Computer Vision 2 WS 2018/19

Part 9 – Particle Filters 21.11.2018

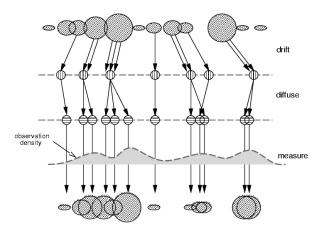
Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

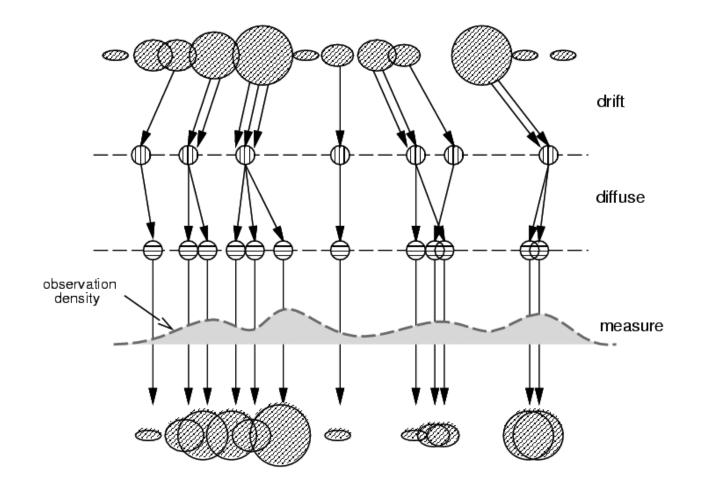
Course Outline

- Single-Object Tracking
- Bayesian Filtering

 Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Beyond Gaussian Error Models



3

Figure from Isard & Blake

Topics of This Lecture

- Recap: Extended Kalman Filter
- Particle Filters: Detailed Derivation
 - Recap: Basic idea
 - Importance Sampling
 - Sequential Importance Sampling (SIS)
 - Transitional prior
 - Resampling
 - Generic Particle Filter
 - Sampling Importance Resampling (SIR)

Recap: Kalman Filter – Detailed Algorithm

- Algorithm summary
 - Assumption: linear model

$$\mathbf{x}_t = \mathbf{D}_t \mathbf{x}_{t-1} + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{M}_t \mathbf{x}_t + \delta_t$$

Prediction step

$$\mathbf{x}_t^- = \mathbf{D}_t \mathbf{x}_{t-1}^+$$

 $\mathbf{\Sigma}_t^- = \mathbf{D}_t \mathbf{\Sigma}_{t-1}^+ \mathbf{D}_t^T + \mathbf{\Sigma}_{d_t}$

- Correction step

$$egin{array}{rcl} \mathbf{K}_t &= \mathbf{\Sigma}_t^- \mathbf{M}_t^T \left(\mathbf{M}_t \mathbf{\Sigma}_t^- \mathbf{M}_t^T + \mathbf{\Sigma}_{m_t}
ight)^{-1} \ \mathbf{x}_t^+ &= \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{M}_t \mathbf{x}_t^-
ight) \ \mathbf{\Sigma}_t^+ &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{M}_t
ight) \mathbf{\Sigma}_t^- \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Extended Kalman Filter (EKF)

- Algorithm summary
 - Nonlinear model

$$\mathbf{x}_t = \mathbf{g}(\mathbf{x}_{t-1}) + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{h}(\mathbf{x}_t) + \delta_t$$

- Prediction step

$$\mathbf{x}_{t}^{-} = \mathbf{g} \left(\mathbf{x}_{t-1}^{+} \right)$$
$$\mathbf{\Sigma}_{t}^{-} = \mathbf{G}_{t} \mathbf{\Sigma}_{t-1}^{+} \mathbf{G}_{t}^{T} + \mathbf{\Sigma}_{d_{t}}$$

Correction step

$$egin{array}{rcl} \mathbf{K}_t &=& \mathbf{\Sigma}_t^- \mathbf{H}_t^T \left(\mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^T + \mathbf{\Sigma}_{m_t}
ight)^{-1} \ \mathbf{x}_t^+ &=& \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{h} \left(\mathbf{x}_t^-
ight)
ight) \ \mathbf{\Sigma}_t^+ &=& \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t
ight) \mathbf{\Sigma}_t^- \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

with the Jacobians

$$\mathbf{G}_{t} = \left. \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t}^{+}}$$
$$\mathbf{H}_{t} = \left. \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t}^{-}}$$

