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• Single-Object Tracking
 Background modeling

 Template based tracking

 Tracking by online classification

 Tracking-by-detection

• Bayesian Filtering

• Multi-Object Tracking

• Visual Odometry

• Visual SLAM & 3D Reconstruction

• Deep Learning for Video Analysis

Course Outline

Image source: Robert Collins
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Recap: General LK Image Registration

• Goal

 Find the warping parameters p that minimize the sum-of-squares 

intensity difference between the template image T(x) and the warped 

input image I(W(x;p)).

• LK formulation
 Formulate this as an optimization problem

 We assume that an initial estimate of p is known and iteratively solve 

for increments to the parameters ¢p:

argmin
p

X

x

£
I(W(x;p))¡ T (x)

¤2

argmin
¢p

X

x

£
I(W(x;p+ ¢p))¡ T(x)

¤2
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Recap: Step-by-Step Derivation

• Key to the derivation

 Taylor expansion around ¢p

Gradient Jacobian Increment 

parameters 

to solve for

Slide credit: Robert Collins
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Recap: Inverse Compositional LK Algorithm

• Iterate
 Warp I to obtain I(W([x, y]; p))

 Compute the error image T([x, y]) – I(W([x, y]; p))

 Warp the gradient rI with W([x, y]; p)

 Evaluate         at ([x, y]; p) (Jacobian)

 Compute steepest descent images

 Compute Hessian matrix

 Compute

 Compute

 Update the parameters p Ã p + ¢p

• Until ¢p magnitude is negligible
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Recap: Inverse Compositional LK Algorithm

[S. Baker, I. Matthews, IJCV’04]
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Today: Tracking by Online Classification

Can Machine Learning solve the problem for us?

Image source: Helmut Grabner, Disney/Pixar
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Topics of This Lecture

• Tracking by Online Classification
 Motivation

• Recap: Boosting for Detection
 AdaBoost

 Viola-Jones Detector

• Extension to Online Classification 
 Online Boosting

 Online Feature Selection

 Results

• Extensions
 Problem: Drift

 Drift-compensation strategies
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Tracking as Classification

• Tracking as binary classification problem

object

background

vs.

Slide credit: Helmut Grabner Image source: Disney/Pixar
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Tracking as Classification

• Tracking as binary classification problem

 Handle object and background changes by online updating

object

background

vs.

Slide credit: Helmut Grabner Image source: Disney/Pixar
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Idea: Use Boosting for Feature Selection

Object Detector

Fixed training set

General object detector

Object Tracker

On-line update

Object vs. Background

Boosting for Feature Selection

On-Line Boosting for Feature Selection

P. Viola, M. Jones. Rapid Object Detection using a 

Boosted Cascade of Simple Features. CVPR’01.

H. Grabner, H. Bischof. On-line 

Boosting and Vision. CVPR’06.

Slide credit: Helmut Grabner Image source: Disney/Pixar

http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2006.215
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Topics of This Lecture

• Tracking by Online Classification
 Motivation

• Recap: Boosting for Detection
 AdaBoost

 Viola-Jones Detector

• Extension to Online Classification 
 Online Boosting

 Online Feature Selection

 Results

• Extensions
 Problem: Drift

 Drift-compensation strategies
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Recap: AdaBoost – “Adaptive Boosting” 

• Main idea [Freund & Schapire, 1996]

 Iteratively select an ensemble of classifiers

 Reweight misclassified training examples after each iteration

to focus training on difficult cases.

• Components
 hm(x): “weak” or base classifier

 Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost: 
 Construct a strong classifier as a thresholded linear combination of the 

weighted weak classifiers:
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Recap: AdaBoost – Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Topics of This Lecture

• Tracking by Online Classification
 Motivation

• Recap: Boosting for Detection
 AdaBoost

 Viola-Jones Detector

• Extension to Online Classification 
 Online Boosting

 Online Feature Selection

 Results

• Extensions
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Offline Boosting

Given:

- set of labeled training samples

- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Slide credit: Helmut Grabner
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Offline Boosting

Given:

- set of labeled training samples

- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next
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Offline Boosting

Given:

- set of labeled training samples

- weight distribution over them

Algorithm:

for n = 1 to N

- train a weak classifier using

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Result:

Slide credit: Helmut Grabner
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From Offline to Online Boosting

• Goal
 Formulate the algorithm such that we can present only 1 training 

sample at a time (and then forget about it).

 Dual problem: instead of keeping all samples and adding weak 

classifiers, keep a fixed set of weak classifiers and add samples.

• What changes?
 Updating the classifiers online can be done easily.

 Many classification approaches can use online updates.

 Computing the classifier weights is also straightforward if we know 

the estimated error (which we can compute).
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From Offline to Online Boosting

• Main issue
 Computing the weight distribution for the samples.

 We do not know a priori the difficulty of a sample! 

(Could already have seen the same sample before...)

• Idea of Online Boosting
 Estimate the importance of a sample by propagating it through 

a set of weak classifiers.

