

Machine Learning – Lecture 15

Convolutional Neural Networks

11.12.2017

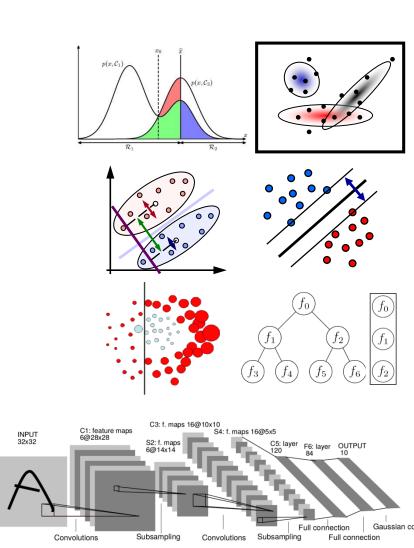
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

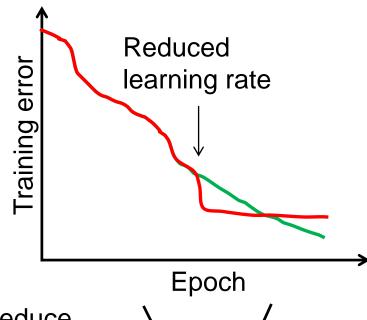


Topics of This Lecture

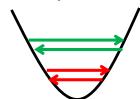
- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Recap: Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.



- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.



- Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower/impossible after that.

Recap: Data Augmentation

Effect

- Much larger training set
- Robustness against expected variations

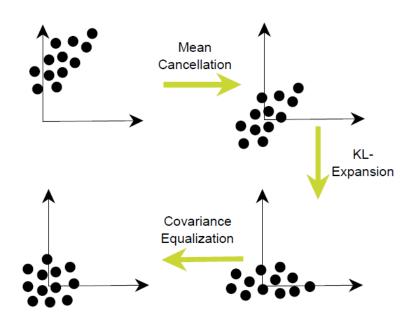
During testing

- When cropping was used during training, need to again apply crops to get same image size.
- Beneficial to also apply flipping during test.
- Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Augmented training data (from one original image)

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.



- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

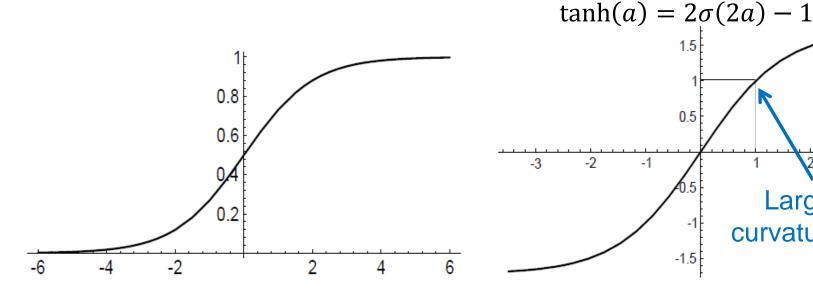
Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Largest

curvature at 1

Choosing the Right Sigmoid



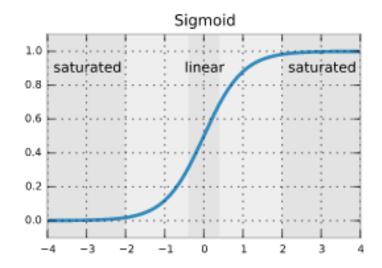
- Normalization is also important for intermediate layers
 - Symmetric sigmoids, such as tanh, often converge faster than the standard logistic sigmoid.
 - Recommended sigmoid:

$$f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$$

⇒ When used with normalized inputs, the variance of the outputs will be close to 1.

