

Machine Learning – Lecture 19

Recurrent Neural Networks

15.01.2018

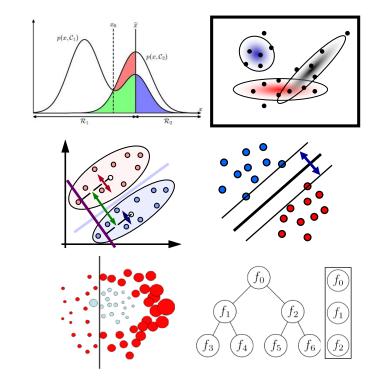
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

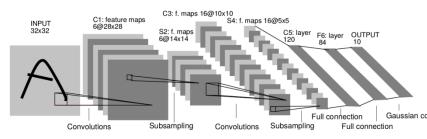
leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

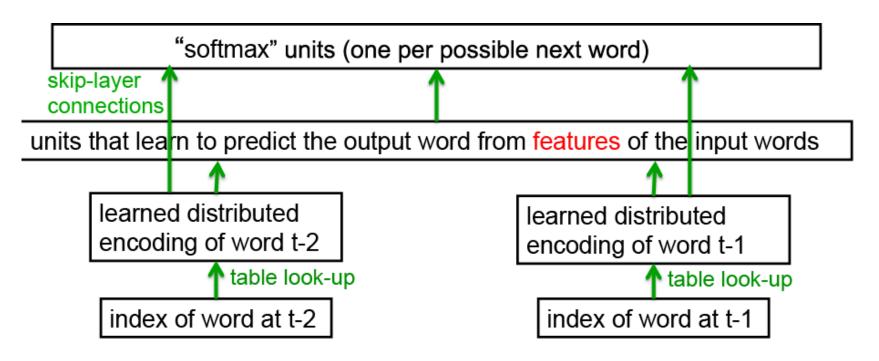
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - > Recurrent Neural Networks





Recap: Neural Probabilistic Language Model



- Core idea
 - Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, <u>A Neural Probabilistic Language</u> <u>Model</u>, In JMLR, Vol. 3, pp. 1137-1155, 2003.

Slide adapted from Geoff Hinton

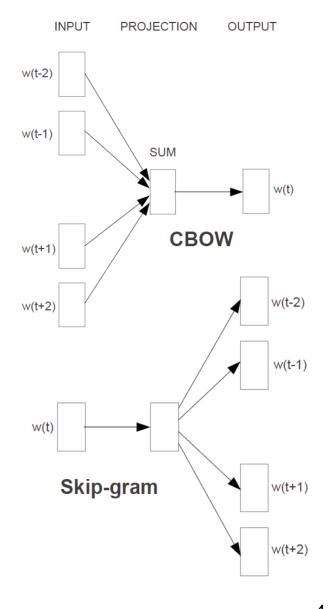
B. Leibe

Recap: word2vec

 Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).

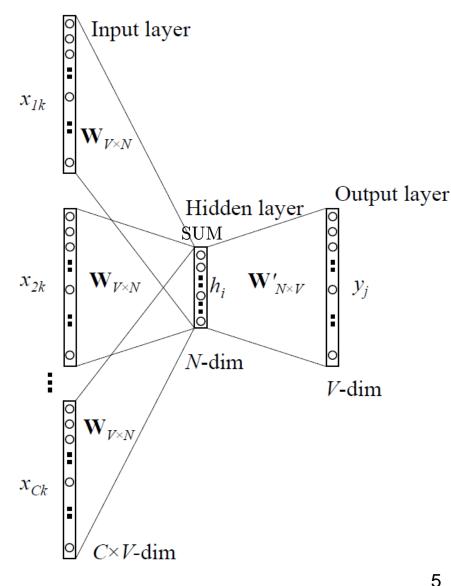
• Approach

- Define two alternative learning tasks for learning the embedding:
 - "Continuous Bag of Words" (CBOW)
 - "Skip-gram"
- Designed to require fewer parameters.



Recap: word2vec CBOW Model

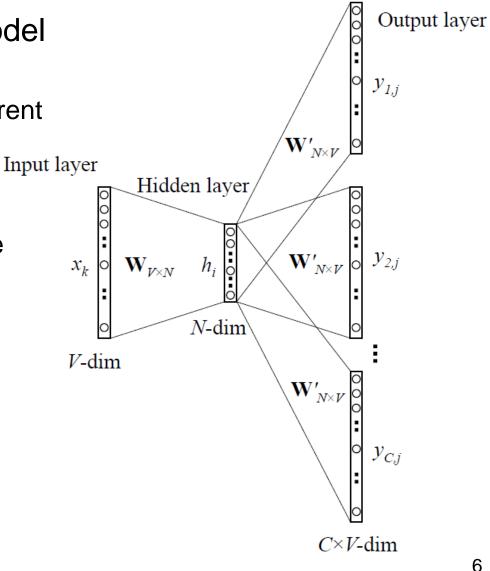
- Continuous BOW Model
 - Remove the non-linearity from the hidden layer
 - Share the projection layer for all words (their vectors are averaged)
 - ⇒ Bag-of-Words model (order of the words does not matter anymore)