 This can be thought of as modeling the information gain w.r.t. the first n

classifiers and code it by the importance weight ¸ for the n+1 classifier.

 Proven [Oza]: Given the same training set, Online Boosting converges 

to the same weak classifiers as Offline Boosting in the limit of N !1
iterations.

N. Oza and S. Russell. Online Bagging and Boosting.

Artificial Intelligence and Statistics, 2001.

http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf
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From Offline to Online Boosting

Slide credit: Helmut Grabner

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

off-line on-line
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From Offline to Online Boosting

Slide credit: Helmut Grabner

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

off-line on-line

Given:

for n = 1 to N

next
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From Offline to Online Boosting

Slide credit: Helmut Grabner

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

off-line on-line
Only one training example

to update the classifier

Given:

- ONE labeled training sample

- strong classifier to update

for n = 1 to N

next
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From Offline to Online Boosting

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Slide credit: Helmut Grabner

off-line on-line
Update importance for 

the current sample

Given:

- ONE labeled training sample

- strong classifier to update

- initial importance

for n = 1 to N

- update importance weight

next
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From Offline to Online Boosting

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Slide credit: Helmut Grabner

off-line on-line
Online update the weak 

classifier

Given:

- ONE labeled training sample

- strong classifier to update

- initial importance

for n = 1 to N

- update the weak classifier using  

samples and importance

- update importance weight 

next
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From Offline to Online Boosting

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Slide credit: Helmut Grabner

off-line on-line
Update errors and 

weights

Given:

- ONE labeled training sample

- strong classifier to update

- initial importance

for n = 1 to N

- update the weak classifier using  

samples and importance

- update error estimation

- update weight

- update importance weight

next



32
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 5 – Tracking by Online Classification

From Offline to Online Boosting

Given:

- set of labeled training samples

- weight distribution over them

for n = 1 to N

- train a weak classifier using 

samples and weight dist.

- calculate error

- calculate weight

- update weight dist.

next

Slide credit: Helmut Grabner

off-line on-line

Given:

- ONE labeled training sample

- strong classifier to update

- initial importance

for n = 1 to N

- update the weak classifier using  

samples and importance

- update error estimation

- update weight

- update importance weight

next
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Online Boosting

Slide credit: Helmut Grabner

Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next
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Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Online Boosting

Slide credit: Helmut Grabner
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Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Online Boosting

Slide credit: Helmut Grabner
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Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Online Boosting

Slide credit: Helmut Grabner
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Online Boosting

Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Slide credit: Helmut Grabner
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Online Boosting

Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Slide credit: Helmut Grabner
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Online Boosting

Given:

- ONE labeled training sample

- strong classifier to update

Algorithm:

- initial importance

for n = 1 to N

- update the weak classifier using

sample and importance

- update error estimation

- update weight

- update importance weight

next

Slide credit: Helmut Grabner

Converges to the off-line results...

N. Oza and S. Russell. Online Bagging and Boosting.

Artificial Intelligence and Statistics, 2001.

http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf
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Online Boosting for Feature Selection

• Each feature corresponds to 

a weak classifier.

• Features
 Haar-like wavelets

 Orientation histograms

 Locally binary patterns (LBP)

• Fast computation using efficient 

data structures
 integral images

 integral histograms

F. Porikli. Integral histogram: A fast way to extract 

histograms in cartesian spaces.  CVPR’05.

Slide credit: Helmut Grabner

http://www.merl.com/papers/docs/TR2005-057.pdf
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Online Boosting for Feature Selection

• Introducing “Selector”
 Selects one feature from its local 

feature pool

h1

h2

hM

.

.

.

hSelector

On-line boosting is performed on 

the Selectors and not on the weak 

classifiers directly.
H. Grabner and H. Bischof. 

On-line boosting and vision. 

CVPR, 2006.

Slide credit: Helmut Grabner

http://dx.doi.org/10.1109/CVPR.2006.215
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Online Boosting for Feature Selection

h1,1

one 

traning 

sample

h1,2

h1,M

h2,1

h2,2

h2,M

h2,m

hN,1

hN,2

hN,M

hN,m

estimate 

importance 

estimate 

importance 

.

.

.

inital 

importance 

update update update 

current strong classifier hStrong

 

repeat for each 

trainingsample

 l  l l=1

a1 a2 aN

.

.

.

.

.

.

.

.

.

hSelector1 hSelector2 hSelectorN

Slide credit: Helmut Grabner
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Online Boosting for Feature Selection

h1,1

one 

traning 

sample

h1,2

h1,M
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importance 

estimate 

importance 

.

.

.

inital 

importance 

update update update 

current strong classifier hStrong

 

repeat for each 

trainingsample

 l  l l=1

a1 a2 aN

.

.

.

.

.

.

.

.

.

hSelector1 hSelector2 hSelectorN

Slide credit: Helmut Grabner

Updating the M¢N
weak classifier is very time 

consuming!

