
1

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Machine Learning – Lecture 22

Repetition

29.01.2018

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Announcements

• Exams

 Special oral exams (for exchange students):

– We’re in the process of sending out the exam slots

– You’ll receive an email with details tonight

– Format: 30 minutes, 4 questions, 3 answers

 Regular exams:

– We will send out an email with the assignment to lecture halls

– Format: 120min, closed-book exam

2
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Announcements (2)

• Today, I’ll summarize the most important points from the

lecture.

 It is an opportunity for you to ask questions…

 …or get additional explanations about certain topics.

 So, please do ask.

• Today’s slides are intended as an index for the lecture.

 But they are not complete, won’t be sufficient as only tool.

 Also look at the exercises – they often explain algorithms in detail.

3
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

 Mixture Models and EM

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks
B. Leibe

4

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayes Decision Theory

5
B. Leibe

x

x

x

 |p x a |p x b

 | ()p x a p a

 | ()p x b p b

 |p a x |p b x

Decision boundary

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayes Decision Theory

• Optimal decision rule

 Decide for C1 if

 This is equivalent to

 Which is again equivalent to (Likelihood-Ratio test)

6
B. Leibe

p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold

Slide credit: Bernt Schiele

2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayes Decision Theory

• Decision regions: R1, R2, R3, …

7
B. LeibeSlide credit: Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Classifying with Loss Functions

• In general, we can formalize this by introducing a
loss matrix Lkj

• Example: cancer diagnosis

8
B. Leibe

Decision

T
ru

thLcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Minimizing the Expected Loss

• Optimal solution minimizes the loss.

 But: loss function depends on the true class,

which is unknown.

• Solution: Minimize the expected loss

• This can be done by choosing the regions such that

which is easy to do once we know the posterior class

probabilities .

9
B. Leibe

Rj

p(Ckjx)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: The Reject Option

• Classification errors arise from regions where the largest

posterior probability is significantly less than 1.

 These are the regions where we are relatively uncertain about class

membership.

 For some applications, it may be better to reject the automatic

decision entirely in such a case and e.g. consult a human expert.
10

B. Leibe

p(Ckjx)

Image source: C.M. Bishop, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

 Mixture Models and EM

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks
B. Leibe

11

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Gaussian (or Normal) Distribution

• One-dimensional case

 Mean ¹

 Variance ¾2

• Multi-dimensional case

 Mean ¹

 Covariance §

12
B. Leibe

N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006

3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7 E(µ) = ¡ lnL(µ) = ¡

NX

n=1

ln p(xnjµ)

Recap: Maximum Likelihood Approach

• Computation of the likelihood

 Single data point:

 Assumption: all data points are independent

 Log-likelihood

• Estimation of the parameters µ (Learning)

 Maximize the likelihood (= minimize the negative log-likelihood)

 Take the derivative and set it to zero.

13
B. Leibe

L(µ) = p(Xjµ) =

NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayesian Learning Approach

• Bayesian view:

 Consider the parameter vector µ as a random variable.

 When estimating the parameters, what we compute is

14
B. Leibe

p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ
(i.e. by the parametric form of the pdf).

Slide adapted from Bernt Schiele

Assumption: given µ, this

doesn’t depend on X anymore

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayesian Learning Approach

• Discussion

 The more uncertain we are about µ, the more we average over all

possible parameter values.
15

B. Leibe

p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate

over all possible values of µ

Likelihood of the parametric

form µ given the data set X.

Prior for the

parameters µ

Estimate for x based on

parametric form µ

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Histograms

• Basic idea:

 Partition the data space into distinct
bins with widths ¢i and count the

number of observations, ni, in each

bin.

 Often, the same width is used for all bins, ¢i = ¢.

 This can be done, in principle, for any dimensionality D…

16
B. Leibe

N = 1 0

0 0.5 1
0

1

2

3

…but the required

number of bins

grows exponen-
tially with D!