B. Leibe

Recap: word2vec Skip-Gram Model

- Continuous Skip-Gram Model
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of the current word.
 - Give less weight to the more distant words

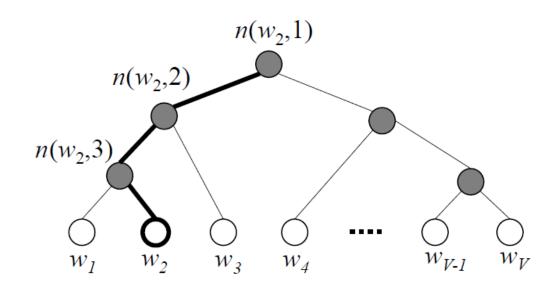


Problems with 100k-1M outputs

- Weight matrix gets huge!
 - Example: CBOW model
 - One-hot encoding for inputs
 - ⇒ Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
 - State h is not one-hot, and vocabulary size is 1M.
 - \Rightarrow $\mathbf{W'}_{N \times V}$ has 300×1M entries
- Softmax gets expensive!
 - Need to compute normalization over 100k-1M outputs



Solution: Hierarchical Softmax



Idea

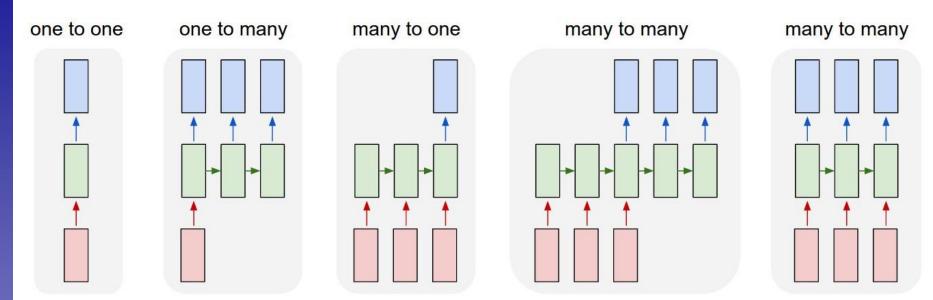
- > Organize words in binary search tree, words are at leaves
- > Factorize probability of word w_0 as a product of node probabilities along the path.
- > Learn a linear decision function $y = v_{n(w,j)} \cdot h$ at each node to decide whether to proceed with left or right child node.
- \Rightarrow Decision based on output vector of hidden units directly.

8

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - Exploding Gradients
 - Gradient Clipping

Recurrent Neural Networks



- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- This lecture: Recurrent Neural Networks
 - Generalize this to arbitrary mappings

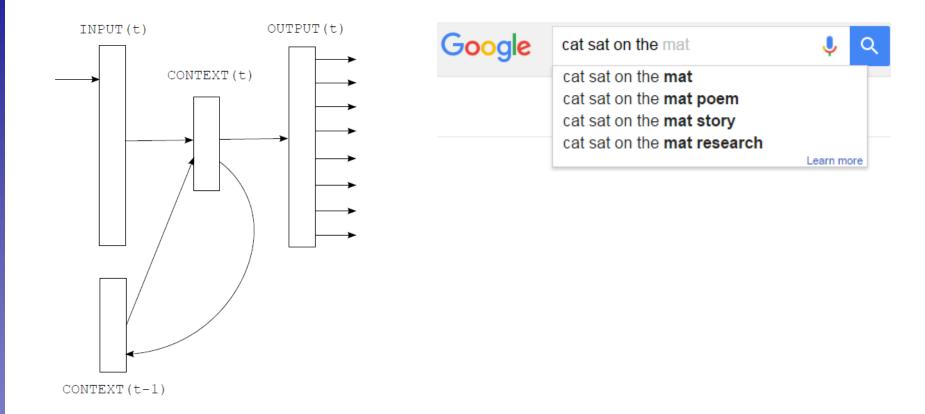
Application: Part-of-Speech Tagging

Legend: Click the legend words to toggle highlighting. Get help on this page.

Noun Pronoun Verb Adjective Adverb Conjunction Preposition Article Interjection

Andrew and Maria thought <mark>their jobs</mark> were secure after the <mark>rancorous</mark> argument with the <mark>customer</mark> , but alas ! <mark>Bad news</mark> is fast approaching <mark>them</mark> , especially after <mark>they</mark> viciously insulted the <mark>customer on social media</mark> .

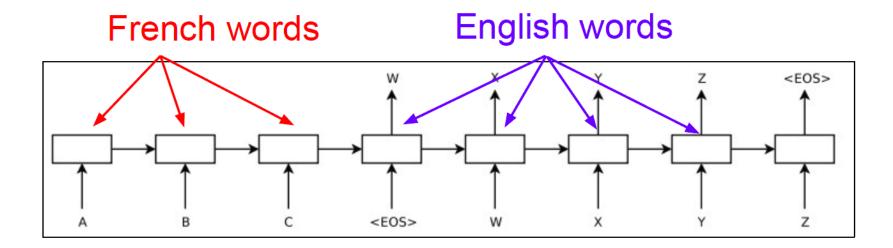
Application: Predicting the Next Word



T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, <u>Recurrent Neural Network</u> <u>Based Language Model</u>, Interspeech 2010.

