Computer Vision 2 WS 2018/19

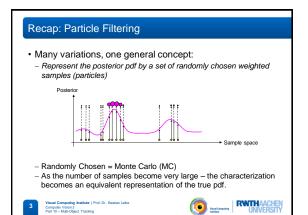
Part 10 – Multi-Object Tracking 27.11.2018

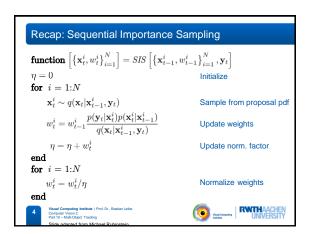
Prof. Dr. Bastian Leibe

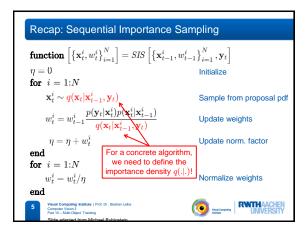
RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

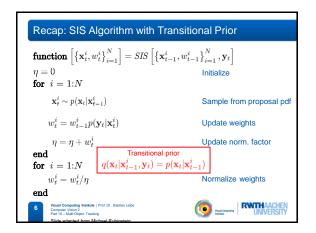
Course Outline

- · Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
- Particle Filters
- · Multi-Object Tracking
- Introduction
- MHT, JPDAFNetwork Flow Optimization
- · Visual Odometry
- Visual SLAM & 3D Reconstruction
- · Deep Learning for Video Analysis









Recap: Resampling

- · Degeneracy problem with SIS
- After a few iterations, most particles have negligible weights.
- Large computational effort for updating particles with very small contribution to $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$.
- · Idea: Resampling
- Eliminate particles with low importance weights and increase the number of particles with high importance weight.

es with high importance weight.
$$\left\{\mathbf{x}_t^i, w_t^i\right\}_{i=1}^N \to \left\{\mathbf{x}_t^{i*}, \frac{1}{N}\right\}_{i=1}^N$$

The new set is generated by sampling with replacement from the discrete representation of $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ such that

$$Pr\left\{\mathbf{x}_{t}^{i*}=\mathbf{x}_{t}^{j}\right\}=w_{t}^{j}$$

Recap: Efficient Resampling Approach

• From Arulampalam paper:

Algorithm 2: Resampling Algorithm $[(\mathbf{x}_k^{j*}, w_k^j, i^j)_{i=1}^{N_s}] = \text{RESAMPLE } [\{\mathbf{x}_k^i, w_k^i\}_{i=1}^{N_s}]$ • Initialize the CDF: $c_1 = 0$

- ullet FOR i=2: N_s Construct CDF: $c_i=c_{i-1}+w_k^i$
- ullet END FOR ullet Start at the bottom of the CDF: i=1Draw a starting point: u₁ ~ U[0, N_s⁻¹]
- FOR j=1: N_s Move along the CDF: $u_j=u_1+N_s^{-1}(j-1)$
- WHILE $u_j > c_i$ * i = i + 1- END WHILE

- Assign sample: $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ Assign weight: $w_k^j = N_s^{-1}$ Assign parent: $i^j = i$

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is $\mathcal{O}(N)$!

Recap: Generic Particle Filter

$$\begin{split} & \textbf{function} \, \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = PF \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & Apply \, SIS \, \textit{filtering} \, \quad \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \end{split}$$

Calculate N_{eff}

$$\begin{aligned} & \textbf{if} \quad N_{eff} < N_{thr} \\ & \left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right] = RESAMPLE \left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right] \end{aligned}$$

- · We can also apply resampling selectively
- Only resample when it is needed, i.e., N_{eff} is too low.
- ⇒ Avoids drift when the tracked state is stationary.

Important property:

previous time step

Particles are distributed according to pdf from

Particles are distributed according to posterior

from this time step.

Recap: Sampling-Importance-Resampling (SIR)

function $[X_t] = SIR[X_{t-1}, y_t]$

$$\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$$
 for $i = 1:N$

Sample $\mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{i})$

 $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$

end for i = 1:N

Draw i with probability $\propto w_t^i$

Add \mathbf{x}_{t}^{i} to \mathcal{X}_{t}

end

Resample

Initialize

Generate new samples

Update weights

Recap: Sampling-Importance-Resampling (SIR)

function $[X_t] = SIR[X_{t-1}, y_t]$

 $\bar{X}_t = X_t = \emptyset$ for i = 1:N

Sample $\mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t}|\mathbf{x}_{t-1}^{i})$

 $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$

end **for** i = 1:N

Add \mathbf{x}_{t}^{i} to \mathcal{X}_{t}

Draw i with probability $\propto w_t^i$

end

Today: Multi-Object Tracking

Visual Computing Institute | Prof. Dr . Bastian Leiber Computer Vision 2 Part 10 – Multi-Object Tracking

