Computer Vision 2 WS 2018/19

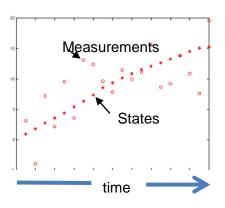
Part 7 – Tracking with Linear Dynamic Models 07.11.2018

Prof. Dr. Bastian Leibe

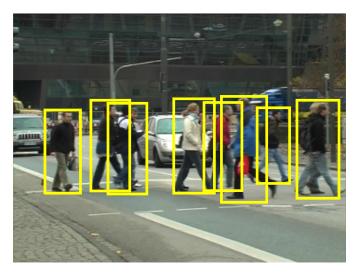
RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

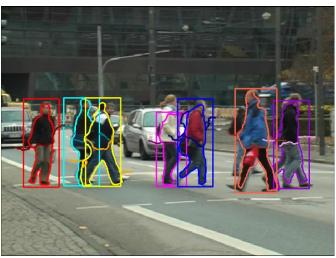
Course Outline

- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Tracking-by-Detection

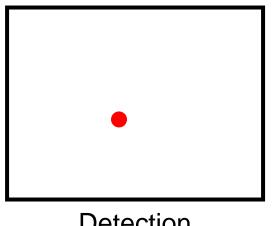


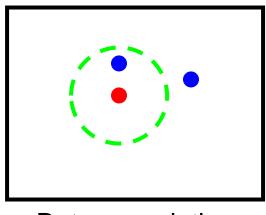


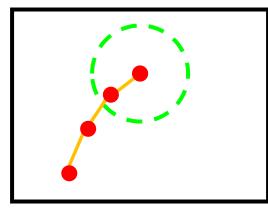
Main ideas

- Apply a generic object detector to find objects of a certain class
- Based on the detections, extract object appearance models
- Link detections into trajectories

Recap: Elements of Tracking







Detection

Data association

Prediction

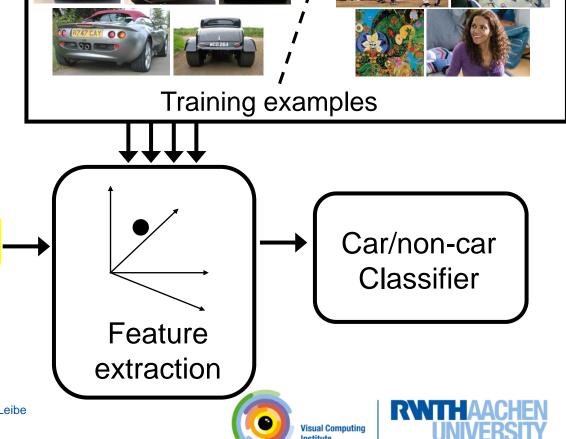
- Detection
 - Where are candidate objects?

Last lecture

- Data association
 - Which detection corresponds to which object?
- Prediction
 - Where will the tracked object be in the next time step?

Recap: Sliding-Window Object Detection

- For sliding-window object detection, we need to:
 - 1. Obtain training data
 - 2. Define features
 - Define a classifier



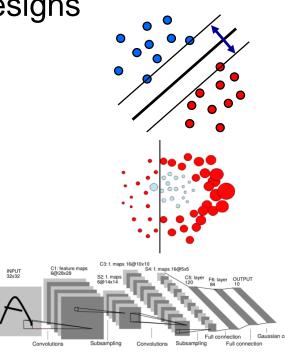
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 7 – Tracking with Linear Dynamic Models

Recap: Object Detector Design

- In practice, the classifier often determines the design.
 - Types of features
 - Speedup strategies
- We looked at 3 state-of-the-art detector designs
 - Based on SVMs

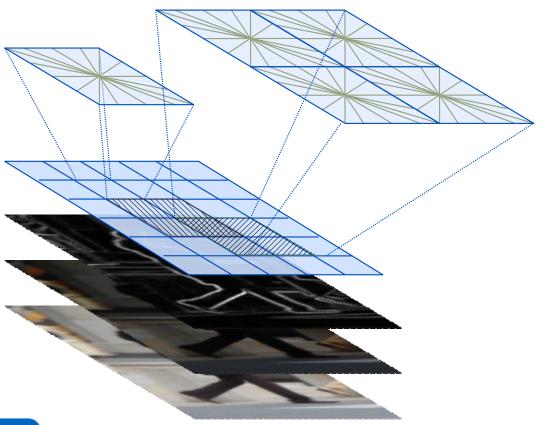
Based on Boosting

Based on CNNs



Recap: Histograms of Oriented Gradients (HOG)

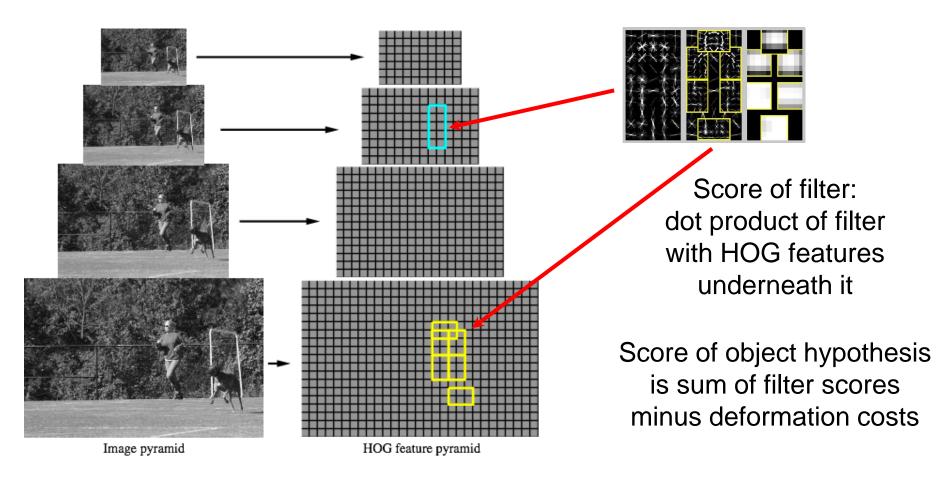
- Holistic object representation
 - Localized gradient orientations



Object/Non-object Linear SVM Collect HOGs over detection window Contrast normalize over overlapping spatial cells Weighted vote in spatial & orientation cells Compute gradients Gamma compression Image Window Visual Computing

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2
Part 7 – Tracking with Linear Dynamic Models

Recap: Deformable Part-based Model (DPM)

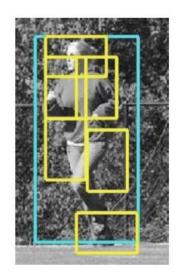


Multiscale model captures features at two resolutions

[Felzenszwalb, McAllister, Ramanan, CVPR'08]