Slide credit: Andrej Karpathy, Fei-Fei Li

Application: Machine Translation



I. Sutskever, O. Vinyals, Q. Le, <u>Sequence to Sequence Learning with Neural Networks</u>, NIPS 2014.

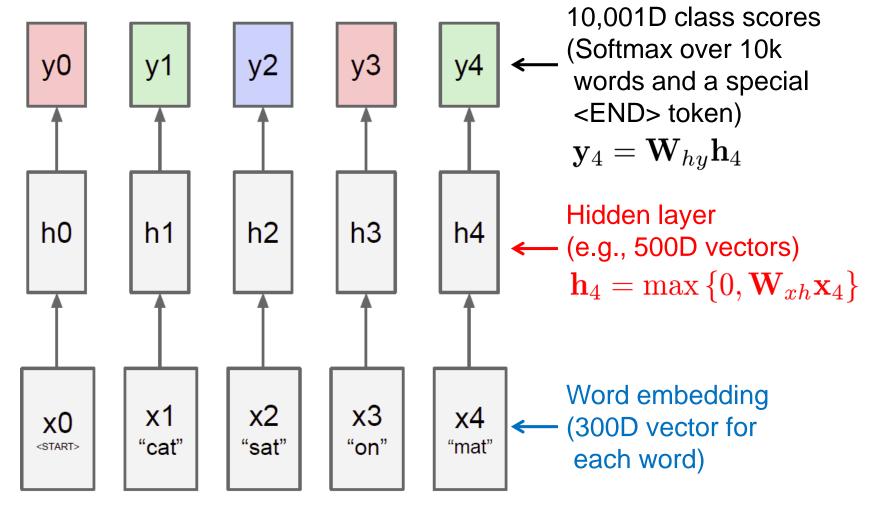
- Example: Language modeling
 - Suppose we had the training sequence "cat sat on mat"
 - We want to train a language model

p(next word | previous words)

- First assume we only have a finite, 1-word history.
- I.e., we want those probabilities to be high:
 - $-p(cat \mid <S>)$
 - $p(sat \mid cat)$
 - $-p(on \mid sat)$
 - $\ p(mat \mid on)$
 - $p(<\!\!E\!\!> \mid mat)$

< S > and < E > are start and end tokens.

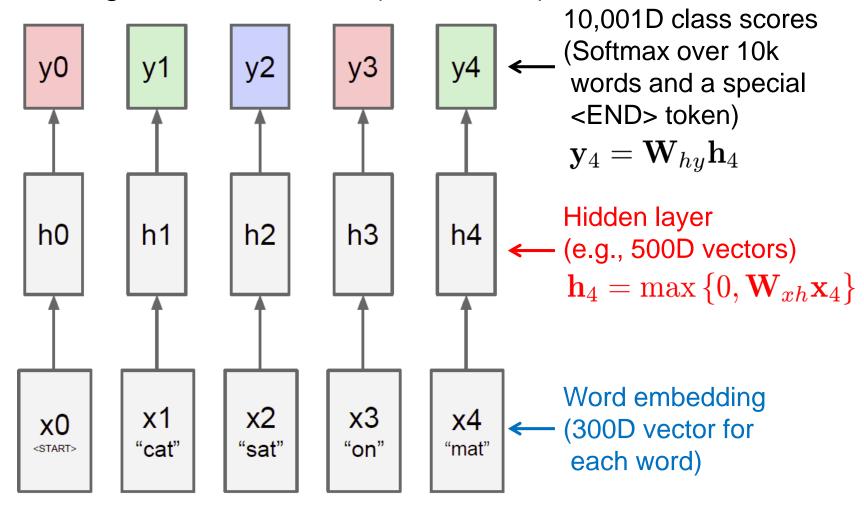
Vanilla 2-layer classification net



Slide credit: Andrej Karpathy, Fei-Fei Li

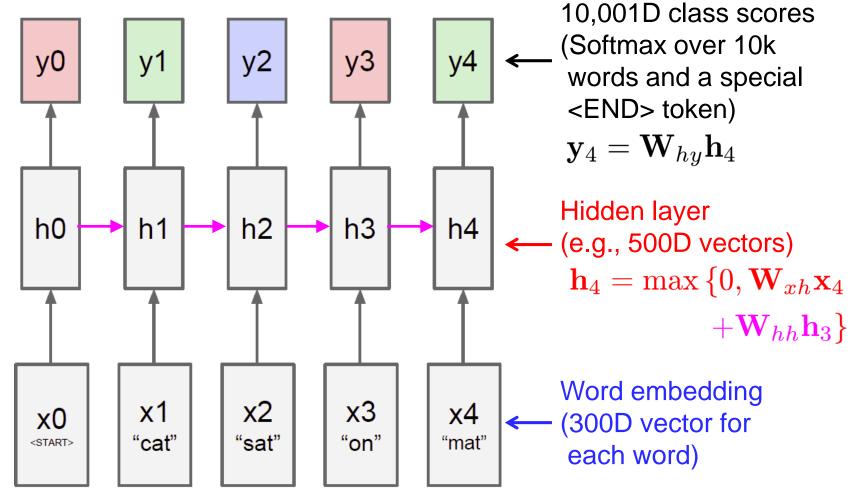
Machine Learning Winter '17

Turning this into an RNN (wait for it...)