Image source: C.M. Bishop, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

p(x) ¼ K

NV

Recap: Kernel Density Estimation

• Approximation formula:

• Kernel methods

 Place a kernel window k

at location x and count

how many data points

fall inside it.
17

B. Leibe

fixed V

determine K

fixed K

determine V

Kernel Methods K-Nearest Neighbor

Slide adapted from Bernt Schiele

• K-Nearest Neighbor

 Increase the volume V

until the K next data

points are found.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

 Mixture Models and EM

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks
B. Leibe

18

4

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Mixture of Gaussians (MoG)

• “Generative model”

19
B. Leibe

x

x

j

p(x)

p(x)

1
2 3

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture

component

Mixture

component

Mixture density

Slide credit: Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: MoG – Iterative Strategy

• Assuming we knew the values of the hidden variable…

20
B. Leibe

h(j = 1jxn) = 1 111 00 0 0

h(j = 2jxn) = 0 000 11 1 1

1 111 22 2 2 j

ML for Gaussian #1 ML for Gaussian #2

¹1 =

PN

n=1 h(j = 1jxn)xnPN

i=1 h(j = 1jxn)
¹2 =

PN

n=1 h(j = 2jxn)xnPN

i=1 h(j = 2jxn)

assumed known

Slide credit: Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: MoG – Iterative Strategy

• Assuming we knew the mixture components…

• Bayes decision rule: Decide j = 1 if

21
B. Leibe

p(j = 1jxn) > p(j = 2jxn)

assumed known

p(j = 1jx) p(j = 2jx)

Slide credit: Bernt Schiele

1 111 22 2 2 j

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: K-Means Clustering

• Iterative procedure

1. Initialization: pick K arbitrary

centroids (cluster means)

2. Assign each sample to the closest

centroid.

3. Adjust the centroids to be the

means of the samples assigned

to them.

4. Go to step 2 (until no change)

• Algorithm is guaranteed to

converge after finite #iterations.

 Local optimum

 Final result depends on initialization.
22

B. LeibeSlide credit: Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: EM Algorithm

• Expectation-Maximization (EM) Algorithm

 E-Step: softly assign samples to mixture components

 M-Step: re-estimate the parameters (separately for each mixture

component) based on the soft assignments

23
B. Leibe

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj)(xn ¡ ¹̂newj)T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j

°j(xn)Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
24

5

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Linear Discriminant Functions

• Basic idea

 Directly encode decision boundary

 Minimize misclassification probability directly.

• Linear discriminant functions

 w, w0 define a hyperplane in RD.

 If a data set can be perfectly classified by a linear discriminant, then

we call it linearly separable.
25

B. Leibe

y(x) =wTx+ w0

weight vector “bias”

(= threshold)

Slide adapted from Bernt Schiele
25

y = 0
y > 0

y < 0

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Least-Squares Classification

• Simplest approach

 Directly try to minimize the sum-of-squares error

 Setting the derivative to zero yields

 We then obtain the discriminant function as

 Exact, closed-form solution for the discriminant function

parameters.
26

B. Leibe

ED(fW) =
1

2
Tr
n
(eXfW¡T)T(eXfW¡T)

o

fW = (eXT eX)¡1 eXTT= eXyT

y(x) = fWTex = TT
³
eXy

T́

ex

E(w) =

NX

n=1

(y(xn;w)¡ tn)
2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Problems with Least Squares

• Least-squares is very sensitive to outliers!

 The error function penalizes predictions that are “too correct”.
27

B. Leibe Image source: C.M. Bishop, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Generalized Linear Models

• Generalized linear model

 g(¢) is called an activation function and may be nonlinear.

 The decision surfaces correspond to

 If g is monotonous (which is typically the case), the resulting decision

boundaries are still linear functions of x.

• Advantages of the non-linearity

 Can be used to bound the influence of outliers

and “too correct” data points.

 When using a sigmoid for g(¢), we can interpret

the y(x) as posterior probabilities.

28
B. Leibe

y(x) = g(wTx+ w0)

y(x) = const: , wTx+ w0 = const:

g(a) ´ 1

1 + exp(¡a)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Linear Separability

• Up to now: restrictive assumption

 Only consider linear decision boundaries

• Classical counterexample: XOR

29
B. LeibeSlide credit: Bernt Schiele

1x

2x

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Extension to Nonlinear Basis Fcts.

• Generalization

 Transform vector x with M nonlinear basis functions Áj(x):

• Advantages

 Transformation allows non-linear decision boundaries.

 By choosing the right Áj, every continuous function can (in principle)

be approximated with arbitrary accuracy.

• Disadvatage

 The error function can in general no longer be minimized in

closed form.

 Minimization with Gradient Descent
30

B. Leibe

yk(x) =

MX

j=1

wkiÁj(x) + wk0

6

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Probabilistic Discriminative Models

• Consider models of the form

with

• This model is called logistic regression.

