Computer Vision 2 WS 2018/19

Part 5 – Tracking by Online Classification 24.10.2018

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

2

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

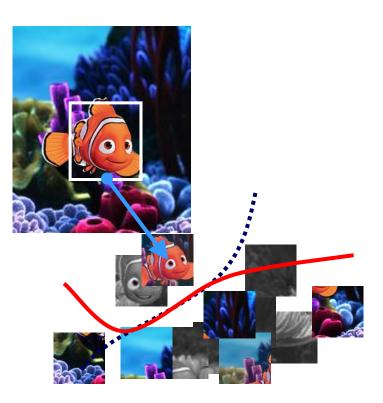


Image source: Robert Collins

Recap: General LK Image Registration

Goal

3

- Find the warping parameters \mathbf{p} that minimize the sum-of-squares intensity difference between the template image $T(\mathbf{x})$ and the warped input image $I(\mathbf{W}(\mathbf{x};\mathbf{p}))$.

LK formulation

- Formulate this as an optimization problem

$$\arg\min_{\mathbf{p}}\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x})\right]^{2}$$

– We assume that an initial estimate of p is known and iteratively solve for increments to the parameters Δp :

$$\arg\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x};\mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

Recap: Step-by-Step Derivation

- Key to the derivation
 - Taylor expansion around $\Delta \mathbf{p}$

$$I(\mathbf{W}(\mathbf{x};\mathbf{p}+\Delta\mathbf{p})) \approx I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} + \mathcal{O}(\Delta \mathbf{p}^2)$$
$$= I(\mathbf{W}([x,y];p_1,\ldots,p_n))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

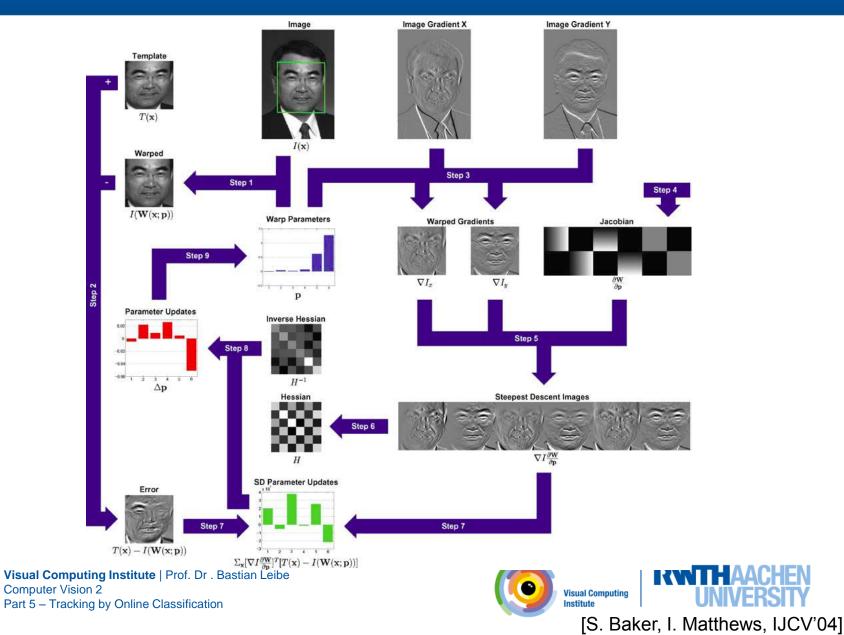
Slide credit: Robert Collins

Recap: Inverse Compositional LK Algorithm

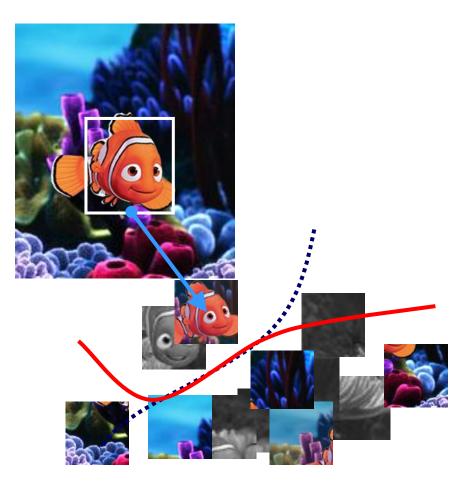
- Iterate •
 - Warp I to obtain $I(\mathbf{W}([x, y]; \mathbf{p}))$
 - Compute the error image $T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p}))$
 - Warp the gradient ∇I with $\mathbf{W}([x, y]; \mathbf{p})$
 - Evaluate $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $([x, y]; \mathbf{p})$ (Jacobian)
 - Compute steepest descent images
 - Compute Hessian matrix $\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$ Compute $\sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$

- $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$ – Compute
- Update the parameters $\mathbf{p} \leftarrow \mathbf{\bar{p}} + \Delta \mathbf{p}$
- Until $\Delta \mathbf{p}$ magnitude is negligible

Recap: Inverse Compositional LK Algorithm



Today: Tracking by Online Classification



Can Machine Learning solve the problem for us?

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Image source: Helmut Grabner, Disney/Pixar

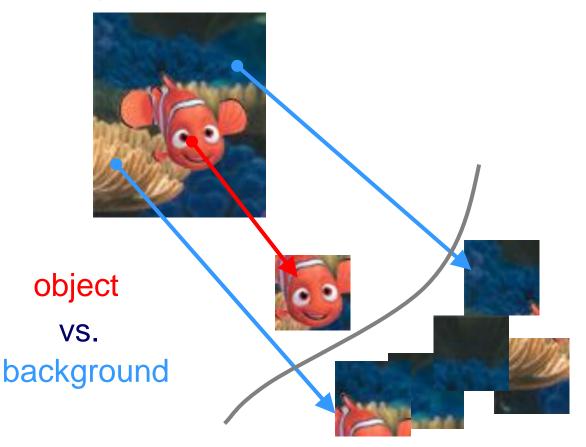
Topics of This Lecture

- Tracking by Online Classification
 - Motivation
- Recap: Boosting for Detection
 - AdaBoost
 - Viola-Jones Detector
- Extension to Online Classification
 - Online Boosting
 - Online Feature Selection
 - Results

- Extensions
 - Problem: Drift
 - Drift-compensation strategies

Tracking as Classification

Tracking as binary classification problem



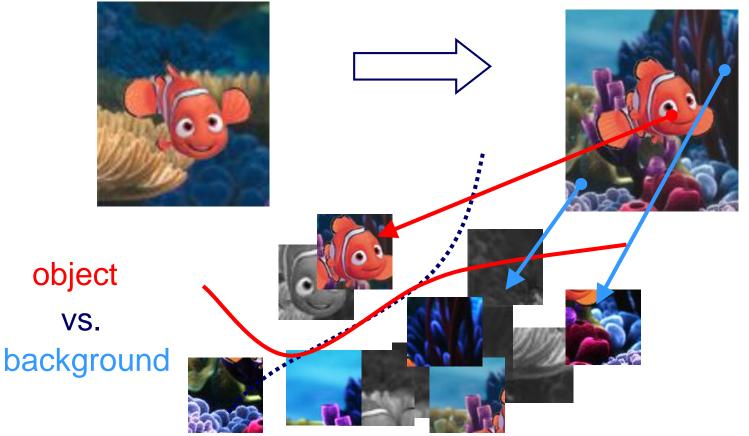
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