Recap: DPM Hypothesis Score

$$score(p_0, \dots, p_n) = \underbrace{\sum_{i=0}^{n} F_i \cdot \phi(H, p_i)}_{i=0} - \underbrace{\sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)}_{i=1}$$
 displacements deformation parameters



$$score(z) = \beta \cdot \Psi(H, z)$$

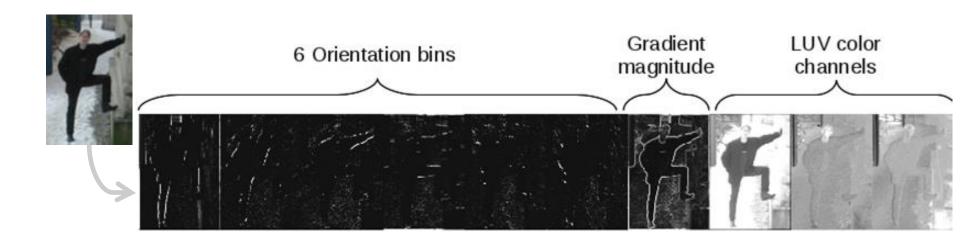
1

concatenation filters and deformation parameters

concatenation of HOG features and part displacement features

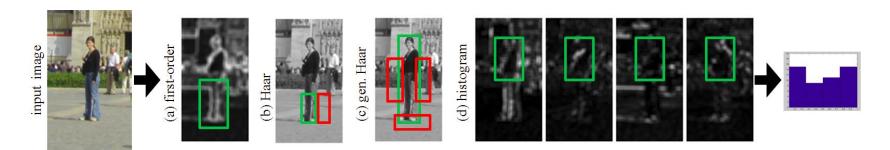
[Felzenszwalb, McAllister, Ramanan, CVPR'08]

Recap: Integral Channel Features



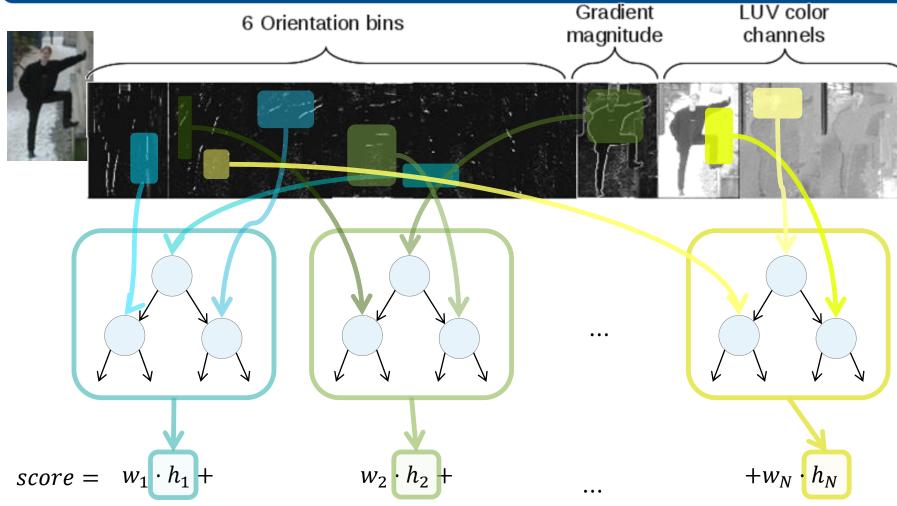
- Generalization of Haar Wavelet idea from Viola-Jones
 - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
 - Still efficiently represented as integral images.
 - P. Dollar, Z. Tu, P. Perona, S. Belongie. <u>Integral Channel Features</u>, BMVC'09.

Recap: Integral Channel Features



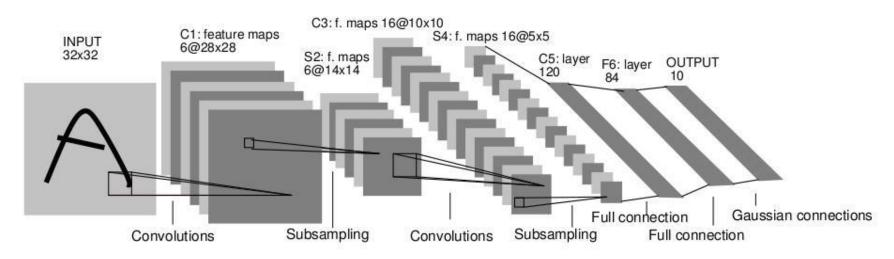
- Generalize also block computation
 - 1st order features:
 - Sum of pixels in rectangular region.
 - 2nd-order features:
 - Haar-like difference of sum-over-blocks
 - Generalized Haar:
 - More complex combinations of weighted rectangles
 - Histograms
 - Computed by evaluating local sums on quantized images.

Recap: VeryFast Classifier Construction



• Ensemble of short trees, learned by AdaBoost

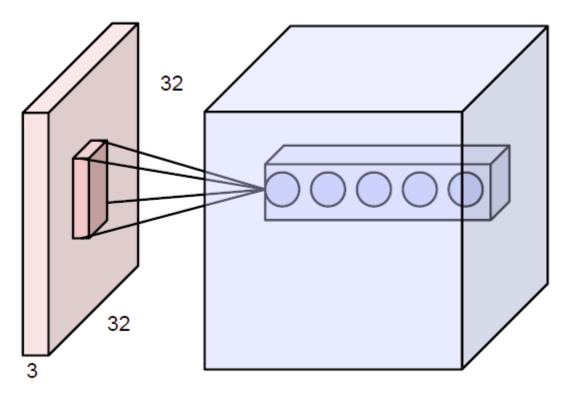
Recap: Convolutional Neural Networks



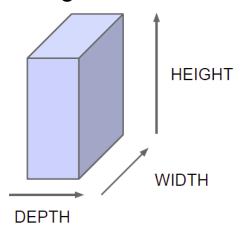
- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Recap: Convolution Layers

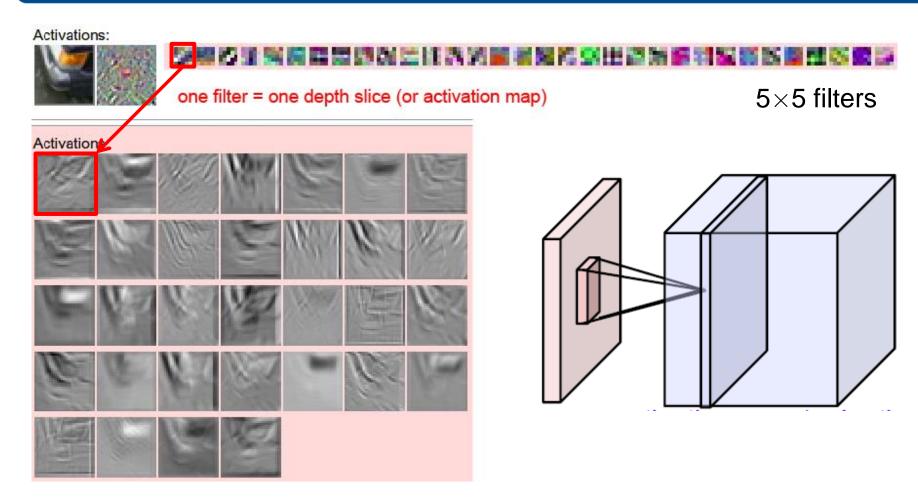


Naming convention:



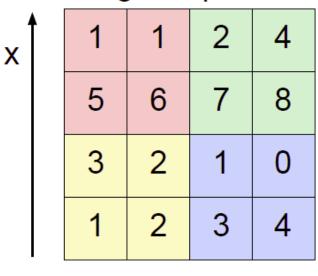
- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.

Recap: Activation Maps



Recap: Pooling Layers

Single depth slice



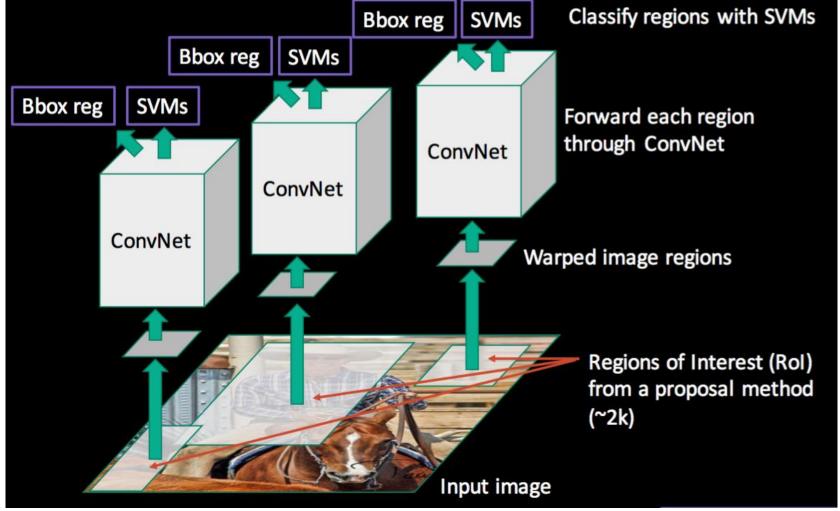
max pool with 2x2 filters and stride 2

6	8
3	4

Effect:

- Make the representation smaller without losing too much information
- Achieve robustness to translations

Recap: R-CNN for Object Detection



Slide credit: Ross Girshick

Recap: Faster R-CNN

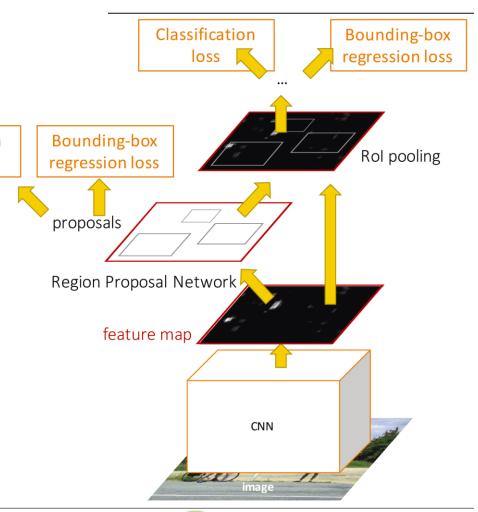
One network, four losses

Remove dependence on external region proposal algorithm.

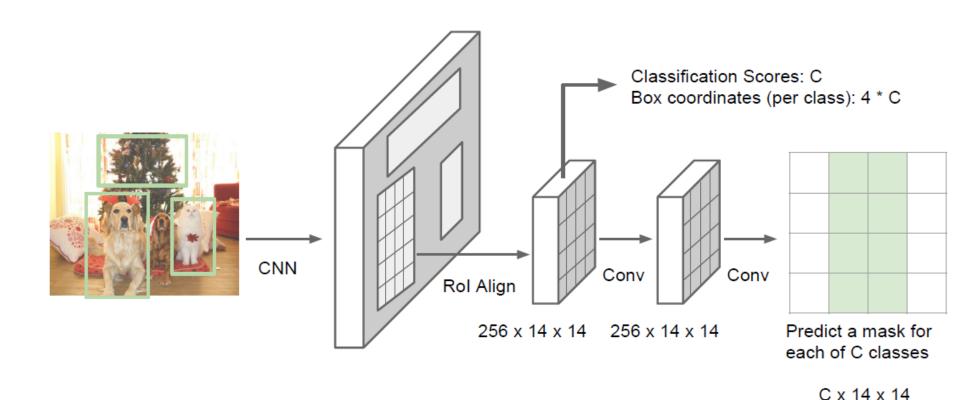
loss

Instead, infer region proposals from same CNN.

- Feature sharing
- Joint training
 - ⇒ Object detection in a single pass becomes possible.



Most Recent Version: Mask R-CNN

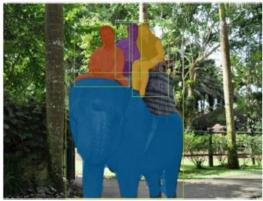


K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

21

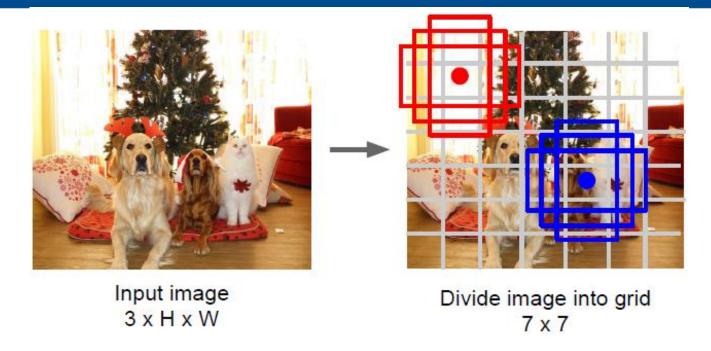
Mask R-CNN Results

Detection + Instance segmentation



Detection + Pose estimation

YOLO / SSD

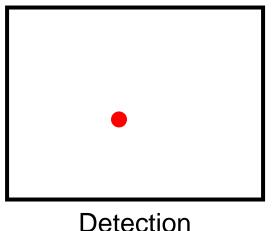


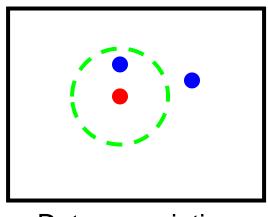
- Idea: Directly go from image to detection scores
- Within each grid cell
 - Start from a set of anchor boxes
 - Regress from each of the B anchor boxes to a final box
 - Predict scores for each of C classes (including background)

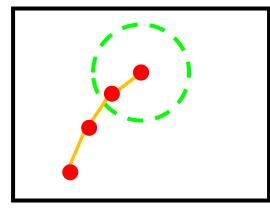
You Can Try All of This At Home...