• Properties

 Probabilistic interpretation

 But discriminative method: only focus on decision hyperplane

 Advantageous for high-dimensional spaces, requires less

parameters than explicitly modeling p(Á|Ck) and p(Ck).

31
B. Leibe

p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Logistic Regression

• Let’s consider a data set {Án,tn} with n = 1,…,N,

where and , .

• With yn = p(C1|Án), we can write the likelihood as

• Define the error function as the negative log-likelihood

 This is the so-called cross-entropy error function.
32

Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Iterative Methods for Estimation

• Gradient Descent (1st order)

 Simple and general

 Relatively slow to converge, has problems with some functions

• Newton-Raphson (2nd order)

where is the Hessian matrix, i.e. the matrix of

second derivatives.

 Local quadratic approximation to the target function

 Faster convergence

33
B. Leibe

H=rrE(w)

w(¿+1) =w(¿) ¡ ´ H¡1rE(w)
¯̄
w(¿)

w(¿+1) =w(¿) ¡ ´ rE(w)jw(¿)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Iteratively Reweighted Least Squares

• Update equations

• Very similar form to pseudo-inverse (normal equations)

 But now with non-constant weighing matrix R (depends on w).

 Need to apply normal equations iteratively.

 Iteratively Reweighted Least-Squares (IRLS)
34

w(¿+1) =w(¿) ¡ (©TR©)¡1©T (y¡ t)

= (©TR©)¡1
n
©TR©w(¿) ¡©T (y¡ t)

o

= (©TR©)¡1©TRz

z =©w(¿) ¡R¡1(y¡ t)with

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Softmax Regression

• Multi-class generalization of logistic regression

 In logistic regression, we assumed binary labels

 Softmax generalizes this to K values in 1-of-K notation.

 This uses the softmax function

 Note: the resulting distribution is normalized.

35
B. Leibe

tn 2 f0;1g

y(x;w) =

2
6664

P (y = 1jx;w)

P (y = 2jx;w)
...

P (y = Kjx;w)

3
7775 =

1
PK

j=1 exp(w>j x)

2
6664

exp(w>1 x)
exp(w>2 x)

...

exp(w>Kx)

3
7775

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Softmax Regression Cost Function

• Logistic regression

 Alternative way of writing the cost function

• Softmax regression

 Generalization to K classes using indicator functions.

36
B. Leibe

E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

= ¡
NX

n=1

1X

k=0

fI (tn = k) ln P (yn = kjxn;w)g

E(w) = ¡
NX

n=1

KX

k=1

(
I (tn = k) ln

exp(w>k x)PK

j=1 exp(w>j x)

)

rwk
E(w) = ¡

NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]

7

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
37

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Generalization and Overfitting

• Goal: predict class labels of new observations

 Train classification model on limited training set.

 The further we optimize the model parameters, the more the training

error will decrease.

 However, at some point the test error will go up again.

 Overfitting to the training set!
38

B. Leibe

test error

training error

Image source: B. Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Support Vector Machine (SVM)

• Basic idea

 The SVM tries to find a classifier which

maximizes the margin between pos. and

neg. data points.

 Up to now: consider linear classifiers

• Formulation as a convex optimization problem

 Find the hyperplane satisfying

under the constraints

based on training data points xn and target values .
39

B. Leibe

Margin

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(w
Txn + b) ¸ 1 8n

tn 2 f¡1;1g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – Primal Formulation

• Lagrangian primal form

• The solution of Lp needs to fulfill the KKT conditions

 Necessary and sufficient conditions

40
B. Leibe

Lp =
1

2
kwk2 ¡

NX

n=1

an
©
tn(wTxn + b)¡ 1

ª

=
1

2
kwk2 ¡

NX

n=1

an ftny(xn)¡ 1g

¸ ¸ 0

f(x) ¸ 0

¸f(x) = 0

KKT:
an ¸ 0

tny(xn)¡ 1 ¸ 0

an ftny(xn)¡ 1g = 0

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – Solution

• Solution for the hyperplane

 Computed as a linear combination of the training examples

 Sparse solution: an 0 only for some points, the support vectors

 Only the SVs actually influence the decision boundary!

 Compute b by averaging over all support vectors:

41
B. Leibe

w =

NX

n=1

antnxn

b =
1

NS

X

n2S

Ã
tn ¡

X

m2S
amtmx

T
mxn

!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – Support Vectors

• The training points for which an > 0 are called

“support vectors”.