Image source: Disney/Pixar

Tracking as Classification

Tracking as binary classification problem



- Handle object and background changes by online updating

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

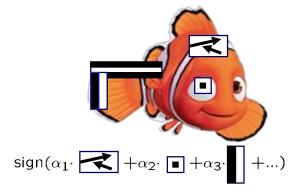
11

Institute

Idea: Use Boosting for Feature Selection

Object Detector

Fixed training set General object detector



Boosting for Feature Selection

P. Viola, M. Jones. <u>Rapid Object Detection using a</u> <u>Boosted Cascade of Simple Features</u>. CVPR'01.

Object Tracker

On-line update Object vs. Background

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

On-Line Boosting for Feature Selection

H. Grabner, H. Bischof. <u>On-line</u> <u>Boosting and Vision</u>. CVPR'06.

Image source: Disney/Pixar

Topics of This Lecture

- Tracking by Online Classification
 Motivation
- Recap: Boosting for Detection
 - AdaBoost
 - Viola-Jones Detector
- Extension to Online Classification
 - Online Boosting
 - Online Feature Selection
 - Results
- Extensions
 - Problem: Drift
 - Drift-compensation strategies

Recap: AdaBoost – "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of classifiers
- Reweight misclassified training examples after each iteration to focus training on difficult cases.
- Components
 - $-h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
 - $-H(\mathbf{x})$: "strong" or final classifier

AdaBoost:

15

 Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers: $\sum_{m=1}^{\infty} \alpha_m h_m(\mathbf{x})$

$$H(\mathbf{x}) = sign$$

Visual Computing

Recap: AdaBoost – Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- 2. For m = 1, ..., M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$$

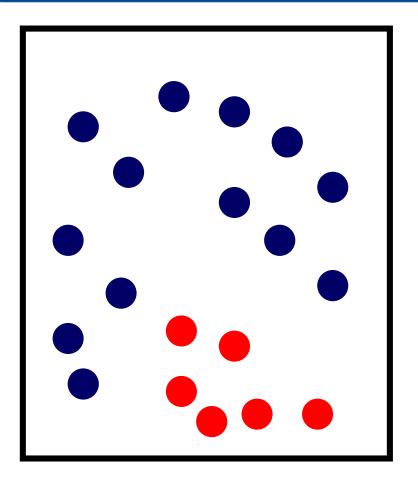
d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Topics of This Lecture

- Tracking by Online Classification
 Motivation
- Recap: Boosting for Detection
 - AdaBoost
 - Viola-Jones Detector
- Extension to Online Classification
 - Online Boosting
 - Online Feature Selection
 - Results
- Extensions
 - Problem: Drift
 - Drift-compensation strategies



Given:

- set of labeled training samples
- weight distribution over them

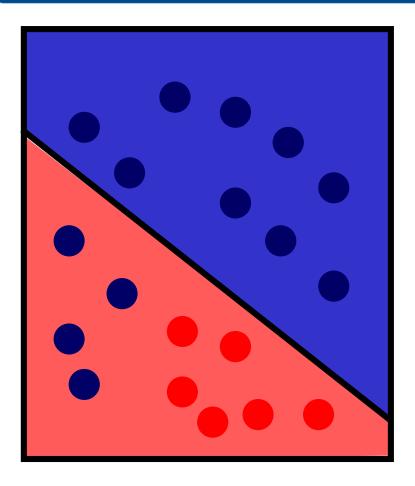
Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Slide credit: Helmut Grabner



Given:

- set of labeled training samples
- weight distribution over them

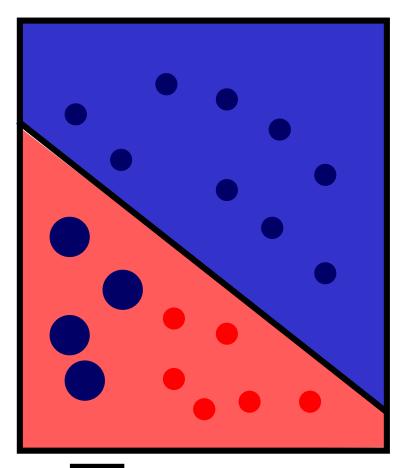
Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Slide credit: Helmut Grabner



<u>Given</u>:

- set of labeled training samples
- weight distribution over them

Algorithm:

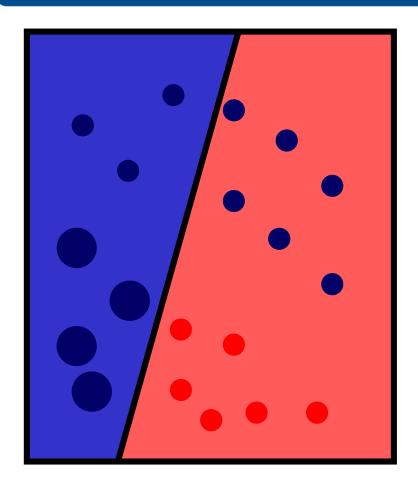
for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

20

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification



<u>Given</u>:

- set of labeled training samples
- weight distribution over them

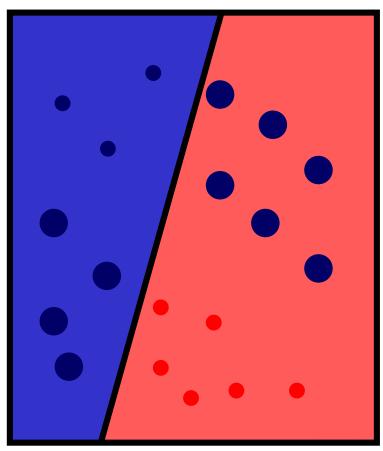
Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Slide credit: Helmut Grabner



$\alpha_2 \cdot$

<u>Given</u>:

- set of labeled training samples
- weight distribution over them

Algorithm:

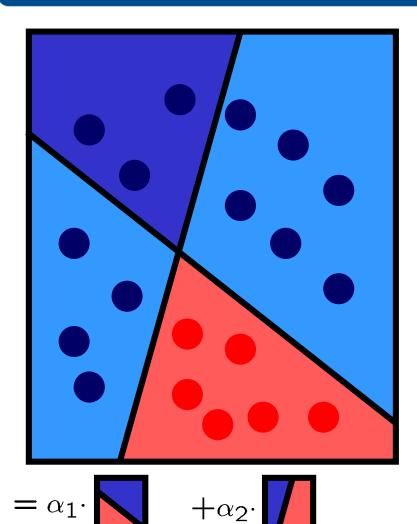
for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner



23

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

<u>Given</u>:

- set of labeled training samples
- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using samples and weight dist.
- calculate error
- calculate weight
- update weight dist.

next

Result:

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Goal

- Formulate the algorithm such that we can present only 1 training sample at a time (and then forget about it).
- \Rightarrow Dual problem: instead of keeping all samples and adding weak classifiers, keep a fixed set of weak classifiers and add samples.
- What changes?
 - Updating the classifiers online can be done easily.
 - Many classification approaches can use online updates.
 - Computing the classifier weights is also straightforward if we know the estimated error (which we can compute).

Main issue

25

- Computing the weight distribution for the samples.
- We do not know a priori the difficulty of a sample!
 (Could already have seen the same sample before...)
- Idea of Online Boosting
 - Estimate the importance of a sample by propagating it through a set of weak classifiers.
 - This can be thought of as modeling the information gain w.r.t. the first n classifiers and code it by the importance weight λ for the n+1 classifier.
 - Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of $N \to \infty$ iterations.