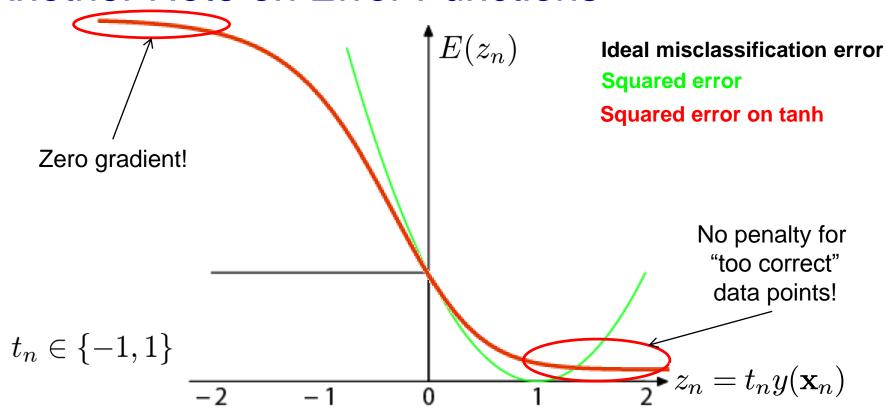
Effect of Sigmoid Nonlinearities

- Effects of sigmoid/tanh function
 - Linear behavior around 0
 - Saturation for large inputs



- If all parameters are too small
 - Variance of activations will drop in each layer
 - Sigmoids are approximately linear close to 0
 - Good for passing gradients through, but...
 - Gradual loss of the nonlinearity
 - ⇒ No benefit of having multiple layers
- If activations become larger and larger
 - They will saturate and gradient will become zero

Another Note on Error Functions



- Squared error on sigmoid/tanh output function
 - Avoids penalizing "too correct" data points.
 - But: zero gradient for confidently incorrect classifications!
 - \Rightarrow Do not use L₂ loss with sigmoid outputs (instead: cross-entropy)!

Usage

Output nodes

- Typically, a sigmoid or tanh function is used here.
 - Sigmoid for probabilistic classification (2-class case).
 - Softmax for multi-class classification
 - tanh for regression tasks

Internal nodes

- Historically, tanh was most often used.
- tanh is better than sigmoid for internal nodes, since it is already centered.
- Internally, tanh is often implemented as piecewise linear function.
- More recently: ReLU often used for classification tasks.

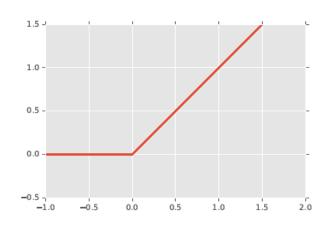
Extension: ReLU

- An improvement for learning deep models
 - Use Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$



- Advantages
 - Much easier to propagate gradients through deep networks.
 - We do not need to store the ReLU output separately
 - Reduction of the required memory by half compared to tanh!
 - ⇒ ReLU has become the de-facto standard for deep networks.

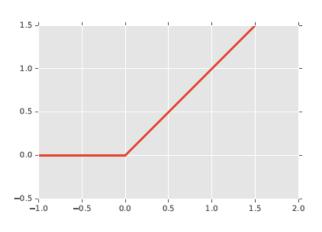
Extension: ReLU

- An improvement for learning deep models
 - Use Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$



- Disadvantages / Limitations
 - A certain fraction of units will remain "stuck at zero".
 - If the initial weights are chosen such that the ReLU output is 0 for the entire training set, the unit will never pass through a gradient to change those weights.
 - ReLU has an offset bias, since its outputs will always be positive

Further Extensions

Rectified linear unit (ReLU)

$$g(a) = \max\{0, a\}$$

Leaky ReLU

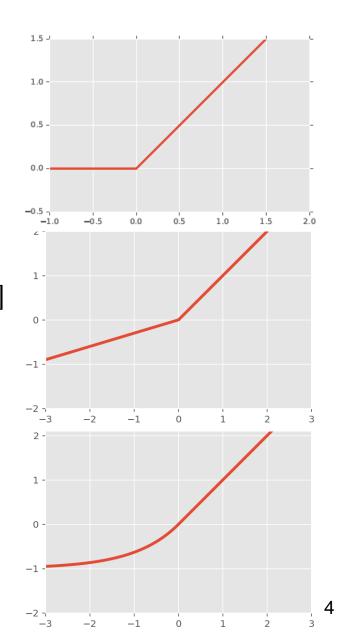
$$g(a) = \max\{\beta a, a\}$$
 $\beta \in [0.01, 0.3]$