• Graphical interpretation:

 The support vectors are the

points on the margin.

 They define the margin

and thus the hyperplane.

 All other data points can

be discarded!

42
B. LeibeSlide adapted from Bernt Schiele Image source: C. Burges, 1998

8

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – Dual Formulation

• Maximize

under the conditions

• Comparison

 Ld is equivalent to the primal form Lp, but only depends on an.

 Lp scales with O(D3).

 Ld scales with O(N3) – in practice between O(N) and O(N2).
43

B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

an ¸ 0 8n

Slide adapted from Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

»1

»2

»3

»4

Recap: SVM for Non-Separable Data

• Slack variables

 One slack variable »n ¸ 0 for each training data point.

• Interpretation

 »n = 0 for points that are on the correct side of the margin.

 »n = |tn – y(xn)| for all other points.

 We do not have to set the slack variables ourselves!

 They are jointly optimized together with w.
44

B. Leibe

w
Point on decision

boundary: »n = 1

Misclassified point:

»n > 1

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – New Dual Formulation

• New SVM Dual: Maximize

under the conditions

• This is again a quadratic programming problem

 Solve as before…

45
B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

0 · an · C

Slide adapted from Bernt Schiele

This is all

that changed!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Nonlinear SVMs

• General idea: The original input space can be mapped to

some higher-dimensional feature space where the training

set is separable:

46

©: x→ Á(x)

Slide credit: Raymond Mooney

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: The Kernel Trick

• Important observation

 Á(x) only appears in the form of dot products Á(x)TÁ(y):

 Define a so-called kernel function k(x,y) = Á(x)TÁ(y).

 Now, in place of the dot product, use the kernel instead:

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)!

47
B. Leibe

y(x) = wTÁ(x) + b

=

NX

n=1

antnÁ(xn)TÁ(x) + b

y(x) =

NX

n=1

antnk(xn;x) + b

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Kernels Fulfilling Mercer’s Condition

• Polynomial kernel

• Radial Basis Function kernel

• Hyperbolic tangent kernel

 And many, many more, including kernels on graphs, strings, and

symbolic data…
48

B. Leibe

k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele

e.g. Sigmoid

e.g. Gaussian

9

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Kernels Fulfilling Mercer’s Condition

• Polynomial kernel

• Radial Basis Function kernel

• Hyperbolic tangent kernel

 And many, many more, including kernels on graphs, strings, and

symbolic data…
49

B. Leibe

k(x;y) = (xTy+ 1)p

k(x;y) = exp

½
¡(x¡ y)2

2¾2

¾

k(x;y) = tanh(·xTy+ ±)

Slide credit: Bernt Schiele

e.g. Sigmoid

e.g. Gaussian

Actually, that was wrong in

the original SVM paper...

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Nonlinear SVM – Dual Formulation

• SVM Dual: Maximize

under the conditions

• Classify new data points using

50
B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntmk(xm;xn)

NX

n=1

antn = 0

0 · an · C

y(x) =

NX

n=1

antnk(xn;x) + b

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
51

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Classifier Combination

• We’ve seen already a variety of different classifiers

 k-NN

 Bayes classifiers

 Fisher’s Linear Discriminant

 SVMs

• Each of them has their strengths and weaknesses…

 Can we improve performance by combining them?
52

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayesian Model Averaging

• Model Averaging

 Suppose we have H different models h = 1,…,H with prior

probabilities p(h).

 Construct the marginal distribution over the data set

• Average error of committee

 This suggests that the average error of a model can be reduced by a

factor of M simply by averaging M versions of the model!

 Unfortunately, this assumes that the errors are all uncorrelated. In

practice, they will typically be highly correlated.
53

B. Leibe

p(X) =

HX

h=1

p(Xjh)p(h)

ECOM =
1

M
EAV

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AdaBoost – “Adaptive Boosting”

• Main idea [Freund & Schapire, 1996]

 Instead of resampling, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost:

 Construct a strong classifier as a thresholded linear combination of

the weighted weak classifiers:

54
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

10

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AdaBoost – Intuition

55
B. Leibe

Consider a 2D feature space

with positive and negative

examples.

Each weak classifier splits

the training examples with at

least 50% accuracy.