N. Oza and S. Russell. <u>Online Bagging and Boosting</u>. Artificial Intelligence and Statistics, 2001.

off-line

Given:

- set of labeled training samples $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle, ..., \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them $D_0 = 1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

 $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

26

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

off-line

Given:

- set of labeled training samples $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle, ..., \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them $D_0 = 1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

 $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

27

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

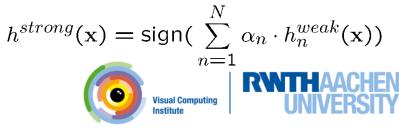
Slide credit: Helmut Grabner

on-line

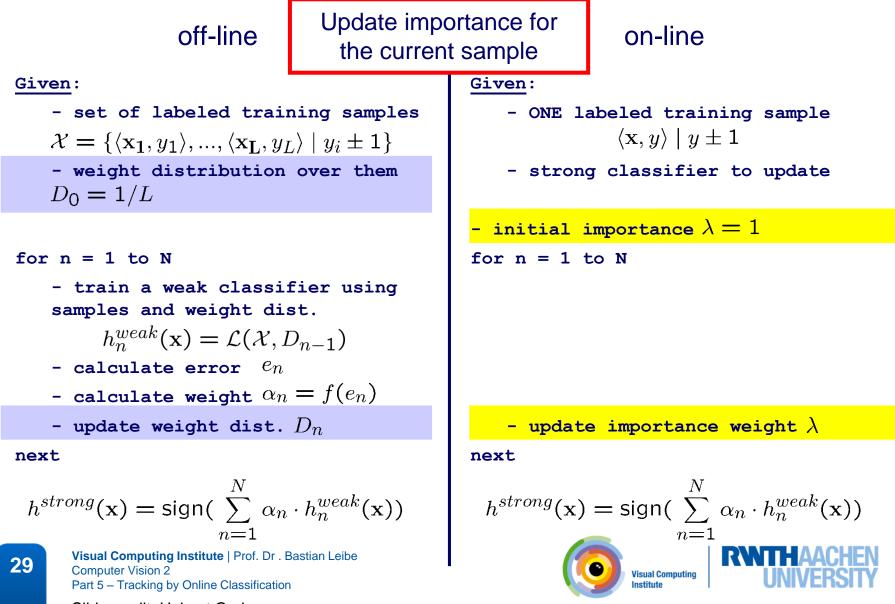
Given:

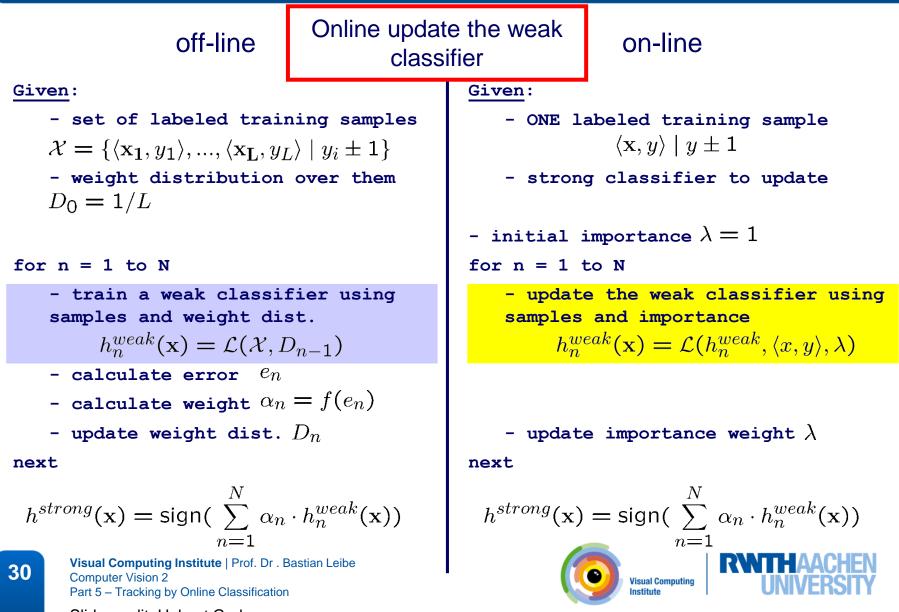
for n = 1 to N

next



off-line Only one trai to update th		•	on-line	
Given:			<u>Given</u> :	
	- set of labeled training samples $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle,, \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them		- ONE labeled training sample $\langle {f x},y angle \mid y\pm 1$ - strong classifier to update	
$D_0 = 1/L$ for n = 1 to N			for $n = 1$ to	N
- train a weak classifier using samples and weight dist. $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$ - calculate error e_n - calculate weight $\alpha_n = f(e_n)$ - update weight dist. D_n			IN	
next			next	
h 28	$strong(\mathbf{x}) = sign(\sum_{n=1}^{N} \alpha_n)$ Visual Computing Institute Prof. Dr. R Computer Vision 2 Part 5 – Tracking by Online Classification Slide credit: Helmut Grabner	Bastian Leibe	$h^{strong}(\mathbf{x}) =$	$= \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$ $\xrightarrow{\text{Visual Computing Institute}} \mathbf{RNTHAACHEN}$





off-line	Update er weig		on-line	
<u>Given</u> :		<u>Given</u> :		
- set of labeled trai	ning samples	- ONE labeled training sample		
$\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle,, \langle \mathbf{x_L}, y \rangle$	$_L angle \mid y_i \pm 1 \}$	$\langle {f x},y angle \mid y\pm 1$		
- weight distribution $D_0 = 1/L$	over them	- strong classifier to update		
		- initial importance $\lambda=1$		
for $n = 1$ to N		for $n = 1$ to N		
- train a weak classi samples and weight di $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, \mathcal{X})$	st.	- update the weak classifier using samples and importance $h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak},\langle x,y angle,\lambda)$		
- calculate error e_n		- update error estimation $\widehat{e_n}$		
- calculate weight $lpha_m$	$f = f(e_n)$	- update weight $lpha_n=f(\widehat{e}_n)$		
- update weight dist.	D_n	- update importance weight λ		
next		next		
$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n)$ Visual Computing Institute Prof. Dr.		$h^{strong}(\mathbf{x})$	$= \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$	
31 Computer Vision 2 Part 5 – Tracking by Online Classification		Visual Computing Institute UNIVERSITY		

Slide credit: Helmut Grabner

off-line

Given:

- set of labeled training samples $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle, ..., \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them $D_0 = 1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

 $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

32

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

on-line

<u>Given</u>:

- ONE labeled training sample $\langle {f x},y
 angle \mid y\pm 1$
- strong classifier to update
- initial importance $\lambda=1$
- for n = 1 to N
 - update the weak classifier using samples and importance

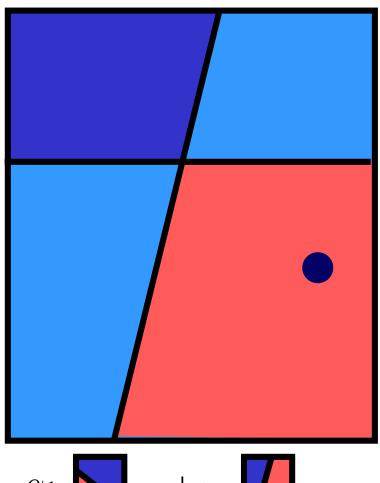
$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle x, y \rangle, \lambda)$$

- update error estimation $\hat{e_n}$
- update weight $lpha_n=f(\widehat{e}_n)$
- update importance weight λ

next

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

$$\underbrace{\operatorname{Visual Computing}}_{\text{Institute}} \mid \operatorname{RNTHAACHER}_{\text{UNIVERSITY}}$$



Given:

- ONE labeled training sample
- strong classifier to update

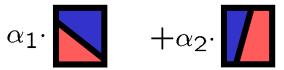
Algorithm:

- initial importance

for n = 1 to N

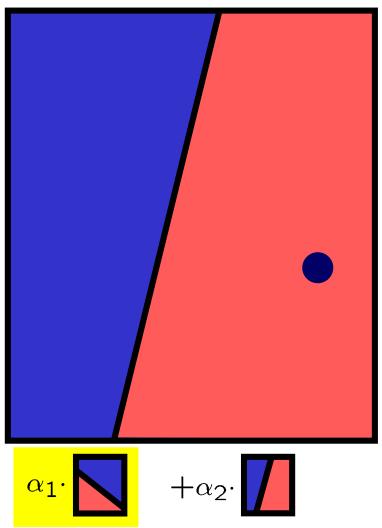
- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next