Slide credit: Andrej Karpathy, Fei-Fei Li

Turning this into an RNN (done!)



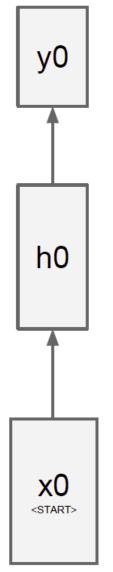
Slide credit: Andrej Karpathy, Fei-Fei Li

Machine Learning Winter '17

- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

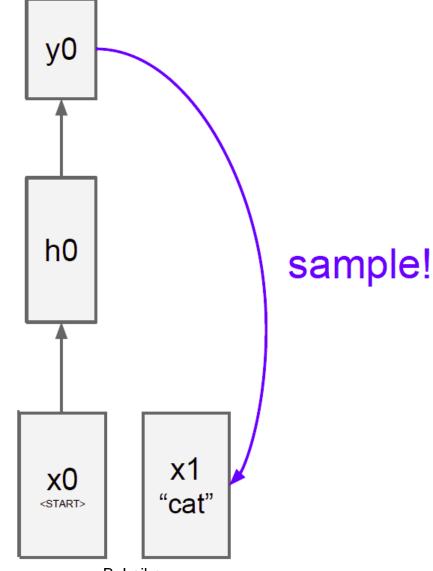
Machine Learning Winter '17

p(next word | previous words)



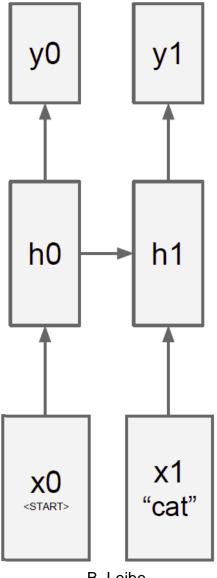
- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

p(next word | previous words)



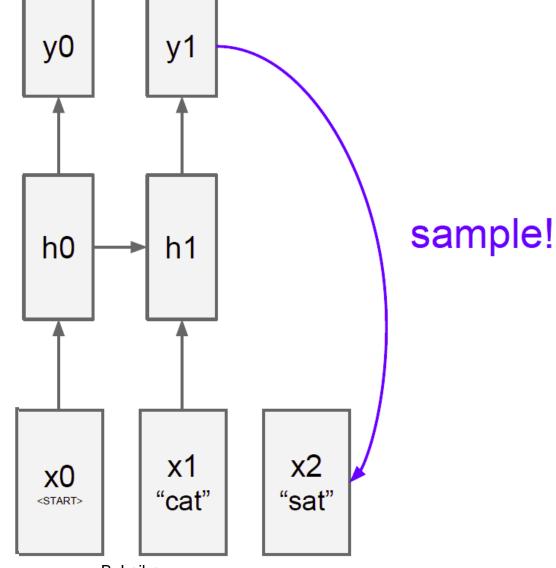
- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

 $p(next word \mid$ previous words)



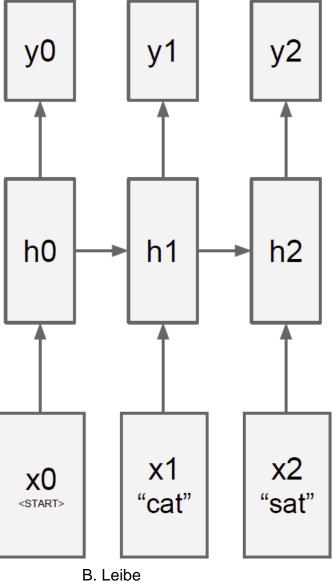
- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

p(next word | previous words)



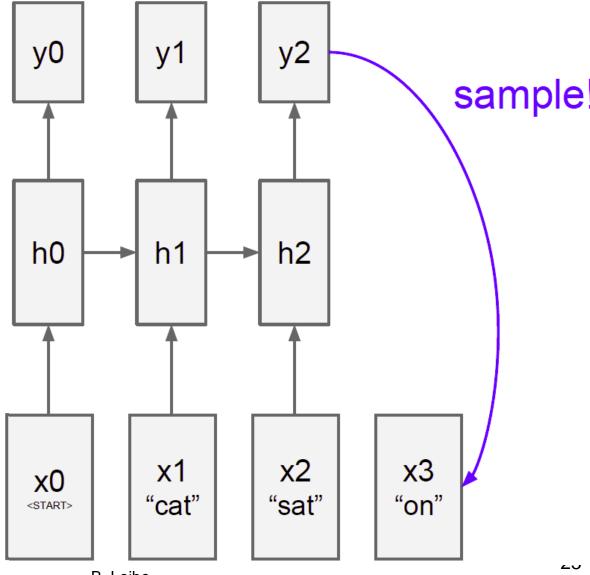
- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