Examples misclassified by a

previous weak learner are

given more emphasis at

future rounds.

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AdaBoost – Intuition

56
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AdaBoost – Intuition

57
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire

Final classifier is

combination of the weak

classifiers

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AdaBoost – Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

58
B. Leibe

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Comparing Error Functions

 Ideal misclassification error function

 “Hinge error” used in SVMs

 Exponential error function

– Continuous approximation to ideal misclassification function.

– Sequential minimization leads to simple AdaBoost scheme.

– Disadvantage: exponential penalty for large negative values!

 Less robust to outliers or misclassified data points! 59
Image source: Bishop, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

Recap: Comparing Error Functions

 Ideal misclassification error function

 “Hinge error” used in SVMs

 Exponential error function

 “Cross-entropy error”

– Similar to exponential error for z>0.

– Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching “GentleBoost” 60
Image source: Bishop, 2006

11

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
61

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Decision Trees

• Example:

 “Classify Saturday mornings according to whether they’re

suitable for playing tennis.”

62
B. Leibe Image source: T. Mitchell, 1997

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: CART Framework

• Six general questions

1. Binary or multi-valued problem?

– I.e. how many splits should there be at each node?

2. Which property should be tested at a node?

– I.e. how to select the query attribute?

3. When should a node be declared a leaf?

– I.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?

– Goal: reduce overfitting.

5. How to deal with impure nodes?

– I.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

63
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

i(N) =
X

i6=j
p(CijN)p(Cj jN) =

1

2

2
41¡

X

j

p2(Cj jN)

3
5

Recap: Picking a Good Splitting Feature

• Goal

 Select the query (=split) that decreases impurity the most

• Impurity measures

 Entropy impurity (information gain):

 Gini impurity:

64
B. Leibe

4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)

i(P)

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Computational Complexity

• Given

 Data points {x1,…,xN}

 Dimensionality D

• Complexity

 Storage:

 Test runtime:

 Training runtime:

– Most expensive part.

– Critical step: selecting the optimal splitting point.

– Need to check D dimensions, for each need to sort N data points.

65
B. Leibe

O(DN2 logN)

O(logN)

O(N)

O(DN logN)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Randomized Decision Trees

• Decision trees: main effort on finding good split

 Training runtime:

 This is what takes most effort in practice.

 Especially cumbersome with many attributes (large D).

• Idea: randomize attribute selection

 No longer look for globally optimal split.

 Instead randomly use subset of K attributes on which to base the

split.

 Choose best splitting attribute e.g. by maximizing the information

gain (= reducing entropy):

66
B. Leibe

O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)

12

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Ensemble Combination

• Ensemble combination

 Tree leaves (l,´) store posterior probabilities of the target classes.

 Combine the output of several trees by averaging their posteriors

(Bayesian model combination)

67
B. Leibe

pl;´(Cjx)

p(Cjx) =
1

L

LX

l=1

pl;´(Cjx)

a

a

a

a

aa

T1 T2 T3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Random Forests (Breiman 2001)

• General ensemble method

 Idea: Create ensemble of many (50 - 1,000) trees.

• Empirically very good results

 Often as good as SVMs (and sometimes better)!

 Often as good as Boosting (and sometimes better)!

• Injecting randomness

 Bootstrap sampling process

– On average only 63% of training examples used for building the tree

– Remaining 37% out-of-bag samples used for validation.

 Random attribute selection

– Randomly choose subset of K attributes to select from at each node.

– Faster training procedure.

• Simple majority vote for tree combination

68
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: A Graphical Interpretation

69
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining

them, we obtain

a finer subdivision

of the feature

space…

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: A Graphical Interpretation

70
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining

them, we obtain

a finer subdivision

of the feature

space…

…which at the

same time also

better reflects the

uncertainty due to

the bootstrapped

sampling.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
71

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• One output node per class

• Outputs

 Linear outputs With output nonlinearity

 Can be used to do multidimensional linear regression or

multiclass classification.

Recap: Perceptrons

72
B. LeibeSlide adapted from Stefan Roth

Input layer

Weights

Output layer

13

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• Straightforward generalization

• Outputs

 Linear outputs with output nonlinearity

Recap: Non-Linear Basis Functions

73
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Recap: Non-Linear Basis Functions

74
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Perceptron Learning

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector to

the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector

from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic) Gradient

Descent of a quadratic error function!