33

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification



Given:

- ONE labeled training sample
- strong classifier to update

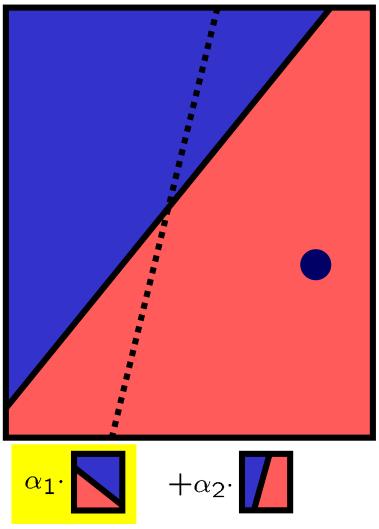
Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next



Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

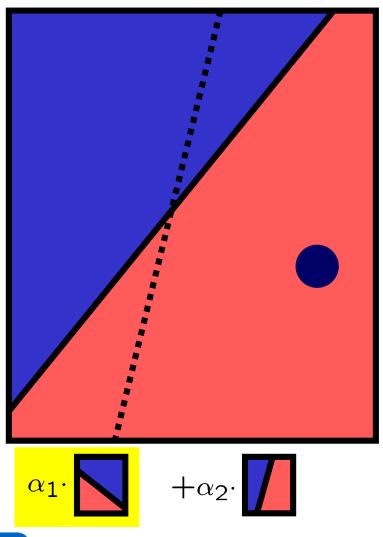
- initial importance

for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next

35



Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

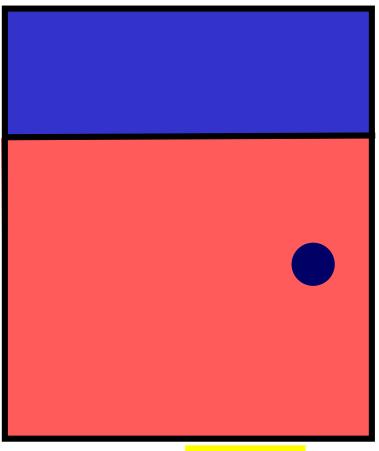
for n = 1 to N

- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next

36

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification



Given:

- ONE labeled training sample
- strong classifier to update

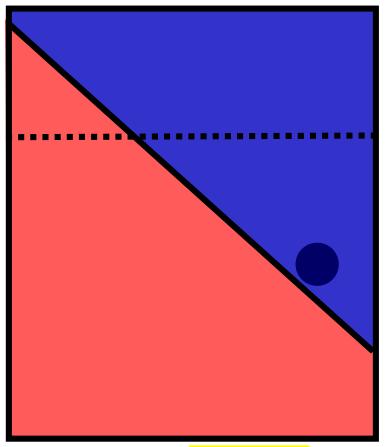
Algorithm:

- initial importance
- for n = 1 to N
 - update the weak classifier using sample and importance
 - update error estimation
 - update weight
 - update importance weight

next

37

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification



Given:

- ONE labeled training sample
- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

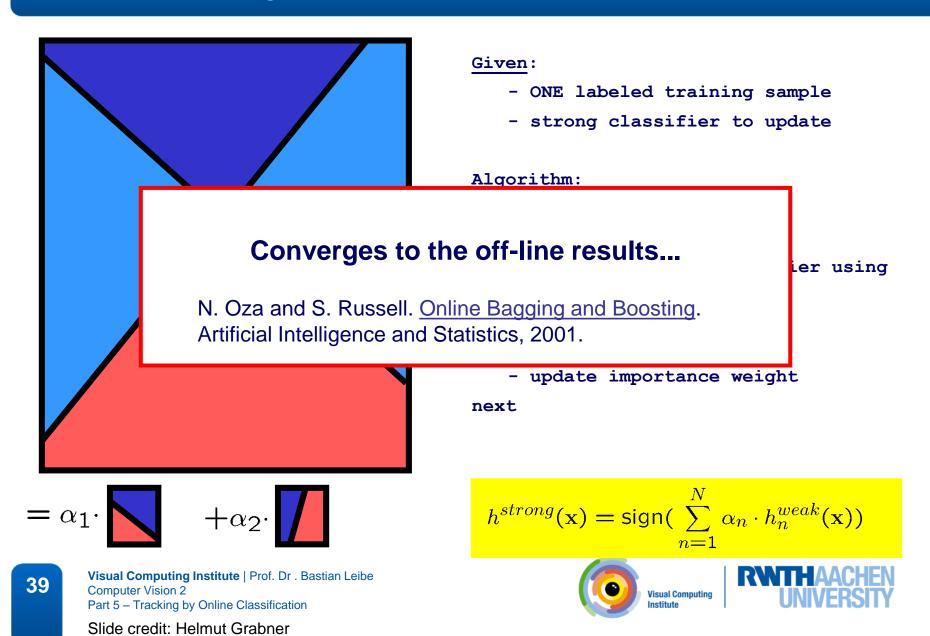
- update the weak classifier using sample and importance
- update error estimation
- update weight
- update importance weight

next

38

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Online Boosting



- Each feature corresponds to a weak classifier.
- Features

40

- Haar-like wavelets
- Orientation histograms
- Locally binary patterns (LBP)
- Fast computation using efficient data structures
 - integral images
 - integral histograms

 $P(+1|f_i(\mathbf{x}))$ $P(-1|f_i(\mathbf{x}))$ $f_i(\mathbf{x})$ $h^{weak}(\mathbf{x})$ \downarrow class +1 class -1 class -1 $f_i(\mathbf{x})$

F. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. CVPR'05.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

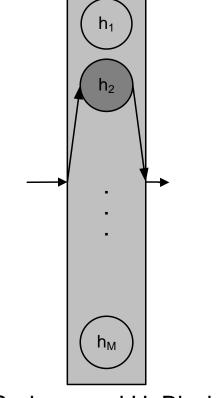
- Introducing "Selector"
 - Selects one feature from its local feature pool

$$\mathcal{H}^{weak} = \{h_1^{weak}, ..., h_M^{weak}\}$$
$$\mathcal{F} = \{f_1, ..., f_M\}$$

$$h^{sel}(\mathbf{x}) = h_m^{weak}(\mathbf{x})$$

 $m = \arg\min_i e_i$

On-line boosting is performed on the Selectors and not on the weak classifiers directly.