- Detector code is publicly available
 - HOG: Dalal's original implementation:
 http://www.navneetdalal.com/software/
 - Our CUDA-optimized groundHOG code (>80 fps on GTX 580)
 http://www.vision.rwth-aachen.de/software/groundhog
 - DPM: Felzenswalb's original implementation:
 http://www.cs.uchicago.edu/~pff/latent
 - VeryFast Benenson's original implementation:
 https://bitbucket.org/rodrigob/doppia/
 - YOLO Joe Redmon's original implementation (YOLO v3):
 https://pjreddie.com/darknet/yolo/

Recap: Elements of Tracking







Data association

Prediction

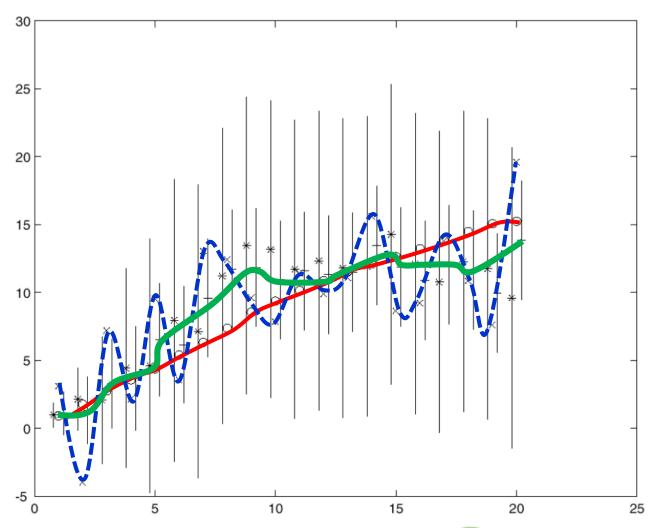
- Detection
 - Where are candidate objects?

Last lecture

- Data association
 - Which detection corresponds to which object?
- Prediction
 - Where will the tracked object be in the next time step?

Today's topic

Today: Tracking with Linear Dynamic Models



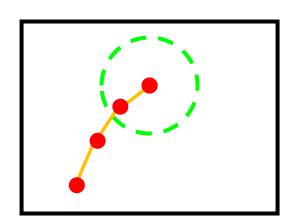
Topics of This Lecture

- Tracking with Dynamics
 - Detection vs. Tracking
 - Tracking as probabilistic inference
 - Prediction and Correction
- Linear Dynamic Models
 - Zero velocity model
 - Constant velocity model
 - Constant acceleration model
- The Kalman Filter
 - Kalman filter for 1D state
 - General Kalman filter
 - Limitations

Tracking with Dynamics

Key idea

 Given a model of expected motion, predict where objects will occur in next frame, even before seeing the image.



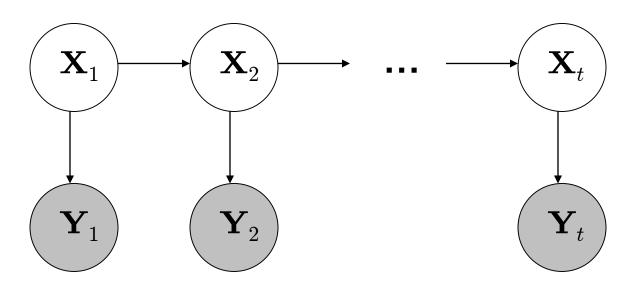
Goals

- Restrict search for the object
- Improved estimates since measurement noise is reduced by trajectory smoothness.
- Assumption: continuous motion patterns
 - Camera is not moving instantly to new viewpoint.
 - Objects do not disappear and reappear in different places.
 - Gradual change in pose between camera and scene.

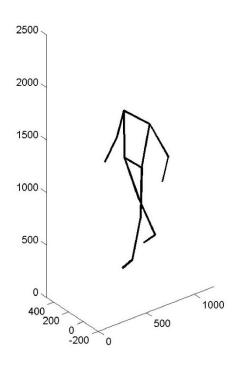
General Model for Tracking

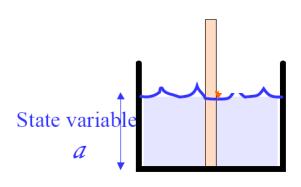
Representation

- The moving object of interest is characterized by an underlying state X.
- State X gives rise to measurements or observations Y.
- At each time t, the state changes to \mathbf{X}_t and we get a new observation \mathbf{Y}_t .



State vs. Observation





- Hidden state : parameters of interest
- Measurement: what we get to directly observe

Tracking as Inference

Inference problem

- The hidden state consists of the true parameters we care about, denoted X.
- The measurement is our noisy observation that results from the underlying state, denoted \mathbf{Y} .
- At each time step, state changes (from \mathbf{X}_{t-1} to \mathbf{X}_t) and we get a new observation \mathbf{Y}_t .
- Our goal: recover most likely state \mathbf{X}_t given
 - All observations seen so far.
 - Knowledge about dynamics of state transitions.

Steps of Tracking

Prediction:

– What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1})$$

Correction:

 Compute an updated estimate of the state from prediction and measurements.

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1},Y_t = y_t)$$

Tracking

 Can be seen as the process of propagating the posterior distribution of state given measurements across time.