75
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

76
B. Leibe

 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Multi-Layer Perceptrons

• Adding more layers

• Output

77
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight in the direction of the gradient

78
B. Leibe

L2 loss

L2 regularizer

(“weight decay”)

14

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

• We consider those two steps separately

 Computing the gradients: Backpropagation

 Adjusting the weights: Optimization techniques

79
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

80
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with yi.

Recap: Backpropagation Algorithm

81
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: MLP Backpropagation Algorithm

• Forward Pass

for k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

82
B. Leibe

• Backward Pass

for k = l, l-1, ...,1 do

endfor

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Computational Graphs

 Forward differentiation needs one pass per node. Reverse-mode

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

83
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Automatic Differentiation

• Approach for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
84

B. Leibe Image source: Christopher Olah, colah.github.io

15

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Choosing the Right Learning Rate

• Convergence of Gradient Descent

 Simple 1D example

 What is the optimal learning rate ´opt?

 If E is quadratic, the optimal learning rate is given by the inverse of

the Hessian

 Advanced optimization techniques try to

approximate the Hessian by a simplified form.

 If we exceed the optimal learning rate,

bad things happen!
85

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Don’t go beyond

this point!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Advanced Optimization Techniques

• Momentum

 Instead of using the gradient to change the position of the weight

“particle”, use it to change the velocity.

 Effect: dampen oscillations in directions of high

curvature

 Nesterov-Momentum: Small variation in the implementation

• RMS-Prop

 Separate learning rate for each weight: Divide the gradient by a

running average of its recent magnitude.

• AdaGrad

• AdaDelta

• Adam

86
B. Leibe Image source: Geoff Hinton

Some more recent techniques, work better

for some problems. Try them.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
87

B. Leibe Image source: Yoshua Bengio

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce

the random fluctuations in the error due to

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
88

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
89

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean,

unit covariance.

 If possible, try to decorrelate them using PCA (also known as

Karhunen-Loeve expansion).

90
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

16

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Another Note on Error Functions

• Squared error on sigmoid/tanh output function

 Avoids penalizing “too correct” data points.

 But: zero gradient for confidently incorrect classifications!

 Do not use L2 loss with sigmoid outputs (instead: cross-entropy)!

91
Image source: Bishop, 2006

Ideal misclassification error

Squared error

No penalty for

“too correct”

data points!

Zero gradient!

zn = tny(xn)

Squared error on tanh

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Commonly Used Nonlinearities

• Sigmoid

• Hyperbolic tangent

• Softmax

92
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Commonly Used Nonlinearities (2)

• Rectified linear unit (ReLU)

• Leaky ReLU

 Avoids stuck-at-zero units

 Weaker offset bias

• ELU

 No offset bias anymore

 BUT: need to store activations
93

B. Leibe

𝑔 𝑎 = max 𝛽𝑎, 𝑎

𝑔 𝑎 = ቊ
𝑎, 𝑎 ≥ 0
𝑒𝑎 − 1, 𝑎 < 0

𝑔 𝑎 = max 0, 𝑎

𝛽 ∈ 0.01 , 0.3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Glorot Initialization [Glorot & Bengio, ‘10]

• Variance of neuron activations

 Suppose we have an input X with n components and a linear

neuron with random weights W that spits out a number Y.

 We want the variance of the input and output of a unit to be the

same, therefore n Var(Wi) should be 1. This means

 Or for the backpropagated gradient

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the weights with this variance. That’s it.
94

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: He Initialization [He et al., ‘15]

• Extension of Glorot Initialization to ReLU units

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Same basic idea: Output should have the input variance

 However, the Glorot derivation was based on tanh units, linearity

assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead

95
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Batch Normalization [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

• Effect

 Much improved convergence

96
B. Leibe

17

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively training

many different variants of the network.

 When applying the trained network, multiply activations with the

probability that the unit was set to zero.

 Improved performance
97

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
98

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Convolutional Neural Networks

• Neural network with specialized connectivity structure

 Stack multiple stages of feature extractors

 Higher stages compute more global, more invariant features

 Classification layer at the end

99
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: CNN Structure

• Feed-forward feature extraction

1. Convolve input with learned filters

2. Non-linearity

3. Spatial pooling

4. (Normalization)

• Supervised training of convolutional

filters by back-propagating

classification error

100
B. LeibeSlide credit: Svetlana Lazebnik

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Intuition of CNNs

• Convolutional net

 Share the same parameters

across different locations

 Convolutions with learned

kernels

• Learn multiple filters

 E.g. 1000£1000 image

100 filters
10£10 filter size

 only 10k parameters

• Result: Response map

 size: 1000£1000£100

 Only memory, not params!
101

B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Convolution Layers

• All Neural Net activations arranged in 3 dimensions

 Multiple neurons all looking at the same input region,

stacked in depth

 Form a single [1£1£depth] depth column in output volume.