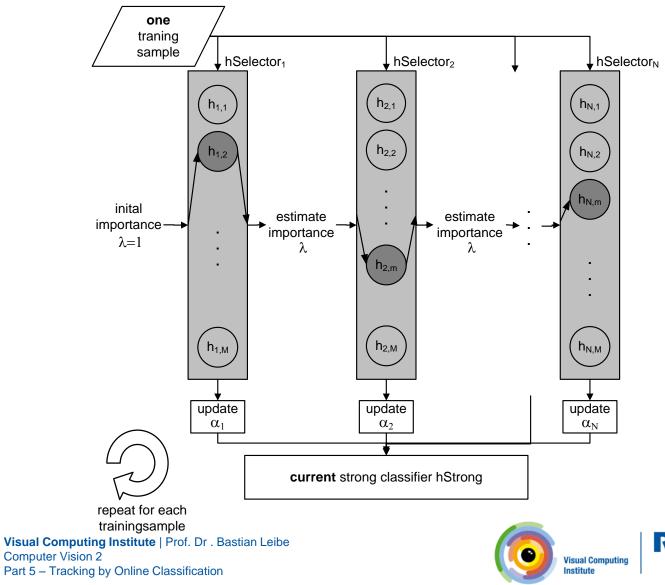
hSelector

H. Grabner and H. Bischof. On-line boosting and vision.

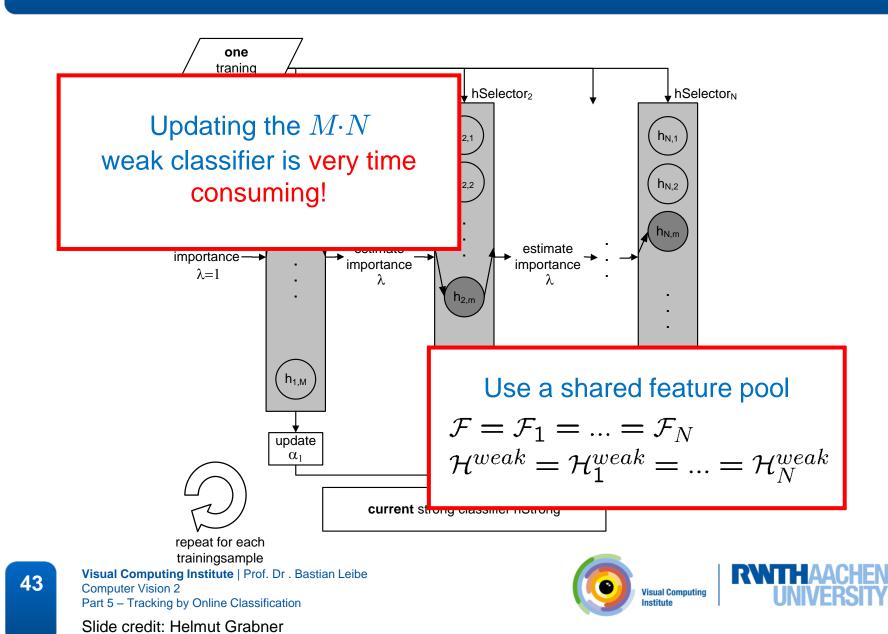
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