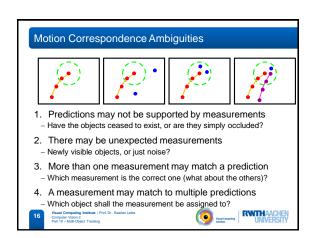
RWTHAACHE I INIVERSIT

Topics of This Lecture

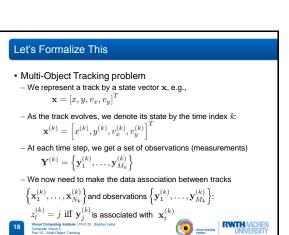
- · Multi-Object Tracking
- Motivation
- Ambiguities
- · Simple Approaches
- Gating
- Mahalanobis distance
- Nearest-Neighbor Filter
- · Track-Splitting Filter
 - Derivation
- Properties
- Outlook

Elements of Tracking Detection Data association Prediction Detection Lectures 2-6 Where are candidate objects? · Data association Today's topic – Which detection corresponds to which object? Prediction Where will the tracked object be in the next time step? Lectures 7-9 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 10 – Multi-Object Tracking RWTHAACHEN LINIVERSITY

Motion Correspondence · Motion correspondence problem Do two measurements at different times originate from the same object? · Why is it hard? - First make predictions for the expected locations of the current set of objects - Match predictions to actual measurements - This is where ambiguities may arise... RWTHAACHEN LINIVERSITY



Topics of This Lecture · Multi-Object Tracking Motivation Ambiguities • Simple Approaches - Gating - Mahalanobis distance Nearest-Neighbor Filter Track-Splitting Filter Derivation Properties Outlook RWTHAACHEN IINIVERSITY



Reducing Ambiguities: Simple Approaches

- Gating
- Only consider measurements within a certain area around the predicted location.
- ⇒ Large gain in efficiency, since only a small region needs to be searched

- Nearest-Neighbor Filter
 - Among the candidates in the gating region, only take the one closest to the prediction \mathbf{x}_p

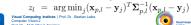
cliny take the one closest to the prediction
$$\mathbf{x}_p$$

$$z_l^{(k)} = \arg\min_j (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})^T (\mathbf{x}_{p,l}^{(k)} - \mathbf{y}_j^{(k)})$$
 Better: the one most likely under a Gaussian prediction model

 $z_l^{(k)} = \operatorname{arg\,max}_j \, \mathcal{N}(\mathbf{y}_j^{(k)}; \mathbf{x}_{p,l}^{(k)}, \mathbf{\Sigma}_{p,l}^{(k)})$

$$z_l^{(r)} = \arg\max_j \mathcal{N}(\mathbf{y}_j^{(r)}; \mathbf{x}_{p,l}^{(r)}, \boldsymbol{\Sigma}_{p,l}^{(r)})$$

which is equivalent to taking the Mahalanobis distance



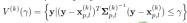
Gating with Mahalanobis Distance

- · Recall: Kalman filter
- Provides exactly the quantities necessary to perform this
- Predicted mean location \mathbf{x}_p
- Prediction covariance \sum_{p}
- The Kalman filter prediction covariance also defines a useful gating area.
- ⇒ E.g., choose the gating area size such that 95% of the probability mass is covered.
- · Side note
- The Mahalanobis distance is χ^2 distributed with the number of degrees of freedom n_z equal to the dimension of ${\bf x}$.
- For a given probability bound, the corresponding threshold on the Mahalanobis distance can be obtained from χ^2 distribution tables.

Mahalanobis Distance

- · Additional notation
- Our KF state of track \mathbf{x}_l is given by the prediction $\hat{\mathbf{x}}_{i}^{(k)}$ and covariance $\boldsymbol{\Sigma}_{n,l}^{(k)}$.
- We define the innovation that measurement \mathbf{y}_j brings to track \mathbf{x}_l at time k as $\mathbf{v}_{j,l}^{(k)} = (\mathbf{y}_j^{(k)} - \mathbf{x}_{p,l}^{(k)})$

- With this, we can write the observation likelihood shortly as $p(\mathbf{y}_j^{(k)}|\mathbf{x}_l^{(k)}) \sim \exp\left\{-\frac{1}{2}\mathbf{v}_{j,l}^{(k)^T}\mathbf{\Sigma}_{p,l}^{(k)^{-1}}\mathbf{v}_{j,l}^{(k)}\right\}$
- We define the ellipsoidal gating or validation volume as



Problems with NN Assignment

- Limitations
- For NN assignments, there is always a finite chance that the association is incorrect, which can lead to serious effects.
- \Rightarrow If a Kalman filter is used, a misassigned measurement may lead the filter to lose track of its target.
- The NN filter makes assignment decisions only based on the current frame.
- More information is available by examining subsequent images.
- \Rightarrow Let's make use of this information by postponing the decision process until a future frame will resolve the ambiguity...

Topics of This Lecture

- · Multi-Object Tracking
- Motivation
- Ambiguities
- Simple Approaches
- Nearest-Neighbor Filter
- Track-Splitting Filter
- Derivation
- Properties
- Outlook

Track-Splitting Filter

- Idea
 - Problem with NN filter was hard assignment.
- Rather than arbitrarily assigning the closest measurement, form a tree.
- Branches denote alternate assignments.
- No assignment decision is made at this stage!
- ⇒ Decisions are postponed until additional measurements have been gathered...

