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Machine Learning – Lecture 17

Convolutional Neural Networks III

08.01.2018

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
3
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

4
B. Leibe
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Recap: Convolutional Neural Networks

• Neural network with specialized connectivity structure

 Stack multiple stages of feature extractors

 Higher stages compute more global, more invariant features

 Classification layer at the end

5
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik
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Recap: AlexNet (2012)

• Similar framework as LeNet, but

 Bigger model (7 hidden layers, 650k units, 60M parameters)

 More data (106 images instead of 103)

 GPU implementation

 Better regularization and up-to-date tricks for training (Dropout)

6
Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012. P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Recap: VGGNet (2014/15) 

• Main ideas 

 Deeper network

 Stacked convolutional

layers with smaller

filters (+ nonlinearity)

 Detailed evaluation

of all components

• Results

 Improved ILSVRC top-5

error rate to 6.7%.

7
B. Leibe

Image source: Simonyan & Zisserman

Mainly used

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: GoogLeNet (2014)

• Ideas: 

 Learn features at multiple scales

 Modular structure

8
B. Leibe

Inception

module
+ copies

Auxiliary classification 

outputs for training the 

lower layers (deprecated)

Image source: Szegedy et al.
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Recap: Visualizing CNNs

10
B. LeibeSlide credit: Yann LeCun
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

11
B. Leibe
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Recap: Residual Networks

12
B. LeibeSlide credit: Kaiming He
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Recap: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

13
B. Leibe
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Spectrum of Depth

14
B. LeibeSlide credit: Kaiming He
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Spectrum of Depth

• Deeper models are more powerful

 But training them is harder.

 Main problem: getting the gradients back to the early layers

 The deeper the network, the more effort is required for this.

15
B. LeibeSlide adapted from Kaiming He
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Initialization

• Importance of proper initialization (Recall Lecture 14)

 Glorot initialization for tanh nonlinearities

 He initialization for ReLU nonlinearities

 For deep networks, this really makes a difference!

16
B. LeibeSlide credit: Kaiming He
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Batch Normalization

• Effect of batch normalization

 Greatly improved speed of convergence

17
B. Leibe

Image source: Ioffe & Szegedy
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Going Deeper

• Checklist

 Initialization ok

 Batch normalization ok

 Are we now set?

– Is learning better networks now as simple as stacking more layers?

18
B. LeibeSlide credit: Kaiming He
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Simply Stacking Layers?

• Experiment going deeper

 Plain nets: stacking 33 convolution layers

 56-layer net has higher training error than 20-layer net

19
B. LeibeSlide credit: Kaiming He
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Simply Stacking Layers?

• General observation

 Overly deep networks have higher training error

 A general phenomenon, observed in many training sets

20
B. LeibeSlide credit: Kaiming He
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Why Is That???

• A deeper model should not have

higher training error!

 Richer solution space should allow it

to find better solutions

• Solution by construction

 Copy the original layers from a learned 

shallower model

 Set the extra layers as identity

 Such a network should achieve at least 

the same low training error.

• Reason: Optimization difficulties

 Solvers cannot find the solution when

going deeper…

21
B. LeibeSlide credit: Kaiming He
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Deep Residual Learning

• Plain net

 𝐻(𝑥) is any desired mapping

 Hope the 2 weight layers fit 𝐻(𝑥)

22
B. LeibeSlide credit: Kaiming He
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Deep Residual Learning

• Residual net

 𝐻(𝑥) is any desired mapping

 Hope the 2 weight layers fit 𝐻(𝑥)

 Hope the 2 weight layers fit 𝐹(𝑥)
Let 𝐻 𝑥 = 𝐹 𝑥 + 𝑥

23
B. LeibeSlide credit: Kaiming He
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Deep Residual Learning

• 𝐹 𝑥 is a residual mapping w.r.t. identity

 If identity were optimal, it is easy to set weights as 0

 If optimal mapping is closer to identity, it is easier to find small 

fluctuations

 Further advantage: direct path for the gradient to flow to the 

previous stages
24

B. LeibeSlide credit: Kaiming He
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Network Design

• Simple, VGG-style design

 (Almost) all 33 convolutions

 Spatial size /2  #filters  2

(same complexity per layer)

 Batch normalization

 Simple design, just deep. 

25
B. Leibe
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ImageNet Performance

26
B. LeibeSlide credit: Kaiming He
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PASCAL VOC Object Detection Performance

27
B. LeibeSlide credit: Kaiming He

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

28
B. Leibe
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What Is The Secret Behind ResNets?

• Empirically, they perform very well, but why is that?

• He’s original explanation [He, 2016]

 ResNets allow gradients to pass through the skip connections in

unchanged form.

 This makes it possible to effectively train deeper networks.

 Secret of success: depth is good

• More recent explanation [Veit, 2016]

 ResNets actually do not use deep network paths.

 Instead, they effectively implement an ensemble of shallow 

network paths.

 Secret of success: ensembles are good

29

A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like Ensembles 

of Relatively Shallow Networks, NIPS 2016
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Idea of the Analysis

• Unraveling ResNets

 ResNets can be viewed as a collection of shorter paths through

different subsets of the layers.