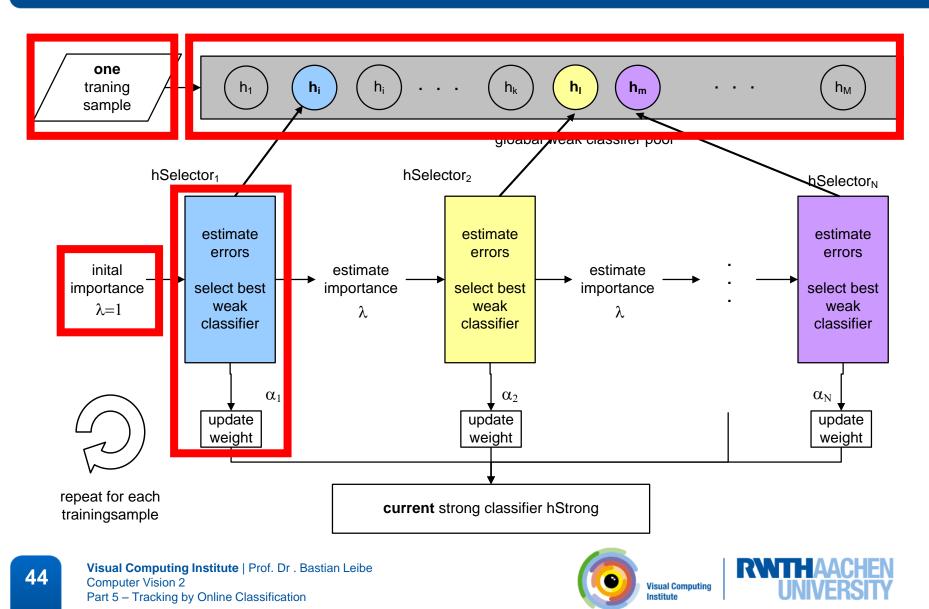
Slide credit: Helmut Grabner

41

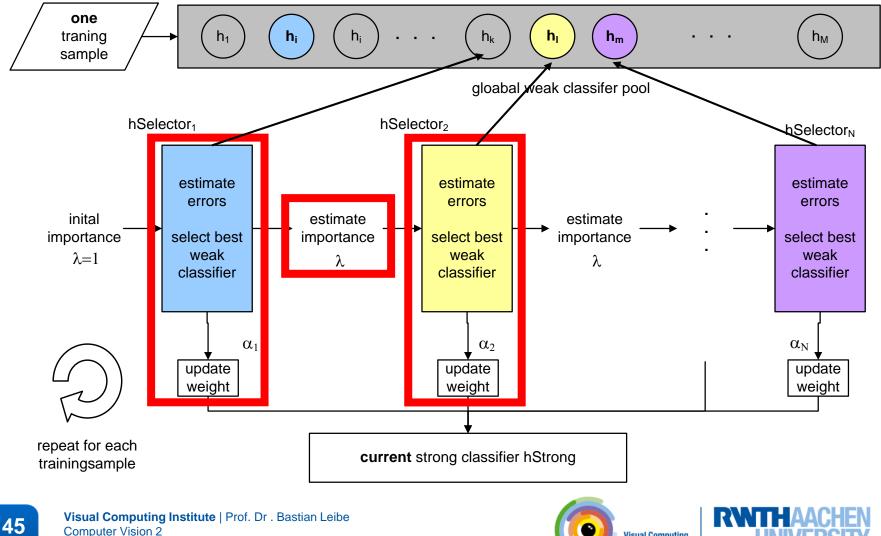


Slide credit: Helmut Grabner

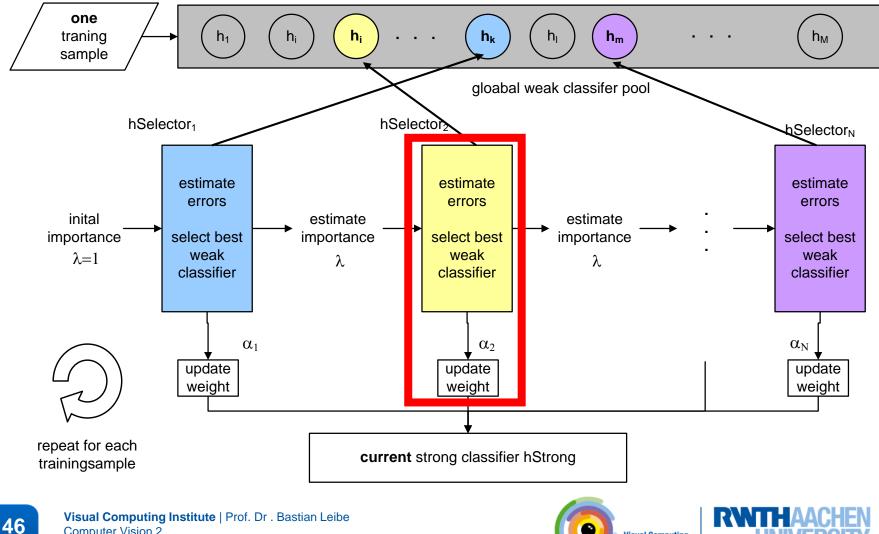




Slide credit: Helmut Grabner



Part 5 – Tracking by Online Classification Slide credit: Helmut Grabner

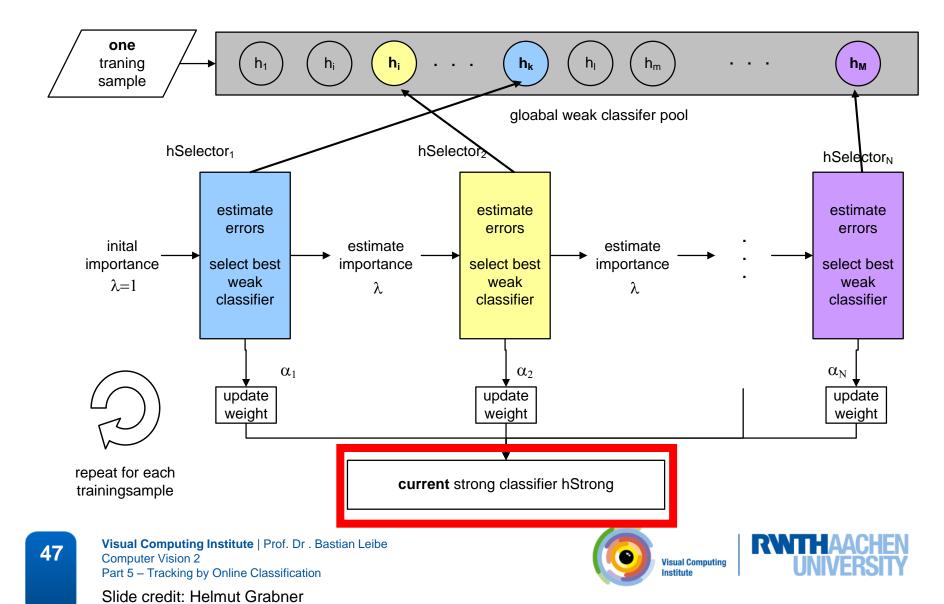


Visual Computing

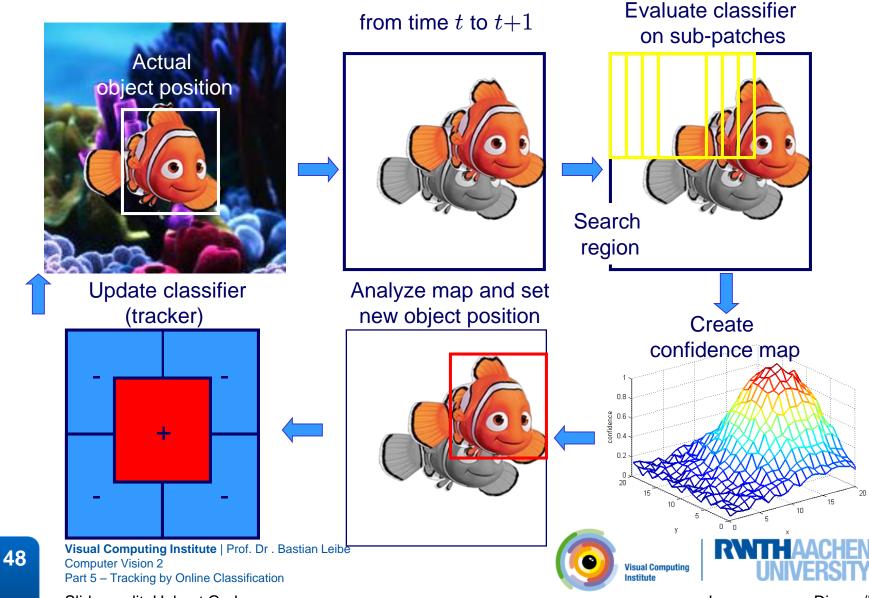
Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner



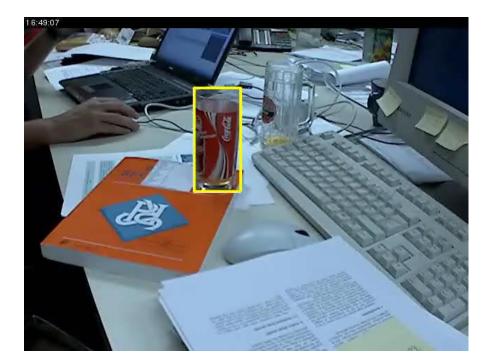
Tracking by Online Classification

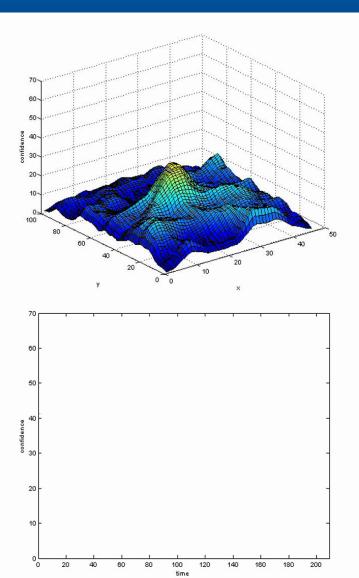


Slide credit: Helmut Grabner

Image source: Disney/Pixar

Tracking Results





Visual Computing

Institute

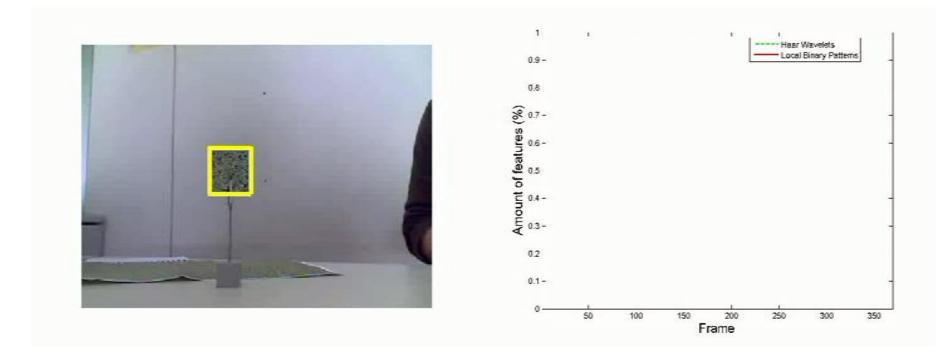
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

Video source: Grabner et al., BMVC'06

UNIVERSITY

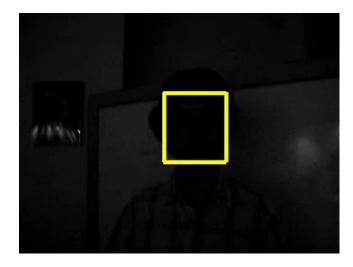
Online Feature Exchange

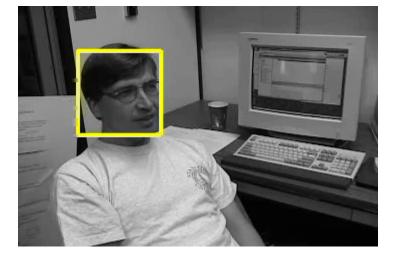


Slide credit: Helmut Grabner

Video source: Grabner et al., BMVC'06

Additional Tracking Results





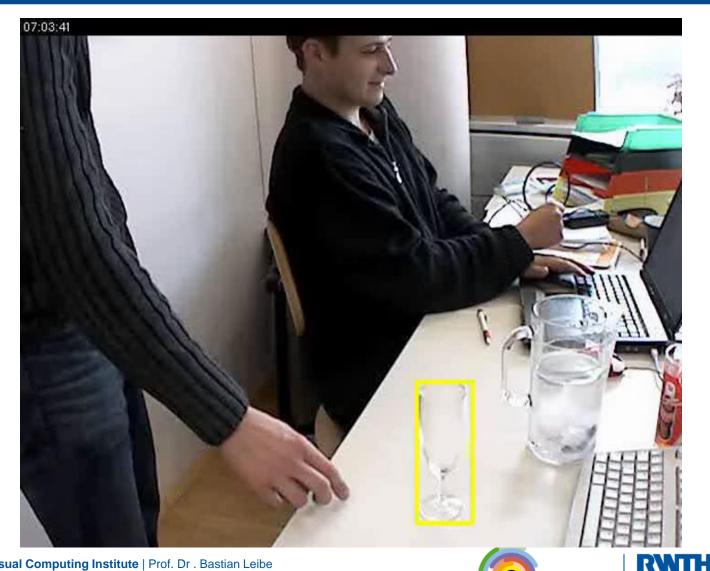
51

Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

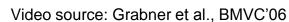
Video source: Grabner et al., BMVC'06

"Tracking the Invisible"