- Avoids stuck-at-zero units
- Weaker offset bias
- ELU

$$g(a) = \begin{cases} a, & a \ge 0 \\ e^a - 1, & a < 0 \end{cases}$$

- No offset bias anymore
- BUT: need to store activations

B. Leibe



Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Initializing the Weights

Motivation

- The starting values of the weights can have a significant effect on the training process.
- Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.
- Guideline (from [LeCun et al., 1998] book chapter)
 - Assuming that
 - The training set has been normalized
 - The recommended sigmoid $f(x)=1.7159 anh\left(\frac{2}{3}x\right)$ is used

the initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and variance

$$\sigma_w^2 = \frac{1}{n_{in}}$$

where n_{in} is the fan-in (#connections into the node).

Historical Sidenote

- Apparently, this guideline was either little known or misunderstood for a long time
 - A popular heuristic (also the standard in Torch) was to use

$$W \sim U\left[-\frac{1}{\sqrt{n_{in}}}, \frac{1}{\sqrt{n_{in}}}\right]$$

- This looks almost like LeCun's rule. However...
- When sampling weights from a uniform distribution [a,b]
 - Keep in mind that the standard deviation is computed as

$$\sigma^2 = \frac{1}{12}(b-a)^2$$

If we do that for the above formula, we obtain

$$\sigma^2 = \frac{1}{12} \left(\frac{2}{\sqrt{n_{in}}} \right)^2 = \frac{1}{3} \frac{1}{n_{in}}$$

⇒ Activations & gradients will be attenuated with each layer! (bad)

Glorot Initialization

Breakthrough results

- In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a more general method for automatic initialization.
- This new initialization massively improved results and made direct learning of deep networks possible overnight.
- Let's look at his analysis in more detail...

X. Glorot, Y. Bengio, <u>Understanding the Difficulty of Training Deep</u> <u>Feedforward Neural Networks</u>, AISTATS 2010.

Analysis

- Variance of neuron activations
 - > Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - What is the variance of Y?

$$Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$

If inputs and outputs have both mean 0, the variance is

$$Var(W_iX_i) = E[X_i]^2 Var(W_i) + E[W_i]^2 Var(X_i) + Var(W_i) Var(X_i)$$
$$= Var(W_i) Var(X_i)$$

If the X_i and W_i are all i.i.d, then

$$Var(Y) = Var(W_1X_1 + W_2X_2 + \dots + W_nX_n) = nVar(W_i)Var(X_i)$$

 \Rightarrow The variance of the output is the variance of the input, but scaled by $n \operatorname{Var}(W_i)$.

Analysis (cont'd)

- Variance of neuron activations
 - if we want the variance of the input and output of a unit to be the same, then $n \operatorname{Var}(W_i)$ should be 1. This means

$$\operatorname{Var}(W_i) = \frac{1}{n} = \frac{1}{n_{\text{in}}}$$

If we do the same for the backpropagated gradient, we get

$$\operatorname{Var}(W_i) = rac{1}{n_{ ext{out}}}$$

As a compromise, Glorot & Bengio proposed to use

$$\operatorname{Var}(W) = rac{2}{n_{ ext{in}} + n_{ ext{out}}}$$

⇒ Randomly sample the weights with this variance. That's it.

Sidenote

- When sampling weights from a uniform distribution [a,b]
 - Again keep in mind that the standard deviation is computed as

$$\sigma^2 = \frac{1}{12}(b - a)^2$$

Glorot initialization with uniform distribution

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_{in} + n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in} + n_{out}}} \right]$$

> Or when only taking into account the fan-in

$$W \sim U \left[-\frac{\sqrt{3}}{\sqrt{n_{in}}}, \frac{\sqrt{3}}{\sqrt{n_{in}}} \right]$$

If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years earlier...

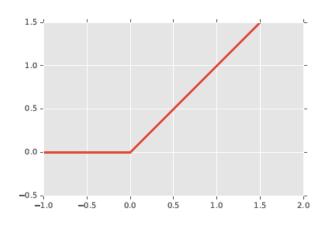
Extension to ReLU

- Important for learning deep models
 - Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$



- We can also improve them with proper initialization
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - He et al. made the derivations, derived to use instead

$$\operatorname{Var}(W) = rac{2}{n_{ ext{in}}}$$

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Batch Normalization

Motivation

Optimization works best if all inputs of a layer are normalized.