Topics of This Lecture

- Recap: Extended Kalman Filter
- Particle Filters: Detailed Derivation
 - Recap: Basic idea
 - Importance Sampling
 - Sequential Importance Sampling (SIS)
 - Transitional prior
 - Resampling
 - Generic Particle Filter
 - Sampling Importance Resampling (SIR)

Recap: Propagation of General Densities

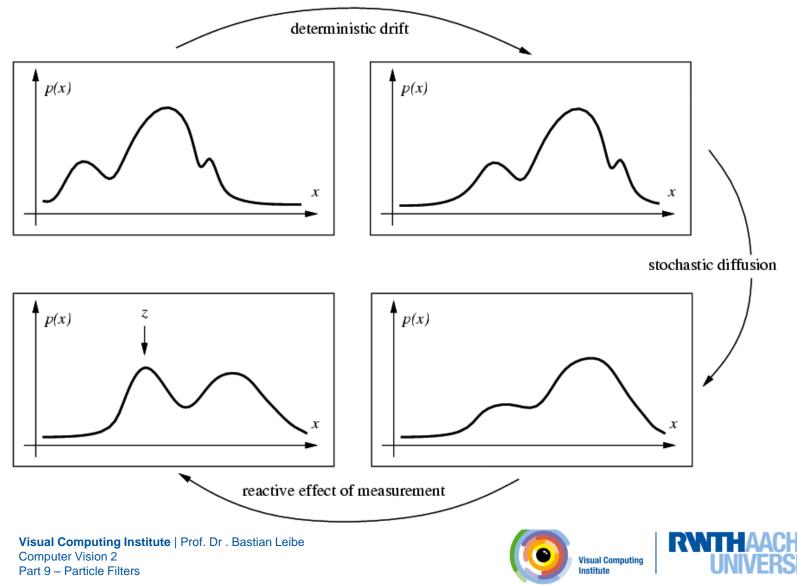
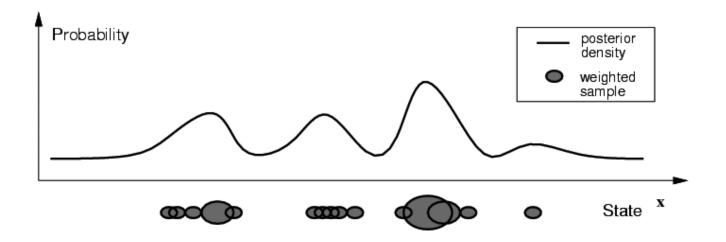


Figure from Isard & Blake

Recap: Factored Sampling



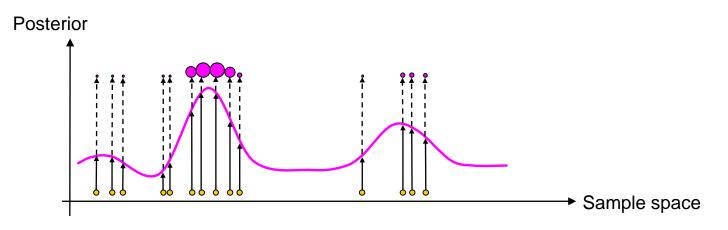
- Idea: Represent state distribution non-parametrically
 - Prediction: Sample points from prior density for the state, P(X)
 - Correction: Weight the samples according to P(Y|X)

$$P(X_{t} | y_{0},..., y_{t}) = \frac{P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})}{\int P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})dX_{t}}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Particle filtering

- Compared to Kalman Filters and their extensions
 - Can represent any arbitrary distribution
 - Multimodal support
 - Keep track of as many hypotheses as there are particles
 - Approximate representation of complex model rather than exact representation of simplified model
- The basic building-block: Importance Sampling

11

Background: Monte-Carlo Sampling

- Objective:
 - Evaluate expectation of a function $f(\mathbf{z})$ w.r.t. a probability distribution $p(\mathbf{z})$.