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner



Visual Computing

Institute

Summary: Tracking by Online Classification

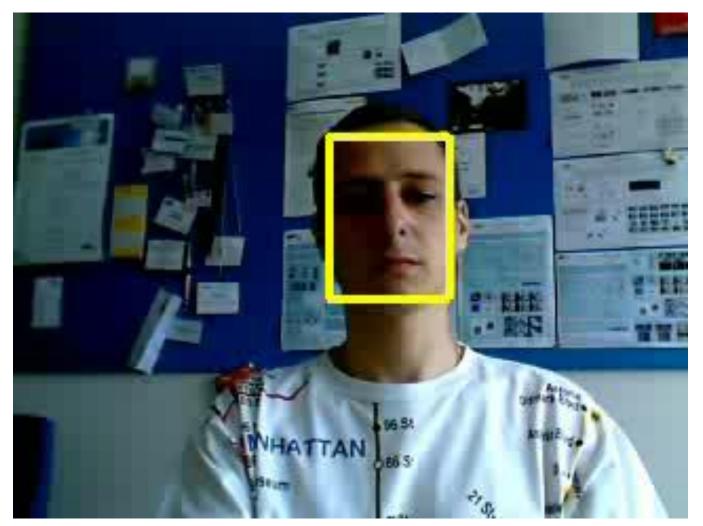
- Interpret tracking as a classification problem
 - Continuously updating a classifier which discriminates the object from the background.
- Online Boosting
 - Adaptation of AdaBoost to process 1 training sample at a time.
 - Process sample by fixed set of classifiers to compute its importance weight.
 - Converges to the same result as Offline Boosting.
- Online Boosting for Feature Selection
 - Perform Boosting on Selectors instead of weak classifiers.
 - Each Selector chooses from a pool of weak classifiers.
 - Selected features and voting weights change over time.
 - Shared feature pool for real-time processing.

Topics of This Lecture

- Tracking by Online Classification

 Motivation
- Recap: Boosting for Detection
 - AdaBoost
 - Viola-Jones Detector
- Extension to Online Classification
 - Online Boosting
 - Online Feature Selection
 - Results
- Extensions
 - Problem: Drift
 - Drift-compensation strategies

When Does It Fail...

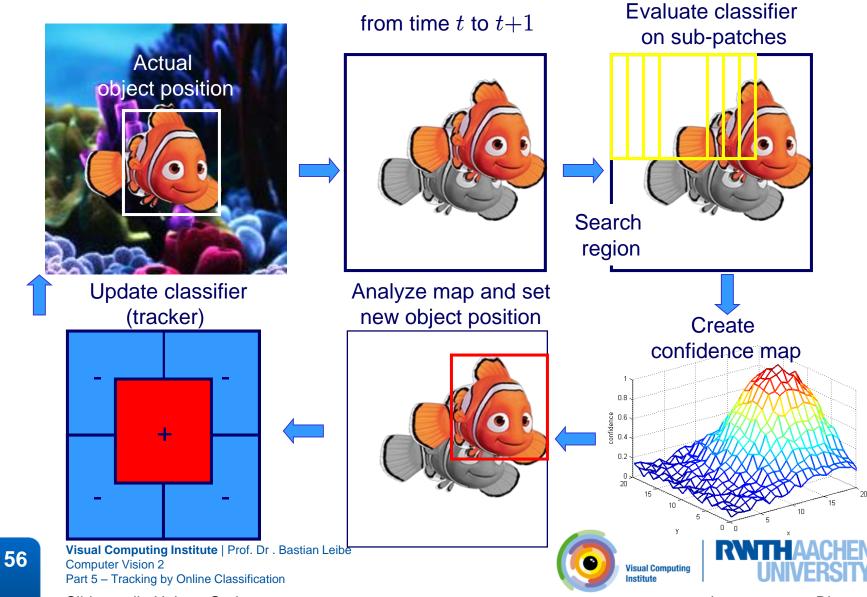


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

Video source: Grabner et al., ECCV'08

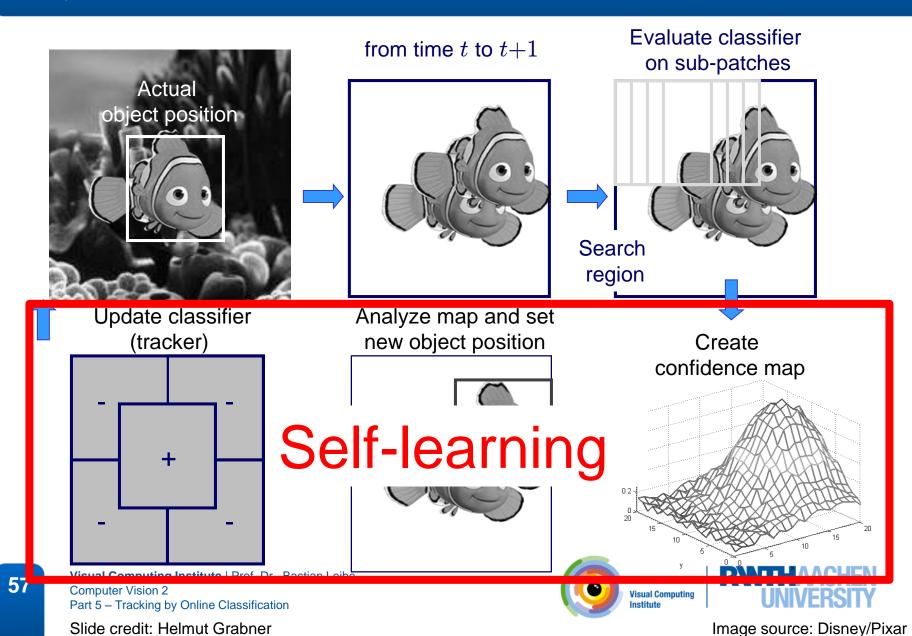
Why Does It Fail?



Slide credit: Helmut Grabner

Image source: Disney/Pixar

Why Does It Fail?



Drifting Due to Self-Learning Policy

Tracked Patches

0.95 0.9 0.85 0.8 (x| L= 0.75 0.7 0.65 0.6 0.55 0.5 100 200 300 500 600 700 400 frame number

\Rightarrow Not only does it drift, it also remains confident about it!

58

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

Slide credit: Helmut Grabner

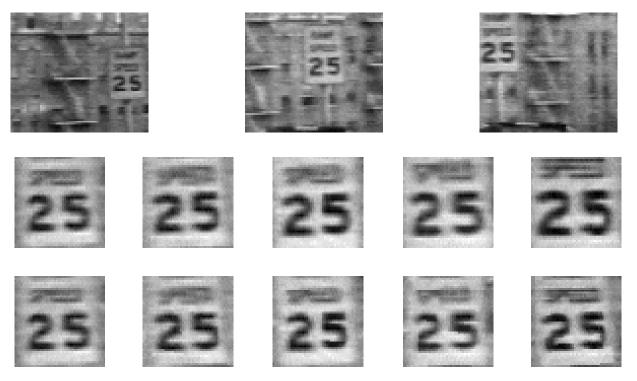
Confidence

Image source: Grabner et al., ECCV'08

Self-Learning and Drift

- Drift
 - Major problem in all adaptive or self-learning trackers.
 - Difficulty: distinguish "allowed" appearance change due to lighting or viewpoint variation from "unwanted" appearance change due to drifting.
 - Cannot be decided based on the tracker confidence!
 - Since the confidence is always dependent on the learned model
 - Model may already be affected by drift when the confidence is measured.
 - Several approaches have been proposed to address this.