Simplifying Assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

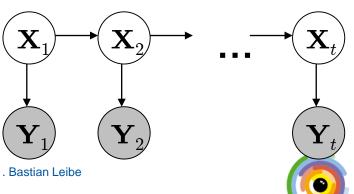
Dynamics model

Measurements depend only on the current state

$$P(Y_t|X_0,Y_0...,X_{t-1},Y_{t-1},X_t) = P(Y_t|X_t)$$

Observation model

Visual Computing



Tracking as Induction

Base case:

- Assume we have initial prior that *predicts* state in absence of any evidence: $P(\mathbf{X}_0)$
- At the first frame, *correct* this given the value of $\mathbf{Y}_0 = \mathbf{y}_0$

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0)P(X_0)}{P(y_0)} \propto P(y_0 | X_0)P(X_0)$$

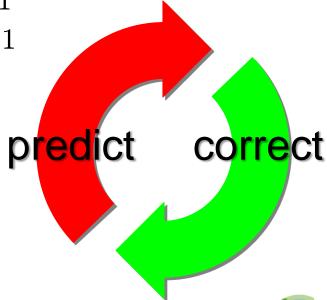
Posterior prob. of state given measurement

Likelihood of measurement

Prior of the state

Tracking as Induction

- Base case:
 - Assume we have initial prior that *predicts* state in absence of any evidence: $P(\mathbf{X}_0)$
 - At the first frame, *correct* this given the value of $\mathbf{Y}_0 = \mathbf{y}_0$
- Given corrected estimate for frame t:
 - Predict for frame t+1
 - Correct for frame t+1



Induction Step: Prediction

• Prediction involves representing $P(X_t|y_0,...,y_{t-1})$ given $P(X_{t-1}|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Law of total probability

$$P(A) = \int P(A,B) dB$$

Induction Step: Prediction

• Prediction involves representing $P(X_t | y_0,...,y_{t-1})$ given $P(X_{t-1} | y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Conditioning on X_{t-1}

$$P(A,B) = P(A|B)P(B)$$

Induction Step: Prediction

• Prediction involves representing $P(X_t | y_0,...,y_{t-1})$ given $P(X_{t-1} | y_0,...,y_{t-1})$

$$\begin{split} P(X_{t}|y_{0},...,y_{t-1}) \\ &= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1} \\ &= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1} \\ &= \int P(X_{t}|X_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1} \end{split}$$

Independence assumption

Induction Step: Correction

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t})$$

$$=\frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

Bayes' rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Induction Step: Correction

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

Independence assumption (observation y_t depends only on state X_t)

Induction Step: Correction

• Correction involves computing $P(X_t|y_0,...,y_t)$ given predicted value $P(X_t|y_0,...,y_{t-1})$

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{\int P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})dX_{t}} c$$

Conditioning on X_t

Summary: Prediction and Correction

Prediction:

$$P(X_t \mid y_0, \dots, y_{t-1}) = \int P(X_t \mid X_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$$

$$Dynamics \qquad Corrected estimate \\ model \qquad from previous step$$

Summary: Prediction and Correction

• Prediction:

$$P(X_{t} \mid y_{0},...,y_{t-1}) = \int P(X_{t} \mid X_{t-1}) P(X_{t-1} \mid y_{0},...,y_{t-1}) dX_{t-1}$$

$$Dynamics \qquad Corrected estimate \\ model \qquad from previous step$$

Correction:

$$P(X_t | y_0,..., y_t) = \frac{P(y_t | X_t)P(X_t | y_0,..., y_{t-1})}{\int P(y_t | X_t)P(X_t | y_0,..., y_{t-1})dX_t}$$

Observation

model

Predicted

estimate

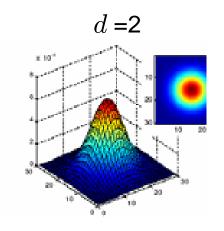
Topics of This Lecture

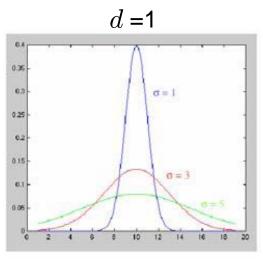
- Tracking with Dynamics
 - Detection vs. Tracking
 - Tracking as probabilistic inference
 - Prediction and Correction
- Linear Dynamic Models
 - Zero velocity model
 - Constant velocity model
 - Constant acceleration model
- The Kalman Filter
 - Kalman filter for 1D state
 - General Kalman filter
 - Limitations

Notation Reminder

$$\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$

- Random variable with Gaussian probability distribution that has the mean vector μ and covariance matrix Σ .
- \mathbf{x} and $\boldsymbol{\mu}$ are d-dimensional, $\boldsymbol{\Sigma}$ is $d \times d$.





If \mathbf{x} is 1D, we just have one $\mathbf{\Sigma}$ parameter: the variance σ^2

Linear Dynamic Models

- Dynamics model
 - State undergoes linear tranformation D₁ plus Gaussian noise

$$\mathbf{x}_{t} \sim N\left(\mathbf{D}_{t}\mathbf{x}_{t-1}, \Sigma_{d_{t}}\right)$$

- Observation model
 - Measurement is linearly transformed state plus Gaussian noise

$$\sum_{\substack{t \\ m \times 1}} \sim N\left(M_t \sum_{m \times n} \sum_{n \times 1} \sum_{m_t}\right)$$

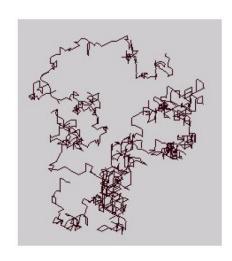
Example: Randomly Drifting Points

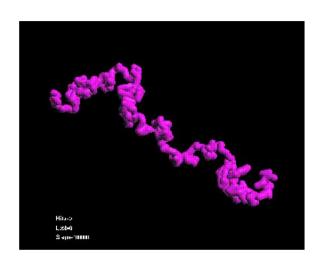
- Consider a stationary object, with state as position.
 - Position is constant, only motion due to random noise term.

$$x_{t} = p_{t}$$
 $p_{t} = p_{t-1} + \varepsilon$

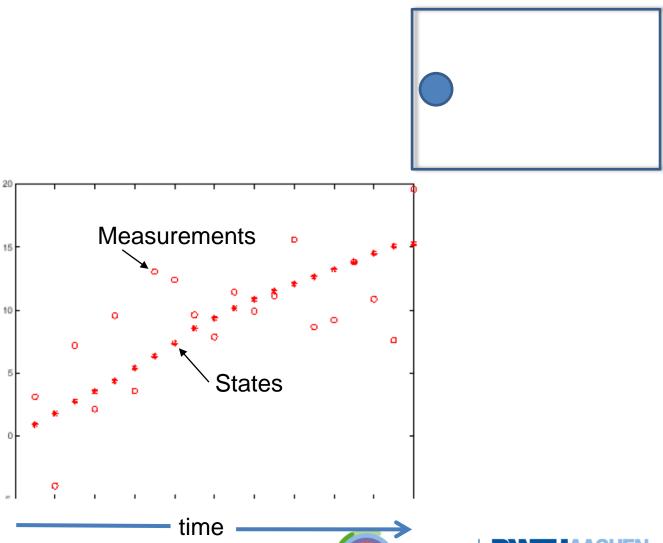
 \Rightarrow State evolution is described by identity matrix D=I

$$x_{t} = D_{t}x_{t-1} + noise = Ip_{t-1} + noise$$





Example: Constant Velocity (1D Points)



Slide credit: Kristen Grauman

Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} \qquad p_{t} = \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix}$$