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- Monte Carlo Sampling idea
 - Draw L independent samples $z^{(l)}$ with l = 1, ..., L from p(z).
 - This allows the expectation to be approximated by a finite sum

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^l)$$

- As long as the samples $z^{(l)}$ are drawn independently from p(z), then

p(z)

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$

 \Rightarrow Unbiased estimate, independent of the dimension of z!

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide adapted from Bernt Schiele

12

Image source: C.M. Bishop, 2006

Visual Computing

f(z)

Monte Carlo Integration

- We can use the same idea for computing integrals
 - Assume we are trying to estimate a complicated integral of a function f over some domain D:

$$F = \int_D f(\vec{x}) d\vec{x}$$

– Also assume there exists some PDF p defined over D. Then

$$F = \int_D f(\vec{x}) d\vec{x} = \int_D \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x}$$

– For any pdf p over D, the following holds

$$\int_{D} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x} = E\left[\frac{f(\vec{x})}{p(\vec{x})}\right], x \sim p$$

Visual Computing

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

13

Monte Carlo Integration

Idea (cont'd)

b...

14

– Now, if we have i.i.d random samples x_1, \ldots, x_N sampled from p, then we can approximate the expectation

$$E\left[\frac{f(\vec{x})}{p(\vec{x})}\right]$$

- by

$$F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{x}_{i})}{p(\vec{x}_{i})}$$

- Guaranteed by law of large numbers:

$$N \to \infty, F_N \xrightarrow{a.s} E\left[\frac{f(\vec{x})}{p(\vec{x})}\right] = F$$

– Since it guides sampling, p is often called a proposal distribution.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Importance Sampling

• Let's consider an example

$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(\vec{x}_i)}{p(\vec{x}_i)}$$

- -f/p is the importance weight of a sample.
- What can go wrong here?
- What if p(x)=0 ?

15

- If p is very small, then f/p can get arbitrarily large!
- \Rightarrow Design p such that f/p is bounded.
- Effect: get more samples in "important" areas of f, i.e., where f is large.
 - Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide adapted from Michael Rubinstein

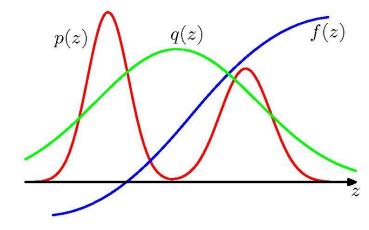


Image source: C.M. Bishop, 2006

Proposal Distributions: Other Uses

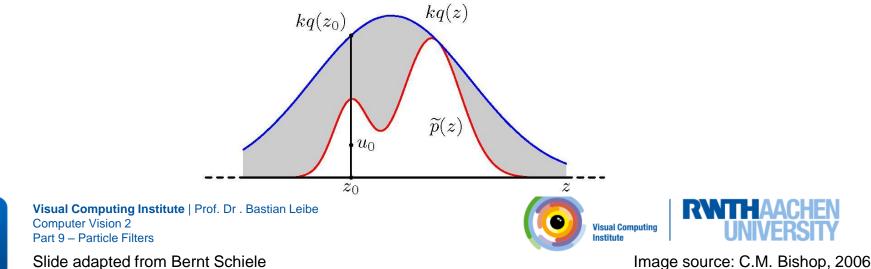
- Similar Problem
 - For many distributions, sampling directly from p(z) is difficult.
 - But we can often easily *evaluate* $p(\mathbf{z})$ (up to some normalization factor Z_p):

$$p(\mathbf{z}) = \frac{1}{Z_p} \tilde{p}(\mathbf{z})$$

Idea

16

- Take some simpler distribution q(z) as proposal distribution from which we can draw samples and which is non-zero.



Background: Importance Sampling

- Idea
 - Use a proposal distribution $q(\mathbf{z})$ from which it is easy to draw samples and which is close in shape to f.
 - Express expectations in the form of a finite sum over samples $\{z^{(l)}\}\$ drawn from q(z).