 $p(next word \mid$ previous words)



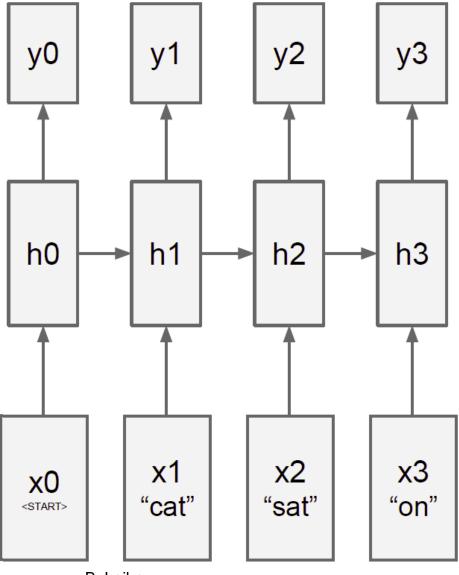
- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

 $p(next word \mid$ previous words)



- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

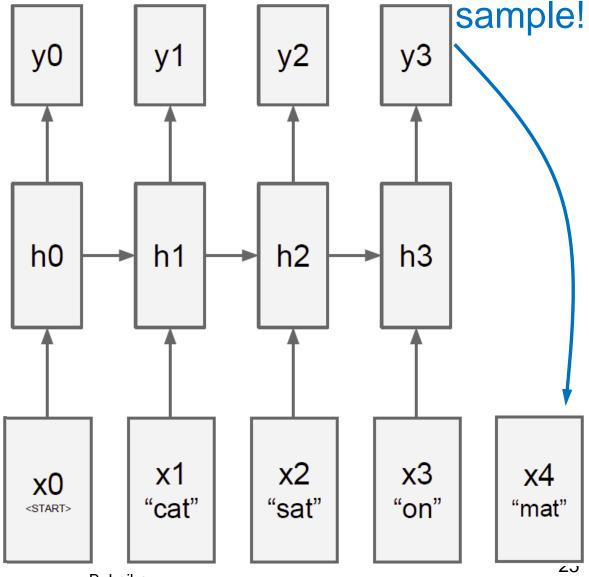
p(next word | previous words)



- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

Machine Learning Winter '17

p(next word | previous words)

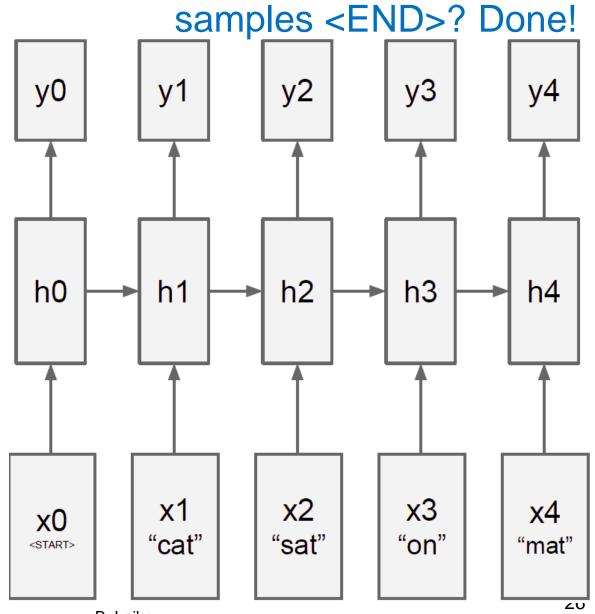


RWITHAACHEN UNIVERSITY

RNNs: Intuition

- Training this on a lot of sentences would give us a language model.
- I.e., a way to predict

p(next word | previous words)



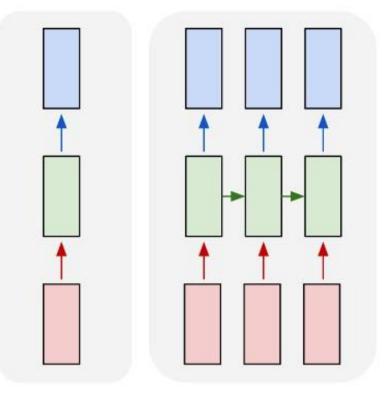
Machine Learning Winter '17

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - > Exploding Gradients
 - Gradient Clipping

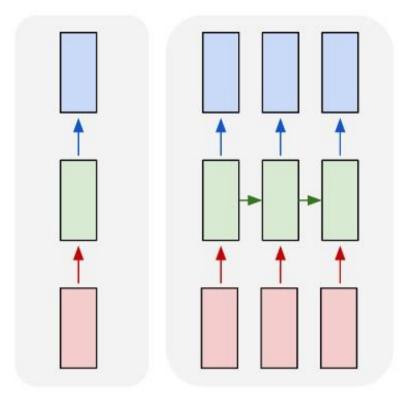
RNNs: Introduction

- RNNs are regular NNs whose hidden units have additional forward connections over time.
 - You can unroll them to create a network that extends over time.
 - When you do this, keep in mind that the weights for the hidden units are shared between temporal layers.