(greek letters denote noise terms)

$$x_t = D_t x_{t-1} + noise =$$

Measurement is position only

$$y_t = Mx_t + noise =$$

Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

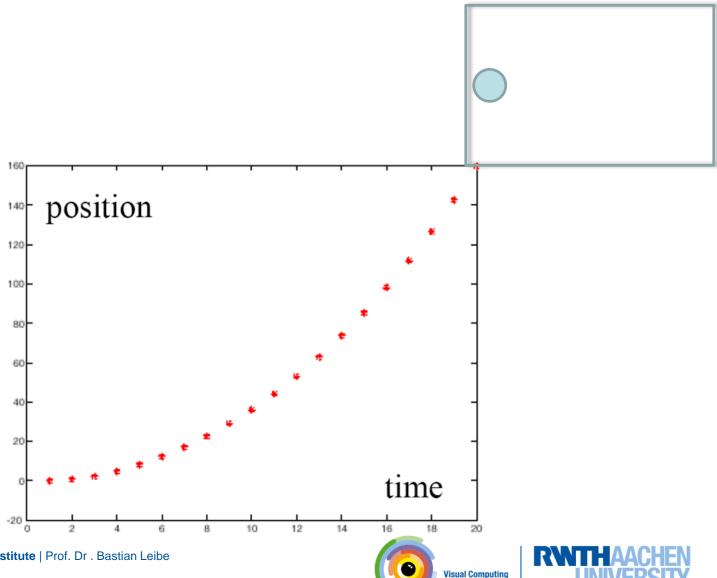
$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} \qquad p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \mathcal{E} \qquad \text{(greek letters denote noise terms)}$$

$$x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$$

Measurement is position only

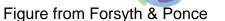
$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$$

Example: Constant Acceleration (1D Points)



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 7 – Tracking with Linear Dynamic Models

Slide credit: Kristen Grauman



Example: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \frac{1}{2}(\Delta t)^{2}a_{t-1} + \mathcal{E} \qquad \text{(greek letters denote noise terms)}$$

$$a_{t} = \begin{bmatrix} a_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad a_{t} = \begin{bmatrix} a_{t} \\ v_{t} \\ a_{t} \end{bmatrix}$$

$$x_{t} = D_{t}x_{t-1} + noise =$$

Measurement is position only

$$y_t = Mx_t + noise =$$

Example: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad \begin{aligned} p_{t} &= p_{t-1} + (\Delta t)v_{t-1} + \frac{1}{2}(\Delta t)^{2} a_{t-1} + \mathcal{E} & \text{(greek letters denote noise terms)} \\ v_{t} &= v_{t-1} + (\Delta t)a_{t-1} + \mathcal{E} & \text{denote noise terms)} \end{aligned}$$

$$x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \\ a_{t-1} \end{bmatrix} + noise$$

Measurement is position only

asurement is position only
$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$$

$$\begin{array}{c} \text{Sual Computing Institute | Prof. Dr. Bastian Leibe} \\ \text{omputer Vision 2} \\ \text{art 7 - Tracking with Linear Dynamic Models} \end{array}$$

Recap: General Motion Models

- Assuming we have differential equations for the motion
 - E.g. for (undampened) periodic motion of a linear spring

$$\frac{d^2p}{dt^2} = -p$$

Substitute variables to transform this into linear system

$$p_1 = p p_2 = \frac{dp}{dt} p_3 = \frac{d^2p}{dt^2}$$

Then we have

$$x_{t} = \begin{bmatrix} p_{1,t} \\ p_{2,t} \\ p_{3,t} \end{bmatrix} \qquad p_{1,t} = p_{1,t-1} + (\Delta t) p_{2,t-1} + \frac{1}{2} (\Delta t)^{2} p_{3,t-1} + \varepsilon$$

$$p_{2,t} = p_{2,t-1} + (\Delta t) p_{3,t-1} + \xi$$

$$p_{3,t} = -p_{1,t-1} + \zeta$$

Topics of This Lecture

- Tracking with Dynamics
 - Detection vs. Tracking
 - Tracking as probabilistic inference
 - Prediction and Correction
- Linear Dynamic Models
 - Zero velocity model
 - Constant velocity model
 - Constant acceleration model
- The Kalman Filter
 - Kalman filter for 1D state
 - General Kalman filter
 - Limitations

The Kalman Filter

- Kalman filter
 - Method for tracking linear dynamical models in Gaussian noise
- The predicted/corrected state distributions are Gaussian
 - You only need to maintain the mean and covariance.
 - The calculations are easy (all the integrals can be done in closed form).

The Kalman Filter

Know corrected state from previous time step, and all measurements up to the current one

→ Predict distribution over next state.

Receive measurement

Know prediction of state, and next measurement → Update distribution over current state.

Time update ("Predict")

Measurement update ("Correct")

$$P(X_t|y_0,...,y_{t-1})$$

 $P(X_t|y_0,...,y_t)$

Mean and std. dev. of predicted state:

$$\mu_t^-, \sigma_t^-$$

57

Time advances: t++

Mean and std. dev. of corrected state:

$$\mu_t^+, \sigma_t^+$$

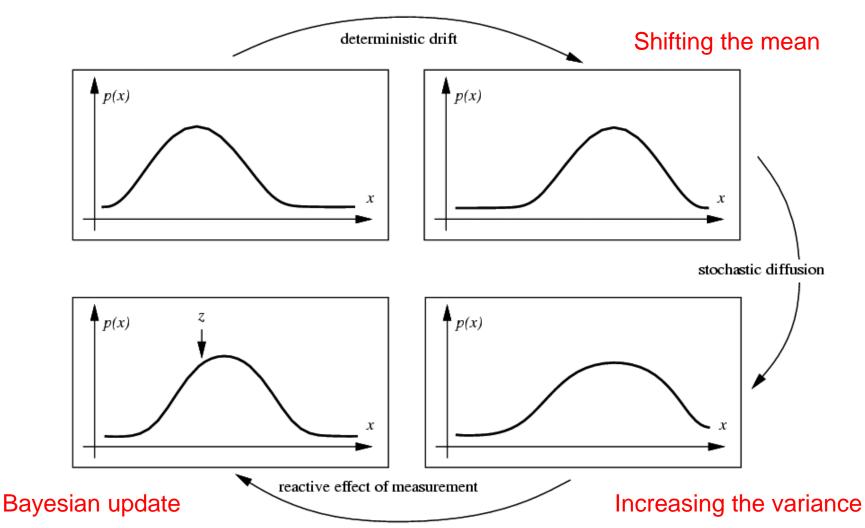
Kalman Filter for 1D State

Want to represent and update

$$P(x_t|y_0,...,y_{t-1}) = N(\mu_t^-,(\sigma_t^-)^2)$$

$$P(x_t|y_0,...,y_t) = N(\mu_t^+,(\sigma_t^+)^2)$$

Propagation of Gaussian densities



1D Kalman Filter: Prediction

 Have linear dynamic model defining predicted state evolution, with noise

$$X_t \sim N(dx_{t-1}, \sigma_d^2)$$

Want to estimate predicted distribution for next state

$$P(X_t|y_0,...,y_{t-1}) = N(\mu_t^-,(\sigma_t^-)^2)$$

Update the mean:

$$\mu_t^- = d\mu_{t-1}^+$$

for derivations, see F&P Chapter 17.3

Update the variance:

$$(\sigma_t^-)^2 = \sigma_d^2 + (d\sigma_{t-1}^+)^2$$

1D Kalman Filter: Correction

- Have linear model defining the mapping of state to measurements: $Y_t \sim N(mx_t, \sigma_m^2)$
- Want to estimate corrected distribution given latest measurement: $P(X_t|y_0,...,y_t) = N(\mu_t^+,(\sigma_t^+)^2)$
- Update the mean:

$$\mu_{t}^{+} = \frac{\mu_{t}^{-} \sigma_{m}^{2} + m y_{t} (\sigma_{t}^{-})^{2}}{\sigma_{m}^{2} + m^{2} (\sigma_{t}^{-})^{2}}$$

Update the variance:

$$(\sigma_t^+)^2 = \frac{\sigma_m^2(\sigma_t^-)^2}{\sigma_m^2 + m^2(\sigma_t^-)^2}$$

Prediction vs. Correction

$$\mu_t^+ = \frac{\mu_t^- \sigma_m^2 + m y_t (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2} \qquad (\sigma_t^+)^2 = \frac{\sigma_m^2 (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2}$$

• What if there is no prediction uncertainty $(\sigma_t^- = 0)$?

$$\mu_t^+ = \mu_t^- \qquad (\sigma_t^+)^2 = 0$$

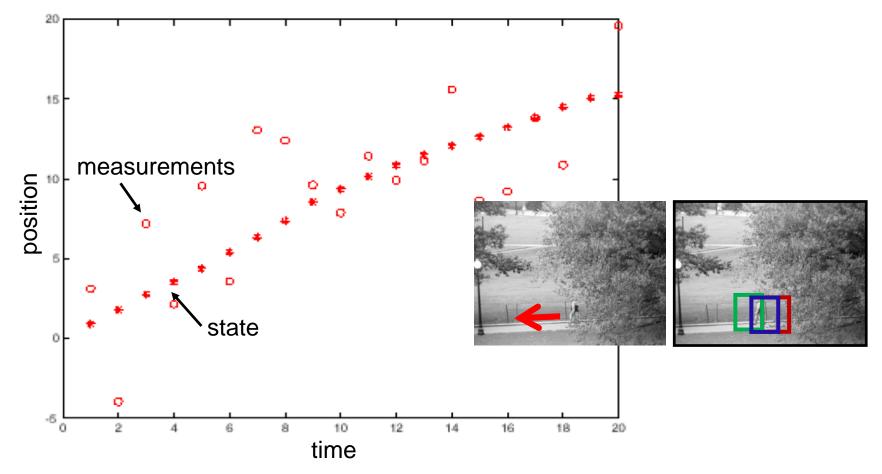
The measurement is ignored!

• What if there is no measurement uncertainty $(\sigma_m = 0)$?

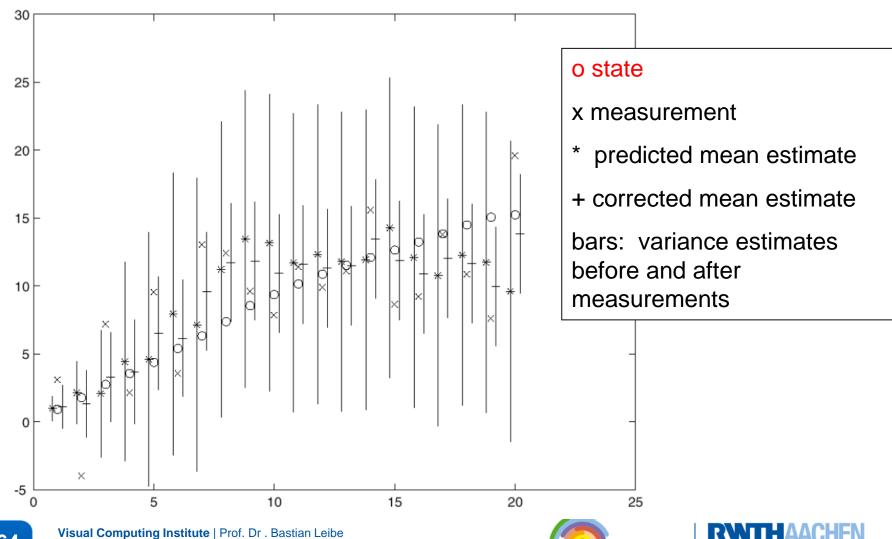
$$\mu_t^+ = \frac{y_t}{m} \qquad (\sigma_t^+)^2 = 0$$

The prediction is ignored!