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$
$$\simeq \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)}) p(z) \int_{p(z)}^{p(z)} q(z) dz$$

- with importance weights

$$r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

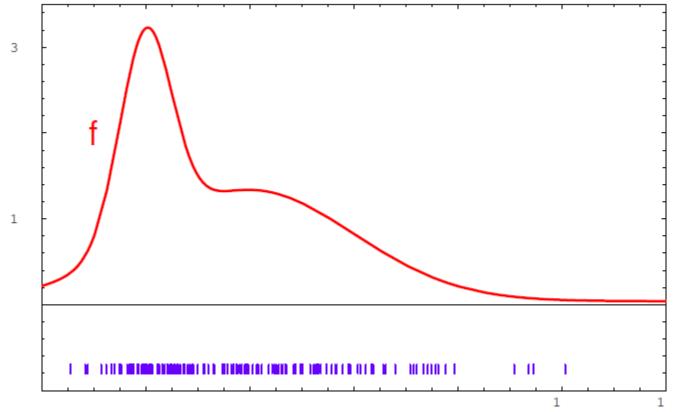
Slide adapted from Bernt Schiele

Image source: C.M. Bishop, 2006

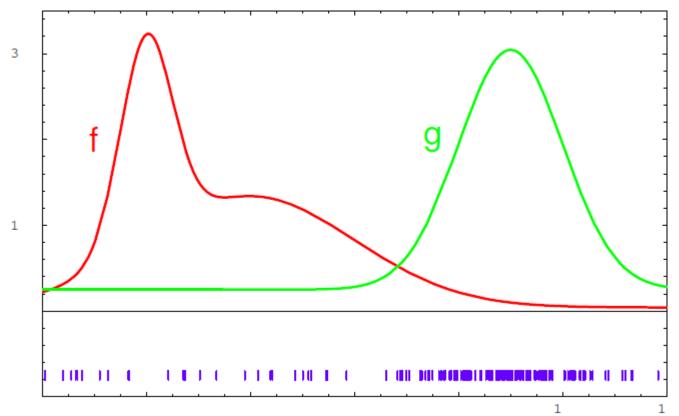
Visual Computing

Institute

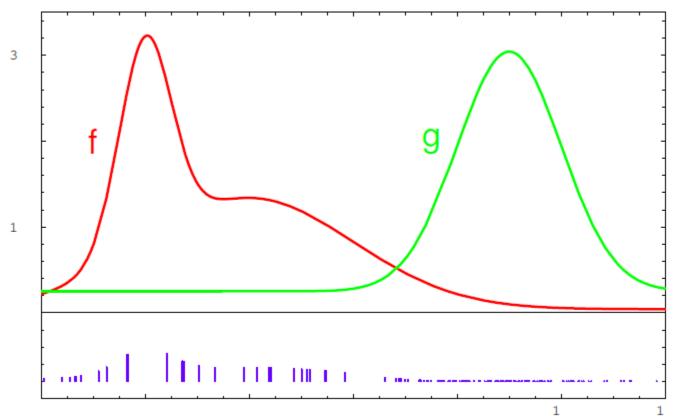
f(z)



• Goal: Approximate target density f



- Goal: Approximate target density f
 - Instead of sampling from f directly, we can only sample from g.

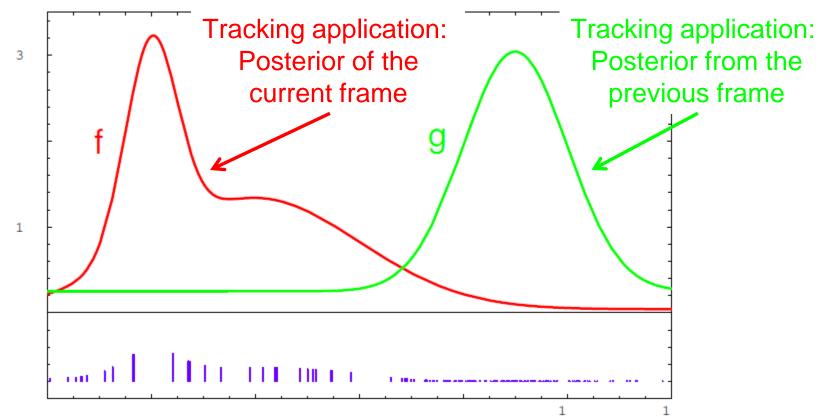


- Goal: Approximate target density f
 - Instead of sampling from f directly, we can only sample from g.
 - A sample of f is obtained by attaching the weight f/g to each sample ${f x}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