RNNs: Introduction

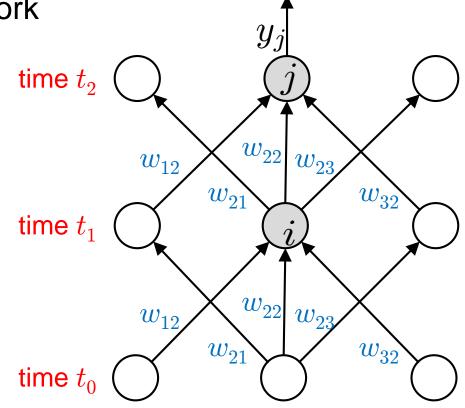
- RNNs are very powerful, because they combine two properties:
 - Distributed hidden state that allows them to store a lot of information about the past efficiently.
 - Non-linear dynamics that allows them to update their hidden state in complicated ways.



With enough neurons and time, RNNs can compute anything that can be computed by your computer.

Feedforward Nets vs. Recurrent Nets

- Imagine a feedforward network
 - Assume there is a time delay of 1 in using each connection.
 - \Rightarrow This is very similar to how an RNN works.
 - Only change: the layers share their weights.



 \Rightarrow The recurrent net is just a feedforward net that keeps reusing the same weights.

Backpropagation with Weight Constraints

- It is easy to modify the backprop algorithm to incorporate linear weight constraints
 - > To constrain $w_1 = w_2$, we start with the same initialization and then make sure that the gradients are the same:

$$\nabla w_1 = \nabla w_2$$

We compute the gradients as usual and then use

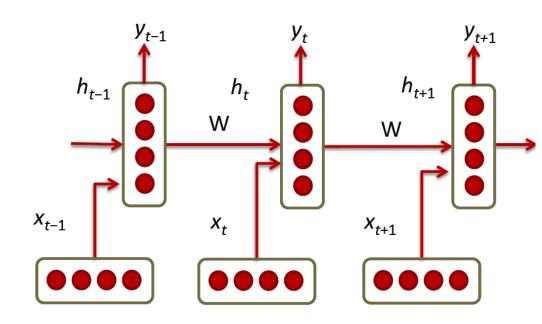
$$\frac{\partial E}{\partial w_1} + \frac{\partial E}{\partial w_2}$$

for both w_1 and w_2 .

- Formalization
 - > Inputs \mathbf{x}_t
 - > Outputs \mathbf{y}_t
 - > Hidden units \mathbf{h}_t
 - Initial state
 - Connection matrices

 \mathbf{h}_0

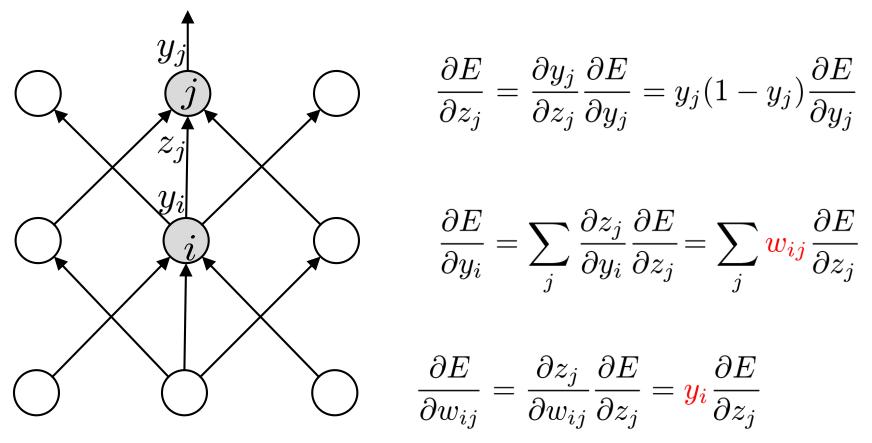
- $-\mathbf{W}_{xh}$
- $-\mathbf{W}_{hy}$ $-\mathbf{W}_{hh}$



Configuration

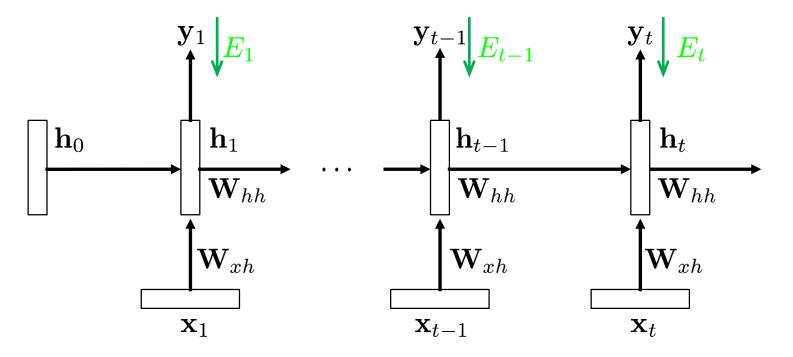
$$\mathbf{h}_{t} = \sigma \left(\mathbf{W}_{xh} \mathbf{x}_{t} + \mathbf{W}_{hh} \mathbf{h}_{t-1} + b \right)$$
$$\hat{\mathbf{y}}_{t} = \operatorname{softmax} \left(\mathbf{W}_{hy} \mathbf{h}_{t} \right)$$