102
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Naming convention:

18

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Activation Maps

103
B. Leibe

5£5 filters

Slide adapted from FeiFei Li, Andrej Karpathy

Activation maps

Each activation map is a depth

slice through the output volume.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Pooling Layers

• Effect:

 Make the representation smaller without losing too much information

 Achieve robustness to translations

104
B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: AlexNet (2012)

• Similar framework as LeNet, but

 Bigger model (7 hidden layers, 650k units, 60M parameters)

 More data (106 images instead of 103)

 GPU implementation

 Better regularization and up-to-date tricks for training (Dropout)

105
Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012. P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: VGGNet (2014/15)

• Main ideas

 Deeper network

 Stacked convolutional

layers with smaller

filters (+ nonlinearity)

 Detailed evaluation

of all components

• Results

 Improved ILSVRC top-5

error rate to 6.7%.

106
B. Leibe

Image source: Simonyan & Zisserman

Mainly used

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: GoogLeNet (2014)

• Ideas:

 Learn features at multiple scales

 Modular structure

107
B. Leibe

Inception

module
+ copies

Auxiliary classification

outputs for training the

lower layers (deprecated)

Image source: Szegedy et al.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Discussion

• GoogLeNet

 12£ fewer parameters than AlexNet

 ~5M parameters

 Where does the main reduction come from?

 From throwing away the fully connected (FC) layers.

• Effect

 After last pooling layer, volume is of size [7£7£1024]

 Normally you would place the first 4096-D FC layer

here (Many million params).

 Instead: use Average pooling in each depth slice:

 Reduces the output to [1£1£1024].

 Performance actually improves by 0.6% compared to

when using FC layers (less overfitting?)
108

B. LeibeSlide credit: Andrej Karpathy Image source: Szegedy et al.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

19

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Visualizing CNNs

109
B. LeibeSlide credit: Yann LeCun

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Residual Networks

• Core component

 Skip connections

bypassing each layer

 Better propagation of

gradients to the deeper

layers

 This makes it possible

to train (much) deeper

networks.
110

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Analysis of ResNets

• The effective paths in ResNets

are relatively shallow

 Effectively only 5-17 active modules

• This explains the resilience to deletion

 Deleting any single layer only affects a

subset of paths (and the shorter ones

less than the longer ones).

• New interpretation of ResNets

 ResNets work by creating an ensemble

of relatively shallow paths

 Making ResNets deeper increases the

size of this ensemble

 Excluding longer paths from training

does not negatively affect the results. 111
Image source: Veit et al., 2016

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: R-CNN for Object Detection

112
B. LeibeSlide credit: Ross Girshick

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

113
Slide credit: Ross Girshick

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Fully Convolutional Networks

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

114
Image source: Long, Shelhamer, Darrell

20

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Semantic Image Segmentation

• Encoder-Decoder Architecture

 Problem: FCN output has low resolution

 Solution: perform upsampling to get back to desired resolution

 Use skip connections to preserve higher-resolution information

115
Image source: Newell et al.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
116

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Neural Probabilistic Language Model

• Core idea

 Learn a shared distributed encoding (word embedding) for the words

in the vocabulary.

117
B. LeibeSlide adapted from Geoff Hinton Image source: Geoff Hinton

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003. P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: word2vec

• Goal

 Make it possible to learn high-quality

word embeddings from huge data sets

(billions of words in training set).

• Approach

 Define two alternative learning tasks

for learning the embedding:

– “Continuous Bag of Words” (CBOW)

– “Skip-gram”

 Designed to require fewer parameters.

118
B. Leibe

Image source: Mikolov et al., 2015

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: word2vec CBOW Model

• Continuous BOW Model

 Remove the non-linearity

from the hidden layer

 Share the projection layer

for all words (their vectors

are averaged)

 Bag-of-Words model

(order of the words does not

matter anymore)

119
B. Leibe

Image source: Xin Rong, 2015

SUM

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: word2vec Skip-Gram Model

• Continuous Skip-Gram Model

 Similar structure to CBOW

 Instead of predicting the current

word, predict words

within a certain range of

the current word.