20

Figure source: Thrun, Burgard, Fox



- Goal: Approximate target density f
 - Instead of sampling from f directly, we can only sample from g.
 - A sample of f is obtained by attaching the weight f/g to each sample ${f x}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

21

Figure source: Thrun, Burgard, Fox

Importance Sampling for Bayesian Estimation

$$\mathbb{E}[f(X)] = \int_X f(\mathbf{x}_{0:t}) p(\mathbf{x}_{0:t} | \mathbf{y}_{1:t}) d\mathbf{x}_{0:t}$$

=
$$\int_X f(\mathbf{x}_{0:t}) \frac{p(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})}{q(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})} q(\mathbf{x}_{0:t} | \mathbf{y}_{1:t}) d\mathbf{x}_{0:t}$$

- Applying Importance Sampling
 - Characterize the posterior pdf using a set of samples (particles) and their weights

$$\left\{\mathbf{x}_{0:t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}$$

- Then the joint posterior is approximated by

$$p(\mathbf{x}_{0:t}|\mathbf{y}_{1:t}) \approx \sum_{i=1}^{N} w_t^i \delta(\mathbf{x}_{0:t} - \mathbf{x}_{0:t}^i)$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

23

Importance Sampling for Bayesian Estimation

$$\mathbb{E}[f(X)] = \int_X f(\mathbf{x}_{0:t}) p(\mathbf{x}_{0:t} | \mathbf{y}_{1:t}) d\mathbf{x}_{0:t}$$

=
$$\int_X f(\mathbf{x}_{0:t}) \frac{p(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})}{q(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})} q(\mathbf{x}_{0:t} | \mathbf{y}_{1:t}) d\mathbf{x}_{0:t}$$

- Applying Importance Sampling
 - Draw the samples from the importance density $q(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})$ with importance weights $p(\mathbf{x}_{0:t} | \mathbf{y}_{1:t})$

$$w_t^i \propto \frac{p(\mathbf{x}_{0:t}|\mathbf{y}_{1:t})}{q(\mathbf{x}_{0:t}|\mathbf{y}_{1:t})}$$

- Sequential update (after some calculation)
 - Particle update

$$\mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t)$$

• Weight update

24

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

$$w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t)} \mathbf{R} \mathbf{x}_{t-1}^i \mathbf{x}_{t-1}^i$$

Sequential Importance Sampling Algorithm

$$\begin{aligned} & \textbf{function} \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 \\ & \textbf{Initialize} \\ & \textbf{for} \quad i = 1:N \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) \\ & \quad (-1 - i) \quad (-i + i) \end{aligned} \right]$$

Update weights

Update norm. factor

Normalize weights

$$\begin{aligned} \mathbf{x}_{t}^{i} &\sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) \\ w_{t}^{i} &= w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} \\ \eta &= \eta + w_{t}^{i} \end{aligned}$$

end for i = 1:N $w_t^i = w_t^i/\eta$

end

25

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Sequential Importance Sampling Algorithm

$$\begin{aligned} & \text{function } \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Wormalize weights} \end{aligned}$$

end

26

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Choice of Importance Density

- Most common choice
 - Transitional prior

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t) = p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$$

- With this choice, the weight update reduces to

$$w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t)}$$
$$= w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)}{p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)}$$
$$= w_{t-1}^i p(\mathbf{y}_t | \mathbf{x}_t^i)$$

SIS Algorithm with Transitional Prior

$$\begin{aligned} & \textbf{function} \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \textbf{for} \quad i = 1:N \\ & \mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \textbf{end} \\ & \textbf{for} \quad i = 1:N \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

end

28

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Implementation of Sampling Step

$$\begin{array}{ll} \mbox{function} \left[\left\{ \mathbf{x}_t^i, w_t^i \right\}_{i=1}^N \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^i, w_{t-1}^i \right\}_{i=1}^N, \mathbf{y}_t \right] \\ \eta = 0 & \text{Initialize} \\ \mbox{for } i = 1:N & & \\ Draw \ \varepsilon_t^i \ from \ noise \ distribution \\ \mathbf{x}_t^i = \mathbf{g} \left(\mathbf{x}_{t-1}^i \right) + \varepsilon_t^i & & \\ w_t^i = w_{t-1}^i p(\mathbf{y}_t | \mathbf{x}_t^i) & & \\ update \ weights \\ \eta = \eta + w_t^i & & \\ update \ norm. \ factor \\ \mbox{end} \\ \mbox{for } i = 1:N & & \\ w_t^i = w_t^i / \eta & & \\ w_t^i = w_t^i / \eta & & \\ \mbox{Normalize weights} \\ \mbox{end} \\ \mbox{end} \\ \end{array}$$