Idea

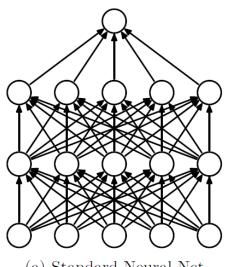
- Introduce intermediate layer that centers the activations of the previous layer per minibatch.
- I.e., perform transformations on all activations and undo those transformations when backpropagating gradients
- Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.
 - Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)

Effect

- Much improved convergence (but parameter values are important!)
- Widely used in practice

Dropout

RWITHAACHEN UNIVERSITY [Srivastava, Hinton '12]



(a) Standard Neural Net

(b) After applying dropout.

Idea

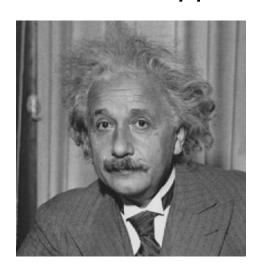
- Randomly switch off units during training.
- Change network architecture for each data point, effectively training many different variants of the network.
- When applying the trained network, multiply activations with the probability that the unit was set to zero.
- ⇒ Greatly improved performance

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Neural Networks for Computer Vision

How should we approach vision problems?



→ Face Y/N?

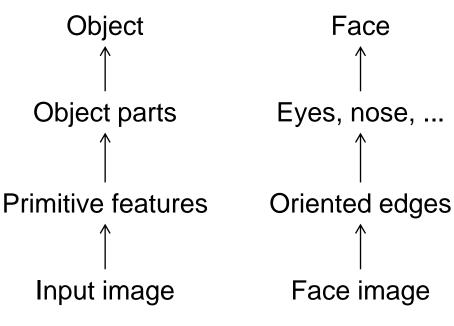
- Architectural considerations
 - Input is 2D
 - No pre-segmentation
 - Vision is hierarchical
 - Vision is difficult

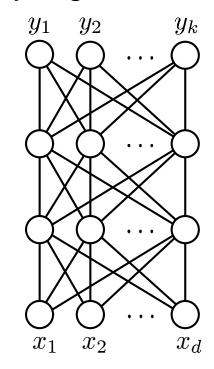
- \Rightarrow 2D layers of units
- ⇒ Need robustness to misalignments
- ⇒ Hierarchical multi-layered structure
- ⇒ Network should be deep

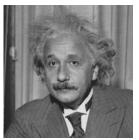
RWTHAACHEN UNIVERSITY

Why Hierarchical Multi-Layered Models?

Motivation 1: Visual scenes are hierarchically organized



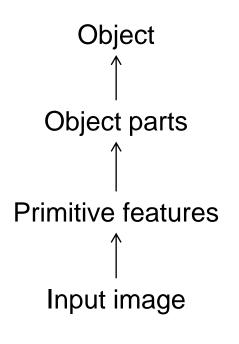


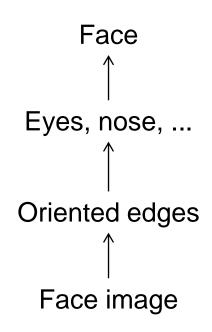


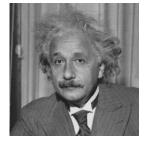
RWTHAACHEN UNIVERSITY

Why Hierarchical Multi-Layered Models?