 Deleting a layer corresponds to removing only some of those paths

30

Ordinary feedforward network

Residual network Unraveled view

Effect of deleting layer 𝑓2

Image source: Veit et al., 2016
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Effect of Deleting Layers at Test Time

• Experiments on ImageNet classification

 When deleting a layer in VGG-Net, it breaks down completely.

 In ResNets, deleting a single layer has almost no effect 

(except for the pooling layers)

 Deleting an increasing number of layers increases the error smoothly

 Paths in a ResNet do not strongly depend on each other.
31

Image source: Veit et al., 2016
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Which Paths Are Important?

• How much does each of the paths contribute?

 Distribution of path lengths follows a Binomial distribution

 Sample individual paths and measure their gradient magnitude 

 Effectively, only shallow paths with 5-17 modules are used!

 This corresponds to only 0.45% of the available paths here. 32
Image source: Veit et al., 2016

http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
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Summary

• The effective paths in ResNets

are relatively shallow

 Effectively only 5-17 active modules

• This explains the resilience to deletion

 Deleting any single layer only affects a 

subset of paths (and the shorter ones

less than the longer ones).

• New interpretation of ResNets

 ResNets work by creating an ensemble 

of relatively shallow paths

 Making ResNets deeper increases the

size of this ensemble

 Excluding longer paths from training 

does not negatively affect the results. 33
Image source: Veit et al., 2016
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

34
B. Leibe
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The Learned Features are Generic

• Experiment: feature transfer

 Train AlexNet-like network on ImageNet

 Chop off last layer and train classification layer on CalTech256

 State of the art accuracy already with only 6 training images!
35

B. Leibe
Image source: M. Zeiler, R. Fergus

state of the art

level (pre-CNN)
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Transfer Learning with CNNs

36
B. LeibeSlide credit: Andrej Karpathy

1. Train on

ImageNet

2. If small dataset: fix all 

weights (treat CNN as 

fixed feature extrac-

tor), retrain only the 

classifier

I.e., swap the Softmax

layer at the end
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Transfer Learning with CNNs

37
B. LeibeSlide credit: Andrej Karpathy

1. Train on

ImageNet

3. If you have medium 

sized dataset, 

“finetune” instead: use 

the old weights as

initialization, train the 

full network or only 

some of the higher 

layers.

Retrain bigger portion

of the network
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Other Tasks: Detection

• Results on PASCAL VOC Detection benchmark

 Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013]

33.4% mAP DPM

 R-CNN: 53.7% mAP

40

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for 

Accurate Object Detection and Semantic Segmentation, CVPR 2014

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
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More Recent Version: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

41
Slide credit: Ross Girshick
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Faster R-CNN (based on ResNets)

42
B. Leibe

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 

CVPR 2016.
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Faster R-CNN (based on ResNets)

43
B. Leibe

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 

CVPR 2016.
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YOLO

44
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, 

Real-Time Object Detection, CVPR 2016.
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Object Detection Performance

45
B. LeibeSlide credit: Ross Girshick
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Semantic Image Segmentation

• Perform pixel-wise prediction task

 Usually done using Fully Convolutional Networks (FCNs)

– All operations formulated as convolutions

– Advantage: can process arbitrarily sized images
46

Image source: Long, Shelhamer, Darrell

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf
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CNNs vs. FCNs

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

47
Image source: Long, Shelhamer, Darrell
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Semantic Image Segmentation

• Encoder-Decoder Architecture

 Problem: FCN output has low resolution

 Solution: perform upsampling to get back to desired resolution

 Use skip connections to preserve higher-resolution information

48
Image source: Newell et al.
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Semantic Segmentation

• Current state-of-the-art

 Based on an extension of ResNets

[Pohlen, Hermans, Mathias, Leibe, CVPR 2017]
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Other Tasks: Face Identification

50

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-

Level Performance in Face Verification, CVPR 2014

Slide credit: Svetlana Lazebnik
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Learning Similarity Functions

• Siamese Network

 Present the two stimuli to two

identical copies of a network

(with shared parameters)

 Train them to output similar 

values if the inputs are 

(semantically) similar.

• Used for many matching tasks

 Face identification

 Stereo estimation

 Optical flow

 …

51
B. Leibe
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Extension: Triplet Loss Networks

• Learning a discriminative embedding 

 Present the network with triplets of examples

 Apply triplet loss to learn an embedding 𝑓(∙) that groups the positive 

example closer to the anchor than the negative one.

 Used with great success in Google’s FaceNet face identification

52
B. Leibe

Anchor PositiveNegative

https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf


9

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

References and Further Reading

• ResNets

 K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image 

Recognition, CVPR 2016.

 A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like 

Ensembles of Relatively Shallow Networks, NIPS 2016.

54
B. Leibe

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

References: Computer Vision Tasks

• Object Detection

 R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature 

Hierarchies for Accurate Object Detection and Semantic 

Segmentation, CVPR 2014.

 S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks, NIPS 2015.

 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: 

Unified Real-Time Object Detection, CVPR 2016.

 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A.C. 

Berg, SSD: Single Shot Multi Box Detector, ECCV 2016.

55
B. Leibe

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

References: Computer Vision Tasks

• Semantic Segmentation

 J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for 

Semantic Segmentation, CVPR 2015.

 H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing 

Network, arXiv 1612.01105, 2016.

56
B. Leibe

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
https://research.google.com/pubs/DumitruErhan.html
https://research.google.com/pubs/ChristianSzegedy.html