pdf

RX

Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

29

The Degeneracy Phenomenon

- Unavoidable problem with SIS
 - After a few iterations, most particles have negligible weights.
 - Large computational effort for updating particles with very small contribution to $p(\mathbf{x}_t | \mathbf{y}_{1:t})$.
- Measure of degeneracy
 - Effective sample size

$$N_{eff} = rac{1}{\sum_{i=1}^{N} (w_t^i)^2}$$

- Uniform: $N_{eff} = N$
- Severe degeneracy: $N_{eff}=1$

30

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Resampling

Idea

31

 Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow \left\{\mathbf{x}_{t}^{i*}, \frac{1}{N}\right\}_{i=1}^{N}$$

– The new set is generated by sampling with replacement from the discrete representation of $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ such that

$$Pr\left\{\mathbf{x}_t^{i*} = \mathbf{x}_t^j\right\} = w_t^j$$

Resampling

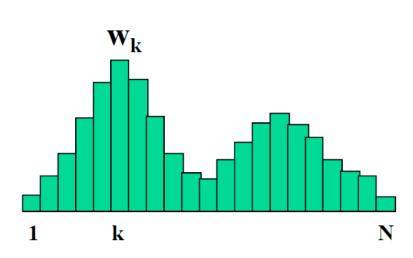
- How to do that in practice? We want to resample $\{\mathbf{x}_t^i\}_{i=1}^N$ from the discrete pdf given by the weighted samples $\{\mathbf{x}_t^i, w_t^i\}_{i=1}^N$
 - I.e., we want to draw N new samples $\{\mathbf{x}_t^i\}_{i=1}^N$ with replacement where the probability of drawing \mathbf{x}_t^j is given by w_t^j .
- There are many algorithms for this
 - We will look at two simple algorithms here...

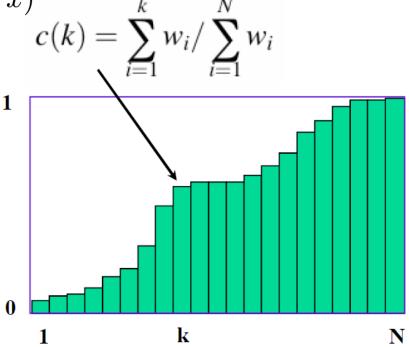
Inverse Transform Sampling

Idea

35

- It is easy to sample from a discrete distribution using the cumulative distribution function $F(x) = p(X \le x)$





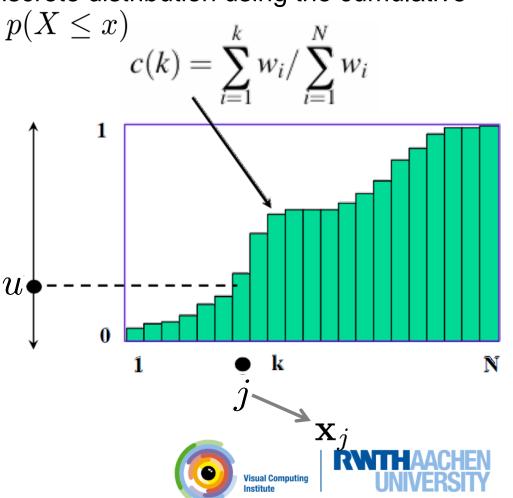
Slide adapted from Robert Collins

Inverse Transform Sampling

Idea

- It is easy to sample from a discrete distribution using the cumulative distribution function $F(x) = p(X \le x)$
- Procedure
 - 1. Generate uniform u in the range [0,1].
 - 2. Visualize a horizontal line intersecting the bars.
 - 3. If index of intersected bar is j, output new sample \mathbf{x}_{i} .