 Give less weight to the more

distant words

120
B. Leibe

Image source: Xin Rong, 2015

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

21

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Problems with 100k-1M outputs

• Weight matrix gets huge!

 Example: CBOW model

 One-hot encoding for inputs

 Input-hidden connections are

just vector lookups.

 This is not the case for the

hidden-output connections!

 State h is not one-hot, and

vocabulary size is 1M.

W’N£V has 300£1M entries

• Softmax gets expensive!

 Need to compute normaliza-

tion over 100k-1M outputs

121
B. Leibe

Image source: Xin Rong, 2015

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Hierarchical Softmax

• Idea

 Organize words in binary search tree, words are at leaves

 Factorize probability of word w0 as a product of node probabilities

along the path.

 Learn a linear decision function y = vn(w,j)¢h at each node to decide

whether to proceed with left or right child node.

 Decision based on output vector of hidden units directly.
122

B. Leibe
Image source: Xin Rong, 2015

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Recurrent Neural Networks

• Up to now

 Simple neural network structure: 1-to-1 mapping of inputs to outputs

• Recurrent Neural Networks

 Generalize this to arbitrary mappings

123
B. Leibe

Image source: Andrej Karpathy

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Recurrent Neural Networks (RNNs)

• RNNs are regular NNs whose

hidden units have additional

connections over time.

 You can unroll them to create

a network that extends over

time.

 When you do this, keep in mind

that the weights for the hidden

are shared between temporal

layers.

• RNNs are very powerful

 With enough neurons and time, they can compute anything that can

be computed by your computer.

124
B. Leibe

Image source: Andrej Karpathy

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Backpropagation Through Time (BPTT)

• Configuration

• Backpropagated gradient

 For weight wij:

125

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Backpropagation Through Time (BPTT)

• Analyzing the terms

 For weight wij:

 This is the “immediate” partial derivative (with hk-1 as constant)

126

22

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Backpropagation Through Time (BPTT)

• Analyzing the terms

 For weight wij:

 Propagation term:
127

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Backpropagation Through Time (BPTT)

• Summary

 Backpropagation equations

 Remaining issue: how to set the initial state h0?

 Learn this together with all the other parameters.

128
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Exploding / Vanishing Gradient Problem

• BPTT equations:

(if t goes to infinity and l = t – k.)

 We are effectively taking the weight matrix to a high power.

 The result will depend on the eigenvalues of Whh.

– Largest eigenvalue > 1 Gradients may explode.

– Largest eigenvalue < 1 Gradients will vanish.

– This is very bad...
129

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Gradient Clipping

• Trick to handle exploding gradients

 If the gradient is larger than a threshold, clip it to that threshold.

 This makes a big difference in RNNs

130
B. LeibeSlide adapted from Richard Socher

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Long Short-Term Memory

• LSTMs

 Inspired by the design of memory cells

 Each module has 4 layers, interacting in a special way.
131

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Elements of LSTMs

• Forget gate layer

 Look at ht-1 and xt and output a

number between 0 and 1 for each

dimension in the cell state Ct-1.

0: completely delete this,

1: completely keep this.

• Update gate layer

 Decide what information to store

in the cell state.

 Sigmoid network (input gate layer)

decides which values are updated.

 tanh layer creates a vector of new

candidate values that could be

added to the state.
132

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

23

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Elements of LSTMs

• Output gate layer

 Output is a filtered version of our

gate state.

 First, apply sigmoid layer to decide

what parts of the cell state to

output.

 Then, pass the cell state through a

tanh (to push the values to be

between -1 and 1) and multiply it

with the output of the sigmoid gate.

133
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Gated Recurrent Units (GRU)

• Simpler model than LSTM

 Combines the forget and input

gates into a single update gate zt.

 Similar definition for a reset gate rt,

but with different weights.

 In both cases, merge the cell state

and hidden state.

• Empirical results

 Both LSTM and GRU can learn much

longer-term dependencies than

regular RNNs

 GRU performance similar to LSTM

(no clear winner yet), but fewer

parameters.
134

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Any Questions?

So what can you do with all of this?

135

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Any More Questions?

Good luck for the exam!

136

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