Motivation 2: Biological vision is hierarchical, too







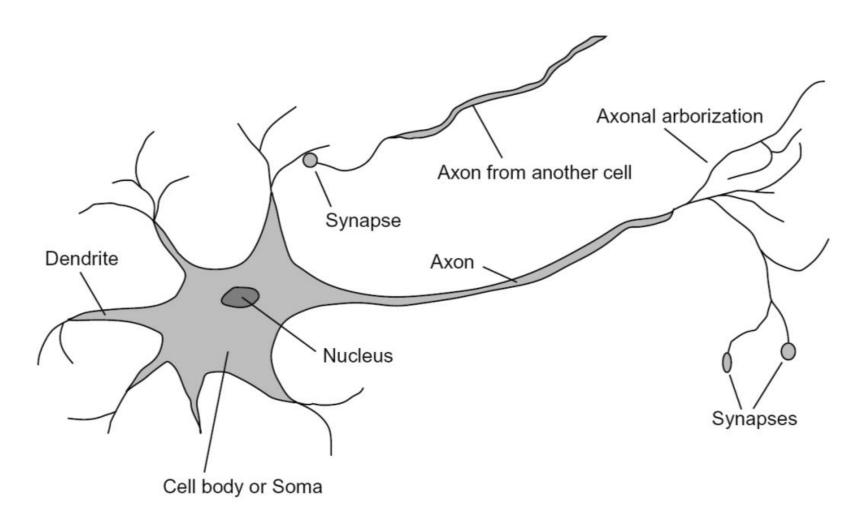
Inferotemporal cortex

V4: different textures

V1: simple and complex cells

Photoreceptors, retina

Inspiration: Neuron Cells

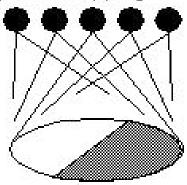


Hubel/Wiesel Architecture

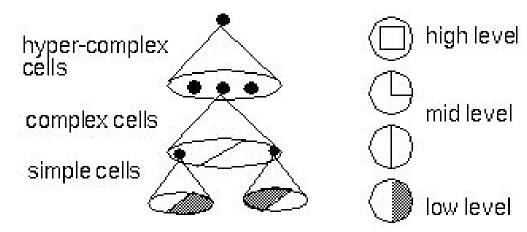
- D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)
 - Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Hubel & Weisel

topographical mapping



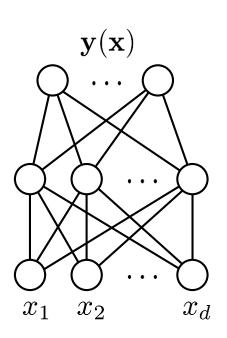
featural hierarchy



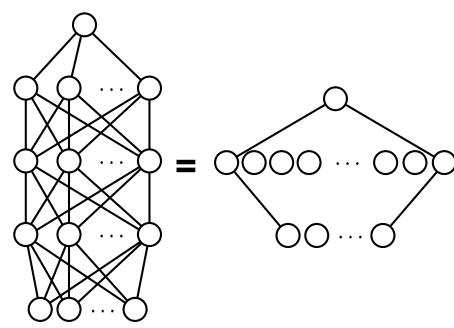
RWTHAACHEN UNIVERSITY

Why Hierarchical Multi-Layered Models?

Motivation 3: Shallow architectures are inefficient at representing complex functions



An MLP with 1 hidden layer can implement *any* function (universal approximator)



However, if the function is deep, a very large hidden layer may be required.

What's Wrong With Standard Neural Networks?

Complexity analysis

How many parameters does this network have?

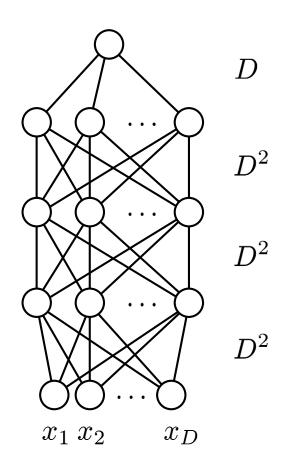
$$|\theta| = 3D^2 + D$$

For a small 32×32 image

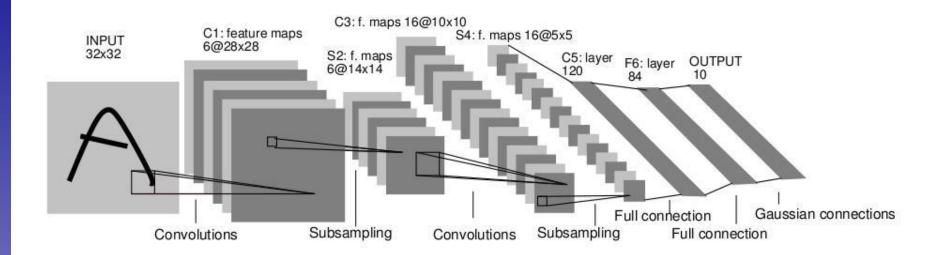
$$|\theta| = 3 \cdot 32^4 + 32^2 \approx 3 \cdot 10^6$$

Consequences

- Hard to train
- Need to initialize carefully
- Convolutional nets reduce the number of parameters!