Visual Computing Institute | Prof. Dr . Bastian Leibe



Computer Vision 2

Part 9 – Particle Filters

More Efficient Approach

• From Arulampalam paper:

Algorithm 2: Resampling Algorithm $[\{\mathbf{x}_{k}^{j*}, w_{k}^{j}, i^{j}\}_{i=1}^{N_{s}}] = \text{RESAMPLE} [\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}]$ • Initialize the CDF: $c_1 = 0$ • FOR i = 2: N_s - Construct CDF: $c_i = c_{i-1} + w_k^i$ END FOR Start at the bottom of the CDF: i = 1 • Draw a starting point: $u_1 \sim \mathbb{U}[0, N_s^{-1}]$ • FOR j = 1: N_s - Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$ - WHILE $u_i > c_i$ * i = i + 1- END WHILE - Assign sample: $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ - Assign weight: $w_k^j = N_s^{-1}$ - Assign parent: $i^{j} = i$

• END FOR

37

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide adapted from Robert Collins

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is $\mathcal{O}(N)$!

Generic Particle Filter

$$\begin{aligned} \mathbf{function} \ \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= PF\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Apply SIS \ filtering \ \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= SIS\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Calculate \ N_{eff} \end{aligned}$$

$$\begin{array}{ll} \mathbf{if} & N_{eff} < N_{thr} \\ & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = RESAMPLE \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] \\ \mathbf{end} \end{array}$$

- We can also apply resampling selectively
 - Only resample when it is needed, i.e., N_{eff} is too low.
 - \Rightarrow Avoids drift when the tracked state is stationary.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Sampling-Importance-Resampling (SIR)

function $[\mathcal{X}_t] = SIR[\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability $\propto w_t^i$ Add \mathbf{x}_{t}^{i} to \mathcal{X}_{t}

end

40

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide adapted from Michael Rubinstein

Initialize

Generate new samples

Update weights

Resample

function $[\mathcal{X}_t] = SIR[\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:N

Draw i with probability

Add
$$\mathbf{x}_t^i$$
 to \mathcal{X}_t

end

41

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

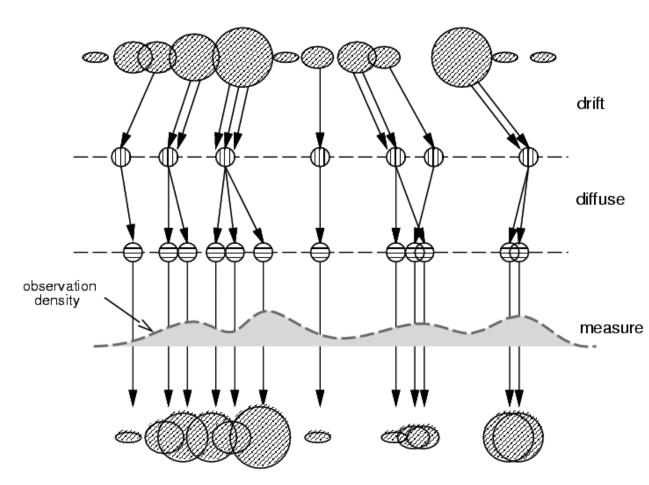
Slide adapted from Michael Rubinstein

Important property:

Particles are distributed according to pdf from previous time step.

Particles are distributed according to posterior from this time step.

Recap: Condensation Algorithm



Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density $P(X_t|Y_{t-1})$

Weight the samples according to observation density

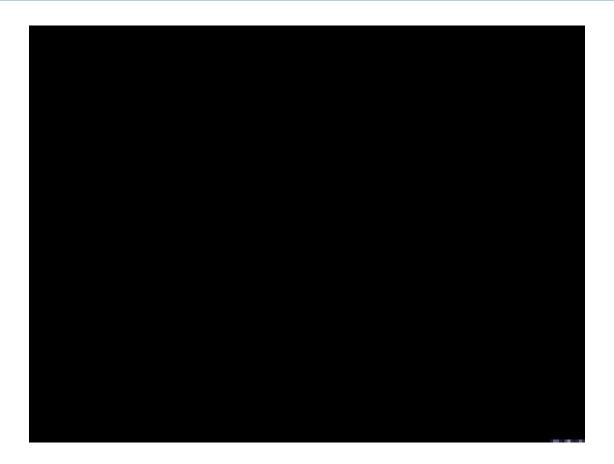
Arrive at corrected density estimate $P(X_t|Y_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide credit: Svetlana Lazebnik