Recap: Backpropagation Algorithm



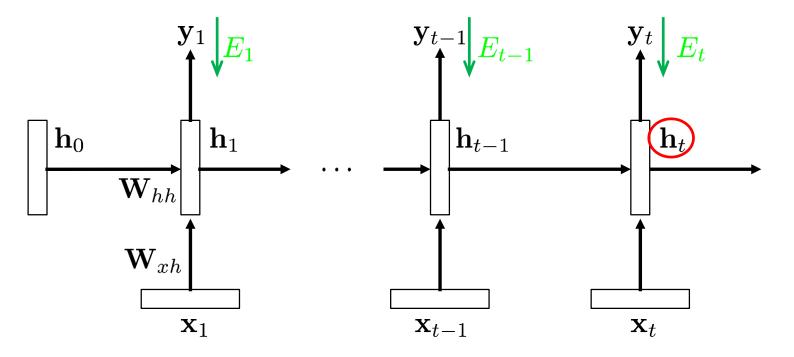
- Efficient propagation scheme
 - > y_i is already known from forward pass! (Dynamic Programming)
 - \Rightarrow Propagate back the gradient from layer j and multiply with y_i .

B. Leibe

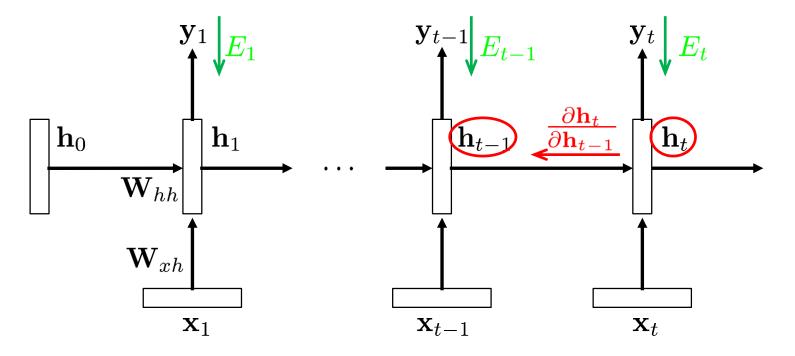


- **Error** function
 - > Computed over all time steps: $E = \sum E_t$

 $1 \le t \le T$

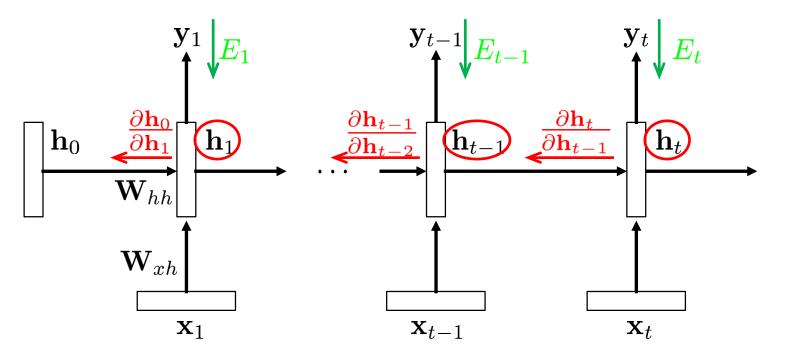


- Backpropagated gradient
 - > For weight w_{ij} : $\frac{\partial E_t}{\partial w_{ij}} = \frac{\partial E_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial w_{ij}}$



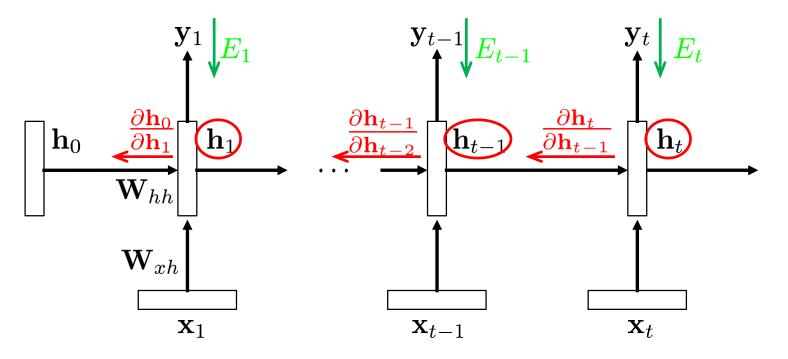
- Backpropagated gradient
 - > For weight w_{ij} : $\frac{\partial H}{\partial w}$

$$\frac{E_t}{w_{ij}} = \frac{\partial E_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial w_{ij}} + \frac{\partial E_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial \mathbf{w}_{ij}}$$



