filter makes assignment decisions only based on the current frame.
 - More information is available by examining subsequent images.
 - \Rightarrow Let's make use of this information by postponing the decision process until a future frame will resolve the ambiguity...

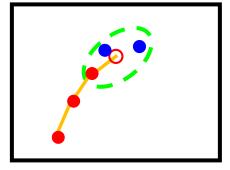
Topics of This Lecture

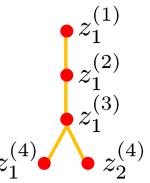
- Multi-Object Tracking
 - Motivation
 - Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - Nearest-Neighbor Filter
- Track-Splitting Filter
 - Derivation
 - Properties
- Outlook

Track-Splitting Filter

Idea

- Problem with NN filter was hard assignment.
- Rather than arbitrarily assigning the closest measurement, form a tree.
- Branches denote alternate assignments.
- No assignment decision is made at this stage!
- ⇒ Decisions are postponed until additional measurements have been gathered...
- Potential problems?
 - Track trees can quickly become very large due to combinatorial explosion.
 - \Rightarrow We need some measure of the likelihood of a track, so that we can prune the tree!

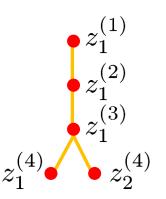




Track Likelihoods

- Expressing track likelihoods
 - Given a track l, denote by $\theta_{k,l}$ the event that the sequence of assignments

$$Z_{k,l} = \left\{ z_{i_1,l}^{(1)}, \dots, z_{i_k,l}^{(k)} \right\}$$



from time 1 to k originate from the same object.

- The likelihood of $\theta_{k,l}$ is the joint probability over all observations in the track k $L(\theta_{k,l}) = \prod p(z_{i_{j},l}^{(j)} | Z_{(j-1),l}, \theta_{k,l})$ j=1
- If we assume Gaussian observation likelihoods, this becomes

$$L(\theta_{k,l}) = \prod_{\substack{j=1\\j=1}}^{k} \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_{l}^{(j)}|^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \sum_{\substack{j=1\\j=1}}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \mathbf{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)} \right]$$
Visual Computing Institute | Prof. Dr. Bastian Leibe
Computer Vision 2
Part 10 - Multi-Object Tracking

Visual C

Track Likelihoods (2)

Starting from the likelihood

$$L(\theta_{k,l}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_{l}^{(j)}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} \sum_{j=1}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \mathbf{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)}\right]$$

– Define the modified log-likelihood λ_l for track l as

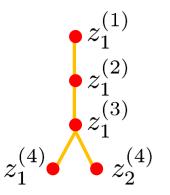
$$\begin{aligned} \lambda_{l}(k) &= -2 \log \left[\frac{L(\theta_{k,l})}{\prod_{j=1}^{k} (2\pi)^{-\frac{d}{2}} |\mathbf{\Sigma}_{l}^{(j)}|^{-\frac{1}{2}}} \right] \\ &= \sum_{j=1}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \mathbf{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)} \\ &= \lambda_{l}(k-1) + \mathbf{v}_{i_{k},l}^{(k)^{T}} \mathbf{\Sigma}_{l}^{(k)^{-1}} \mathbf{v}_{i_{k},l}^{(k)} \end{aligned}$$

 \Rightarrow Recursive calculation, sum of Mahalanobis distances of all the measurements assigned to track l.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking

Track-Splitting Filter

- Effect
 - Instead of assigning the measurement that is currently closest, as in the NN algorithm, we can select the sequence of measurements that minimizes the total Mahalanobis distance over some interval!



- Modified log-likelihood provides the merit of a particular node in the track tree.
- Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

Problem

 The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

Pruning Strategies

- In order to keep this feasible, need to apply pruning
 - Deleting unlikely tracks
 - May be accomplished by comparing the modified log-likelihood $\lambda(k)$, which has a χ^2 distribution with kn_z degrees of freedom, with a threshold α (set according to χ^2 distribution tables).
 - Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
 - \Rightarrow Use sliding window or exponential decay term.
 - Merging track nodes
 - If the state estimates of two track nodes are similar, merge them.
 - E.g., if both tracks validate identical subsequent measurements.
 - Only keeping the most likely $N \, {\rm tracks}$
 - Rank tracks based on their modified log-likelihood.

Summary: Track-Splitting Filter

- Properties
 - Very old algorithm
 - P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, pp. 101-104, 1975.
 - Improvement over NN assignment.
 - Assignment decisions are delayed until more information is available.
- Many problems remain
 - Exponential complexity, heuristic pruning needed.
 - Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
- ⇒ Would need to add exclusion constraints such that each measurement may only belong to a single track.
- \Rightarrow Impossible in this framework...

Topics of This Lecture

- Multi-Object Tracking
 - Motivation
 - Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - Nearest-Neighbor Filter
- Track-Splitting Filter
 - Derivation
 - Properties
- Outlook

Outlook for the Next Lectures

- More powerful approaches
 - Multi-Hypothesis Tracking (MHT)
 - Well-suited for KF, EKF approaches

[Reid, 1979]

- Joint Probabilistic Data Association Filters (JPDAF)
 - Well-suited for Particle Filter based approaches

[Fortmann, 1983]

- Data association as convex optimization problem
 - Bipartite Graph Matching (Hungarian algorithm)
 - Network Flow Optimization
 - \Rightarrow Efficient, globally optimal solutions for subclass of problems.

References and Further Reading

- A good tutorial on Data Association
 - I.J. Cox. <u>A Review of Statistical Data Association Techniques for</u> <u>Motion Correspondence</u>. In *International Journal of Computer Vision*, Vol. 10(1), pp. 53-66, 1993.

Visual Computing

Institute