Particle Filtering – Visualization

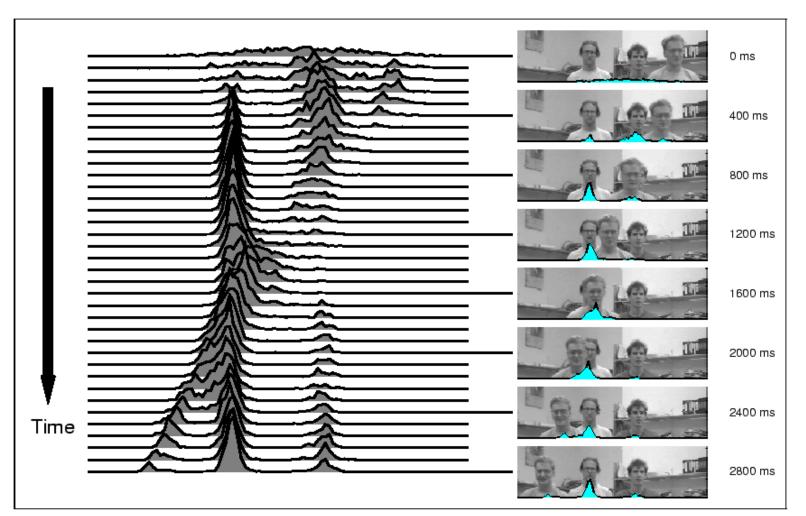


Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Particle Filtering Results



http://www.robots.ox.ac.uk/~misard/condensation.html

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Particle Filtering Results

• Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

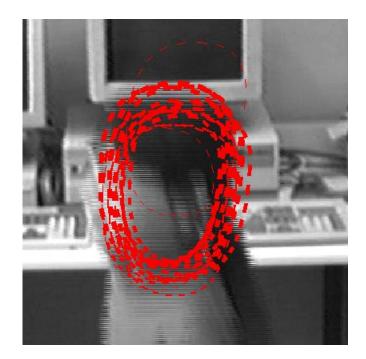
Videos from Isard & Blake

Sidenote: Obtaining a State Estimate

- Note that there's no explicit state estimate maintained, just a "cloud" of particles
- Can obtain an estimate at a particular time by querying the current particle set
- Some approaches
 - "Mean" particle

- Weighted sum of particles
- Confidence: inverse variance
- Really want a mode finder-mean of tallest peak

Condensation: Estimating Target State



From Isard & Blake, 1998

State samples (thickness proportional to weight)

Mean of weighted state samples

Figures from Isard & Blake

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

Slide credit: Marc Pollefeys

Summary: Particle Filtering

- <u>Pros:</u>
 - Able to represent arbitrary densities
 - Converging to true posterior even for non-Gaussian and nonlinear system
 - Efficient: particles tend to focus on regions with high probability
 - Works with many different state spaces
 - E.g. articulated tracking in complicated joint angle spaces
 - Many extensions available

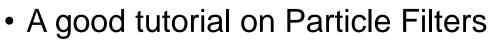
Summary: Particle Filtering

Cons / Caveats:

- #Particles is important performance factor
 - Want as few particles as possible for efficiency.
 - But need to cover state space sufficiently well.
- Worst-case complexity grows exponentially in the dimensions
- Multimodal densities possible, but still single object
 - Interactions between multiple objects require special treatment.
 - Not handled well in the particle filtering framework (state space explosion).

References and Further Reading

- A good description of Particle Filters can be found in Ch.4.3 of the following book
 - S. Thrun, W. Burgard, D. Fox. <u>Probabilistic</u> <u>Robotics</u>. MIT Press, 2006.



- M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. <u>A Tutorial</u> on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian <u>Tracking</u>. In *IEEE Transactions on Signal Processing*, Vol. 50(2), pp. 174-188, 2002.
- The CONDENSATION paper
 - M. Isard and A. Blake, <u>CONDENSATION conditional density</u> propagation for visual tracking, IJCV 29(1):5-28, 1998

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 9 – Particle Filters

50

Probabilistic