- Backpropagated gradient
 - $\text{For weight } w_{ij}: \quad \frac{\partial E_t}{\partial w_{ij}} = \frac{\partial E_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial w_{ij}} + \frac{\partial E_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial w_{ij}} + \cdots$ $\text{In general:} \quad \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$

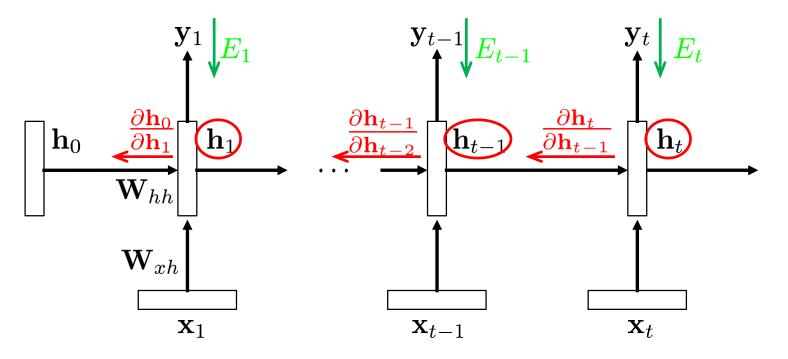
37



- Analyzing the terms
 - > For weight w_{ij} :

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$

> This is the "immediate" partial derivative (with h_{k-1} as constant)



- Analyzing the terms
 - > For weight w_{ij} :
 - > Propagation term:

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

RWTHAACHEN UNIVERSITY Backpropagation Through Time (BPTT)

- Summary
 - Backpropagation equations

$$E = \sum_{1 \le t \le T} E_t$$
$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_{hh}^\top diag \left(\sigma'(\mathbf{h}_{i-1}) \right)$$

- \succ Remaining issue: how to set the initial state $h_0?$
- \Rightarrow Learn this together with all the other parameters.

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)

• Problems with RNN Training

- Vanishing Gradients
- Exploding Gradients
- Gradient Clipping

Problems with RNN Training

- Training RNNs is very hard
 - As we backpropagate through the layers, the magnitude of the gradient may grow or shrink exponentially
 - \Rightarrow Exploding or vanishing gradient problem!
 - In an RNN trained on long sequences (e.g., 100 time steps) the gradients can easily explode or vanish.
 - Even with good initial weights, it is very hard to detect that the current target output depends on an input from many time-steps ago.

Exploding / Vanishing Gradient Problem

Consider the propagation equations:

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_{hh}^\top diag \left(\sigma'(\mathbf{h}_{i-1}) \right)$$

$$= \left(\mathbf{W}_{hh}^\top \right)^l$$

- > if t goes to infinity and l = t k.
- \Rightarrow We are effectively taking the weight matrix to a high power.
- > The result will depend on the eigenvalues of \mathbf{W}_{hh} .
 - Largest eigenvalue > 1 \Rightarrow Gradients *may* explode.
 - Largest eigenvalue < 1 \Rightarrow Gradients *will* vanish.
 - This is very bad...

Why Is This Bad?

- Vanishing gradients in language modeling
 - Words from time steps far away are not taken into consideration when training to predict the next word.
- Example:
 - "Jane walked into the room. John walked in too. It was late in the day. Jane said hi to _____"
 - \Rightarrow The RNN will have a hard time learning such long-range dependencies.

Gradient Clipping

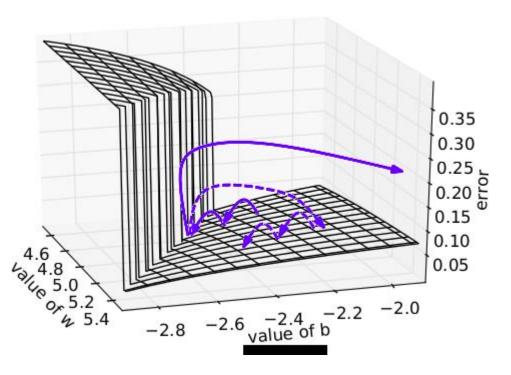
- Trick to handle exploding gradients
 - If the gradient is larger than a threshold, clip it to that threshold.

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \mathbf{if} \quad \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then} \\ \quad \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \\ \mathbf{end} \ \mathbf{if}$$

This makes a big difference in RNNs

Gradient Clipping Intuition



- Example
 - Error surface of a single RNN neuron
 - High curvature walls
 - Solid lines: standard gradient descent trajectories
 - Dashed lines: gradients rescaled to fixed size

Slide adapted from Richard Socher

B. Leibe

46

References and Further Reading

RNNs

- R. Pascanu, T. Mikolov, Y. Bengio, <u>On the difficulty of training</u> recurrent neural networks, JMLR, Vol. 28, 2013.
- A. Karpathy, <u>The Unreasonable Effectiveness of Recurrent Neural</u> <u>Networks</u>, blog post, May 2015.