Recall: Constant Velocity Example



State is 2D: position + velocity Measurement is 1D: position

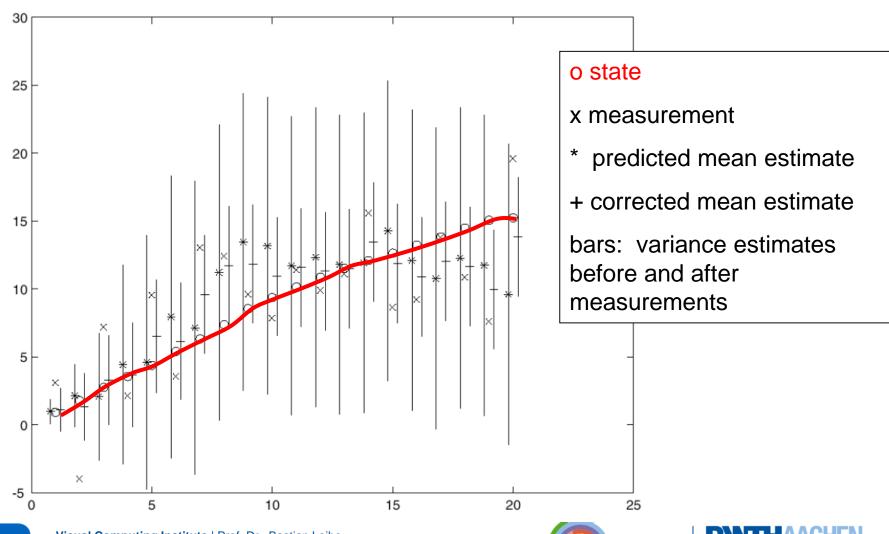


64

Computer Vision 2
Part 7 – Tracking with Linear Dynamic Models

Slide credit: Kristen Grauman

Visual Computing

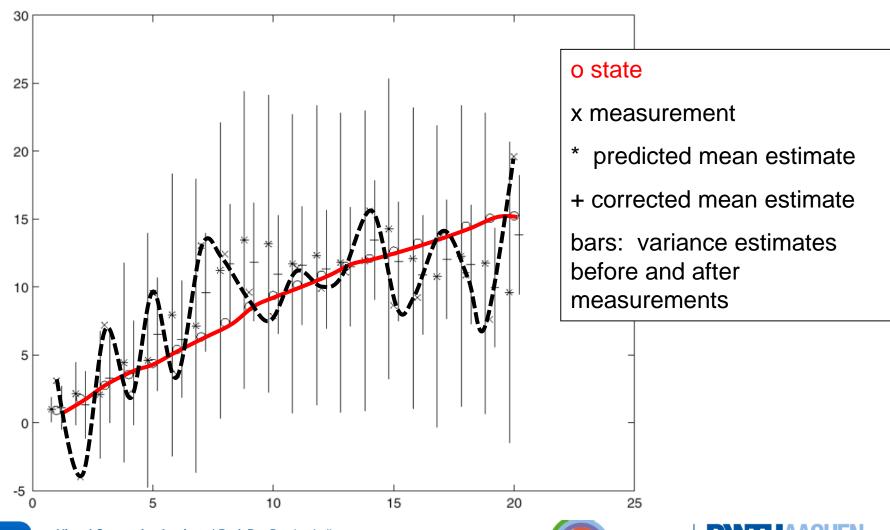


65

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 7 – Tracking with Linear Dynamic Models

Slide credit: Kristen Grauman

Visual Computing

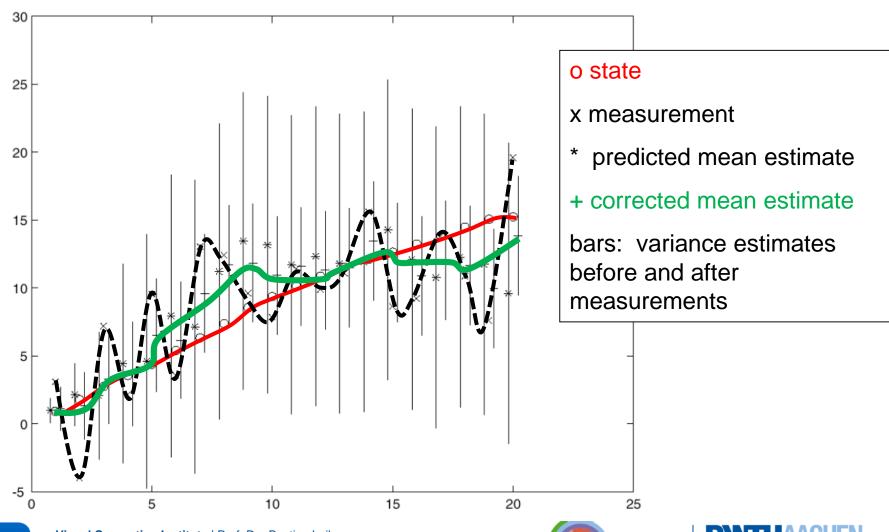


66

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 7 – Tracking with Linear Dynamic Models

Slide credit: Kristen Grauman

Visual Computing



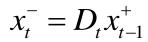
67

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 7 – Tracking with Linear Dynamic Models

Slide credit: Kristen Grauman

Kalman Filter: General Case (>1dim)

PREDIC



$$\begin{aligned} \boldsymbol{x}_t^- &= \boldsymbol{D}_t \boldsymbol{x}_{t-1}^+ \\ \boldsymbol{\Sigma}_t^- &= \boldsymbol{D}_t \boldsymbol{\Sigma}_{t-1}^+ \boldsymbol{D}_t^T + \boldsymbol{\Sigma}_{d_t} \end{aligned}$$

CORRECT

$$\begin{split} K_t &= \Sigma_t^- \boldsymbol{M}_t^T \Big(\boldsymbol{M}_t \boldsymbol{\Sigma}_t^- \boldsymbol{M}_t^T + \boldsymbol{\Sigma}_{m_t} \Big)^{\!-1} \\ \boldsymbol{x}_t^+ &= \boldsymbol{x}_t^- + K_t \Big(\boldsymbol{y}_t - \boldsymbol{M}_t \boldsymbol{x}_t^- \Big) \text{ "residual"} \\ \boldsymbol{\Sigma}_t^+ &= \big(\boldsymbol{I} - K_t \boldsymbol{M}_t \big) \boldsymbol{\Sigma}_t^- \end{split}$$

More weight on residual when measurement error covariance approaches 0.

Less weight on residual as a priori estimate error covariance approaches 0.

for derivations, see F&P Chapter 17.3

Summary: Kalman Filter

• Pros:

- Gaussian densities everywhere
- Simple updates, compact and efficient
- Very established method, very well understood

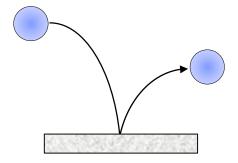
Cons:

- Unimodal distribution, only single hypothesis
- Restricted class of motions defined by linear model

Why Is This A Restriction?

- Many interesting cases don't have linear dynamics
 - E.g. pedestrians walking

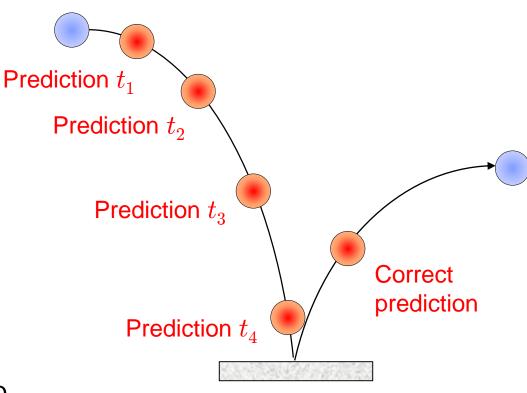
E.g. a ball bouncing



Ball Example: What Goes Wrong Here?

Assuming constant acceleration model

- Prediction is too far from true position to compensate...
- Possible solution:
 - Keep multiple different motion models in parallel
 - I.e. would check for bouncing at each time step



References and Further Reading

- A very good introduction to tracking with linear dynamic models and Kalman filters can be found in Chapter 17 of
 - D. Forsyth, J. Ponce,
 Computer Vision A Modern Approach.
 Prentice Hall, 2003