Strategy 1: Match Against Initialization

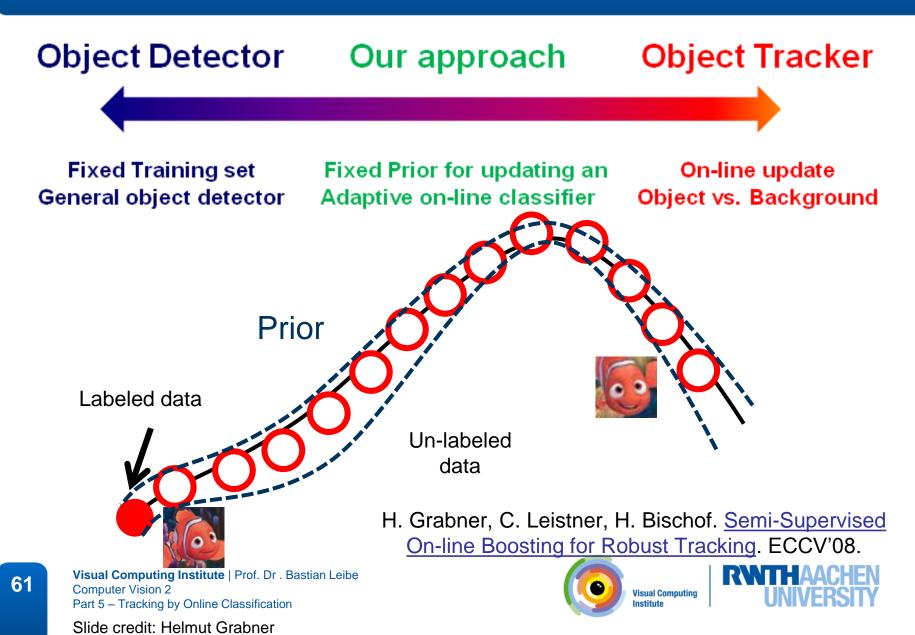


- Used mostly in low-level trackers (e.g., KLT)
 - Advantage: robustly catches drift
 - Disadvantage: cannot follow appearance changes

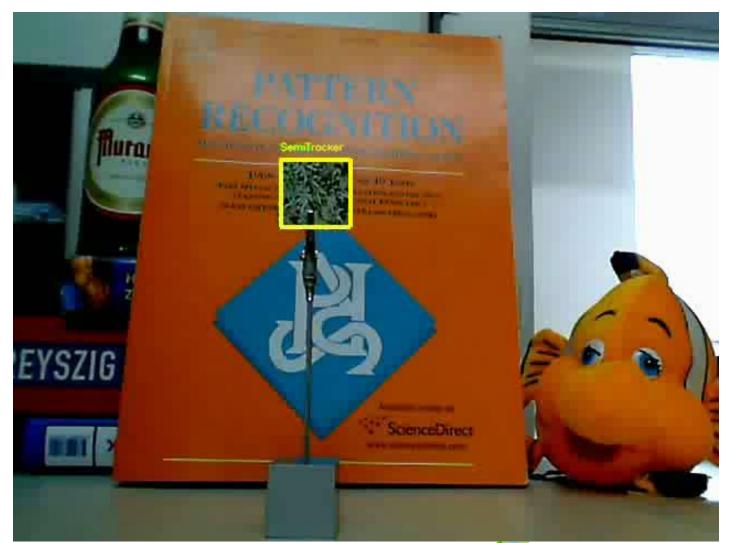
J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

60

Strategy 2: Semi-Supervised Learning



Tracking despite Occlusions

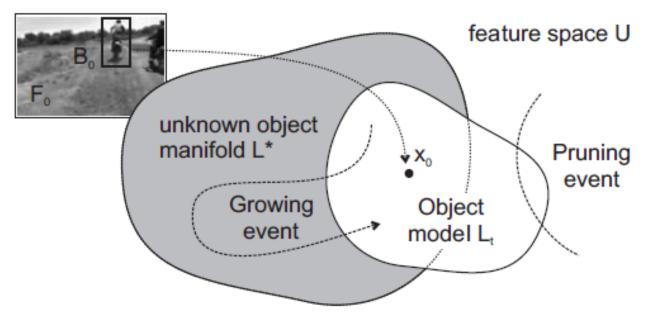


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

62

Video source: Grabner et al., ECCV'08

Strategy 3: Using Additional Cues

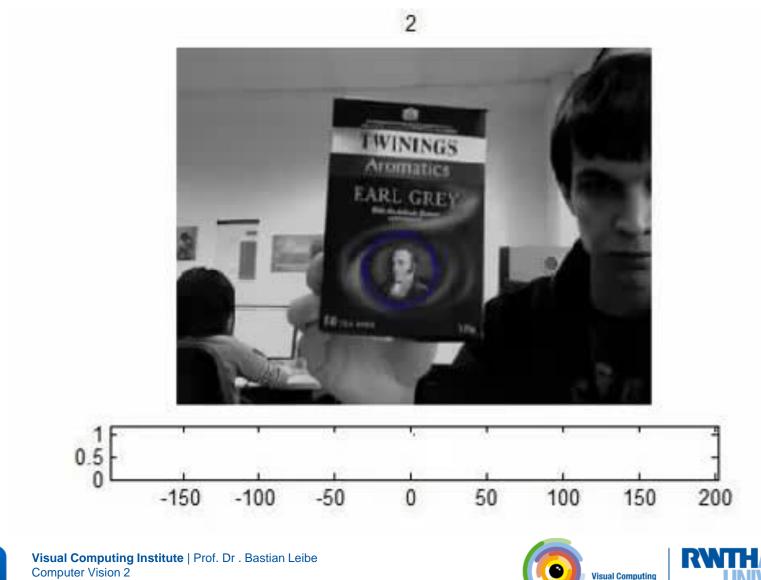


- Tracking-Learning-Detection
 - Combination of KLT and Tracking-by-Detection
 - Use a KLT tracker as additional cue to generate confident (positive and negative) training examples.
 - Learn an object detector on the fly using Online Random Ferns.

Z. Kalal, K. Mikolajczyk, J. Matas. Tracking-Learning-Detection. PAMI 2011.

65

TLD Results

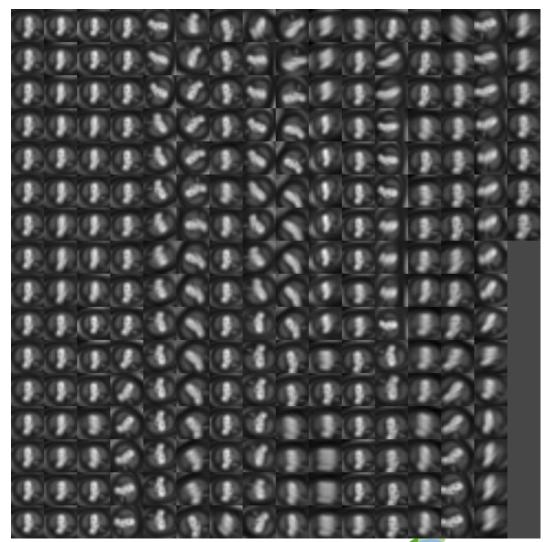


Part 5 – Tracking by Online Classification

66

Video source: Z. Kalal

Accumulated Training Examples



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 5 – Tracking by Online Classification

67

Image source: Z. Kalal

TLD Results

Video source: Z. Kalal

THAACHEN

68

References and Further Reading

- The original Online AdaBoost paper
 - N. Oza and S. Russell. <u>Online Bagging and Boosting</u>. Artificial Intelligence and Statistics, 2001.
- Online Boosting for Tracking
 - H. Grabner, H. Bischof. On-line Boosting and Vision. CVPR'06.
- Semi-Supervised Boosting
 - H. Grabner, C. Leistner, H. Bischof. <u>Semi-Supervised On-line Boosting</u> for Robust Tracking. ECCV'08.
- Tracking-Learning-Detection
 - Z. Kalal, K. Mikolajczyk, J. Matas. <u>Tracking-Learning-Detection</u>. PAMI 2011.

69