- Track trees can quickly become very large due to combinatorial explosion.
- ⇒ We need some measure of the likelihood of a track, so that we can prune the tree!

Visual Computing Institute | Prof. Dr . Bastian Leiber Computer Vision 2 Part 10 – Muth-Object Tracking

RWTHAACHEN IINIVERSITY

 $z_1^{(1)}$ $z_1^{(2)}$

Track Likelihoods

- · Expressing track likelihoods
- Given a track l, denote by $\theta_{k,l}$ the event that the sequence of assignments

$$Z_{k,l} = \left\{ z_{i_1,l}^{(1)}, \dots, z_{i_k,l}^{(k)} \right\}$$

from time 1 to k originate from the same object.

– The likelihood of $\theta_{k,l}$ is the joint probability over all observations in the

$$L(\theta_{k,l}) = \prod_{j=1}^{\kappa} p(z_{i_j,l}^{(j)}|Z_{(j-1),l},\theta_{k,l})$$

 $\label{eq:j} j\!=\!1$ – If we assume Gaussian observation likelihoods, this becomes

$$L(\theta_{k,l}) = \prod_{j=1}^k \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_l^{(j)}|^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \sum_{j=1}^k \mathbf{v}_{ij,l}^{(j)^{\top}} \Sigma_l^{(j)^{-1}} \mathbf{v}_{ij,l}^{(j)} \right]$$
The proposed statistical (Pol. Co. Bassian Labba MacChega Taxons)
The proposed statistical (Pol. Co. Bassian Labba MacChega Taxons)

Track Likelihoods (2)

· Starting from the likelihood

$$L(\theta_{k,l}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}_{l}^{(j)}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2} \sum_{j=1}^{k} \mathbf{v}_{i_{j},l}^{(j)^{T}} \boldsymbol{\Sigma}_{l}^{(j)^{-1}} \mathbf{v}_{i_{j},l}^{(j)} \right]$$

– Define the modified log-likelihood λ_l for track l as

$$\begin{split} \lambda_l(k) &= -2\log\left[\frac{L(\theta_{k,l})}{\prod_{j=1}^k (2\pi)^{-\frac{d}{2}} |\mathbf{\Sigma}_l^{(j)}|^{-\frac{1}{2}}}\right] \\ &= \sum_{j=1}^k \mathbf{v}_{i_j,l}^{(j)^T} \mathbf{\Sigma}_l^{(j)^{-1}} \mathbf{v}_{i_j,l}^{(j)} \end{split}$$

 $= \ \lambda_l(k-1) + \mathbf{v}_{i_k,l}^{(k)^T} \mathbf{\Sigma}_l^{(k)^{-1}} \mathbf{v}_{i_k,l}^{(k)} \\ \Rightarrow \text{Recursive calculation, sum of Mahalanobis distances of all the}$ measurements assigned to track \it{l} .

Track-Splitting Filter

Effect

- Instead of assigning the measurement that is currently closest, as in the NN algorithm, we can select the *sequence* of measurements that minimizes the total Mahalanobis distance over some interval!

- Modified log-likelihood provides the merit of a particular node in the track tree.
- Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

Problem

The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

Pruning Strategies

- In order to keep this feasible, need to apply pruning
- Deleting unlikely tracks
- May be accomplished by comparing the modified log-likelihood $\lambda(\boldsymbol{k})$, which has a χ^2 distribution with kn_z degrees of freedom, with a threshold α (set according to χ^2 distribution tables).
- Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
- ⇒ Use sliding window or exponential decay term.
- Merging track nodes
- . If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.
- Only keeping the most likely N tracks
- · Rank tracks based on their modified log-likelihood

Summary: Track-Splitting Filter

· Properties

- Very old algorithm
- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20, pp. 101-104, 1975.
- Improvement over NN assignment.
- Assignment decisions are delayed until more information is available.
- · Many problems remain
- Exponential complexity, heuristic pruning needed.
- Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
- ⇒ Would need to add exclusion constraints such that each measurement may only belong to a single track.
- ⇒ Impossible in this framework...

Topics of This Lecture

- · Multi-Object Tracking
- Motivation
- Ambiguities
- · Simple Approaches
- Mahalanobis distance
- Nearest-Neighbor Filter
- Track-Splitting Filter
- Derivation
- Properties
- Outlook

RWTHAACHEN LINIVERSITY

Outlook for the Next Lectures • More powerful approaches - Multi-Hypothesis Tracking (MHT) • Well-suited for KF, EKF approaches - Joint Probabilistic Data Association Filters (JPDAF) • Well-suited for Particle Filter based approaches • Data association as convex optimization problem - Bipartite Graph Matching (Hungarian algorithm) - Network Flow Optimization ⇒ Efficient, globally optimal solutions for subclass of problems.