Use a shared feature pool
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Direct Feature Selection

one 

traning 

sample

estimate 

importance 

inital 

importance 

update 

weight

update 

weight

update 

weight

current strong classifier hStrong

 

repeat for each 

trainingsample

 l l=1

a1 a2 aN

hSelector1 hSelector2 hSelectorN

h1 hi hM

gloabal weak classifer pool

. . .

.

.

.

estimate 

errors  

select best 

weak 

classifier
 l

estimate 

importance 

estimate 

errors  

select best 

weak 

classifier

estimate 

errors  

select best 

weak 

classifier

hk hm . . .hi hl. . .

Slide credit: Helmut Grabner
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Direct Feature Selection

one 
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Slide credit: Helmut Grabner



46
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 5 – Tracking by Online Classification

Direct Feature Selection

Slide credit: Helmut Grabner
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Direct Feature Selection

Slide credit: Helmut Grabner
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Tracking by Online Classification

-

+

- -

-

Search 

region

Actual 

object position

from time t to t+1

Create 

confidence map

Analyze map and set 

new object position 

Update classifier

(tracker) 

Evaluate classifier 

on sub-patches

Slide credit: Helmut Grabner Image source: Disney/Pixar
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Tracking Results

Slide credit: Helmut Grabner Video source: Grabner et al., BMVC’06
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Online Feature Exchange

Slide credit: Helmut Grabner Video source: Grabner et al., BMVC’06
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Additional Tracking Results

Slide credit: Helmut Grabner Video source: Grabner et al., BMVC’06



52
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 5 – Tracking by Online Classification

“Tracking the Invisible”

Slide credit: Helmut Grabner Video source: Grabner et al., BMVC’06
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Summary: Tracking by Online Classification

• Interpret tracking as a classification problem
 Continuously updating a classifier which discriminates 

the object from the background.

• Online Boosting
 Adaptation of AdaBoost to process 1 training sample at a time.

 Process sample by fixed set of classifiers to compute its 
importance weight.

 Converges to the same result as Offline Boosting.

• Online Boosting for Feature Selection
 Perform Boosting on Selectors instead of weak classifiers.

 Each Selector chooses from a pool of weak classifiers.

 Selected features and voting weights change over time.

 Shared feature pool for real-time processing.
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Topics of This Lecture

• Tracking by Online Classification
 Motivation

• Recap: Boosting for Detection
 AdaBoost

 Viola-Jones Detector

• Extension to Online Classification 
 Online Boosting

 Online Feature Selection

 Results

• Extensions
 Problem: Drift

 Drift-compensation strategies
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When Does It Fail...

Slide credit: Helmut Grabner Video source: Grabner et al., ECCV’08
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Why Does It Fail?

-

+

- -

-

Search 

region

Actual 

object position

from time t to t+1

Create 

confidence map

Analyze map and set 

new object position 

Update classifier

(tracker) 

Evaluate classifier 

on sub-patches

Slide credit: Helmut Grabner Image source: Disney/Pixar
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Why Does It Fail?

Search 

region

Actual 

object position

from time t to t+1
Evaluate classifier 

on sub-patches

Slide credit: Helmut Grabner Image source: Disney/Pixar

-

+

- -

-

Create 

confidence map

Analyze map and set 

new object position 

Update classifier

(tracker) 

Self-learning
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Drifting Due to Self-Learning Policy

 Not only does it drift, it also remains confident about it! 

Tracked Patches Confidence

Slide credit: Helmut Grabner Image source: Grabner et al., ECCV’08
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Self-Learning and Drift

• Drift
 Major problem in all adaptive or self-learning trackers.

 Difficulty: distinguish “allowed” appearance change due to lighting or 

viewpoint variation from “unwanted” appearance change due to drifting.

 Cannot be decided based on the tracker confidence!

 Since the confidence is always dependent on the learned model

 Model may already be affected by drift when the confidence is measured.

 Several approaches have been proposed to address this.
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Strategy 1: Match Against Initialization

• Used mostly in low-level trackers (e.g., KLT)
 Advantage: robustly catches drift

 Disadvantage: cannot follow appearance changes

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994. 

http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf
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Strategy 2: Semi-Supervised Learning

Labeled data

Un-labeled

data

Prior

H. Grabner, C. Leistner, H. Bischof. Semi-Supervised 

On-line Boosting for Robust Tracking. ECCV’08.

Slide credit: Helmut Grabner

http://dx.doi.org/10.1007/978-3-540-88682-2_19
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Tracking despite Occlusions

Video source: Grabner et al., ECCV’08
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Strategy 3: Using Additional Cues

• Tracking-Learning-Detection
 Combination of KLT and Tracking-by-Detection

 Use a KLT tracker as additional cue to generate confident 

(positive and negative) training examples.

 Learn an object detector on the fly using Online Random Ferns.

Z. Kalal, K. Mikolajczyk, J. Matas. Tracking-Learning-Detection. PAMI 2011.

http://epubs.surrey.ac.uk/713800/Kalal-PAMI-2011(1).pdf
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TLD Results

Video source: Z. Kalal
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Accumulated Training Examples

Image source: Z. Kalal
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TLD Results

Video source: Z. Kalal
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