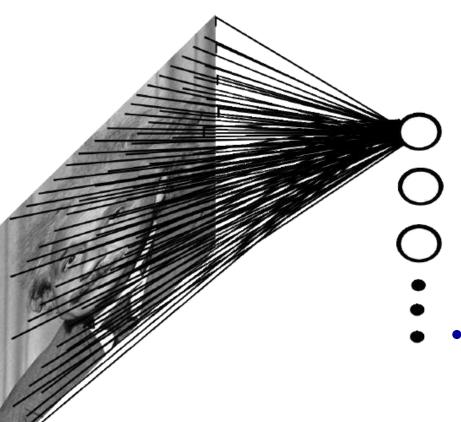
Convolutional Neural Networks (CNN, ConvNet)



- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Convolutional Networks: Intuition

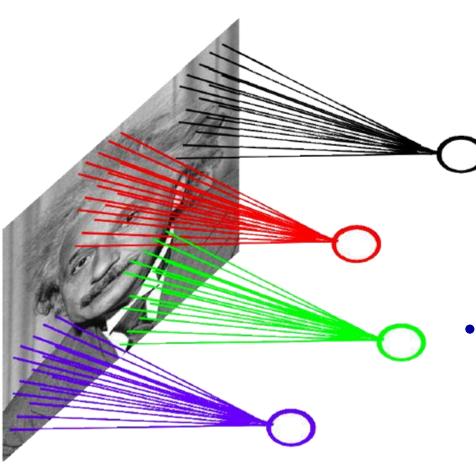


- Fully connected network
 - E.g. 1000×1000 image1M hidden units
 - ⇒ 1T parameters!

- Ideas to improve this
 - Spatial correlation is local

Image source: Yann LeCun

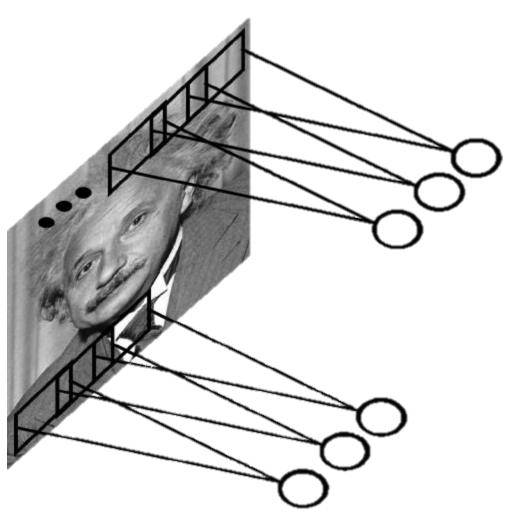
Convolutional Networks: Intuition



- Locally connected net
 - E.g. 1000×1000 image
 1M hidden units
 10×10 receptive fields
 - ⇒ 100M parameters!

- Ideas to improve this
 - Spatial correlation is local
 - Want translation invariance

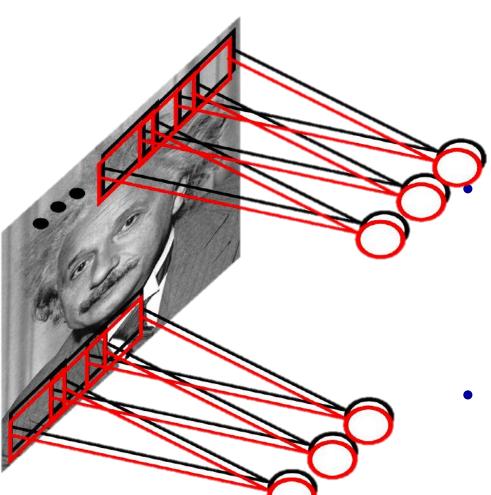
Convolutional Networks: Intuition



Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Convolutional Networks: Intuition



Convolutional net

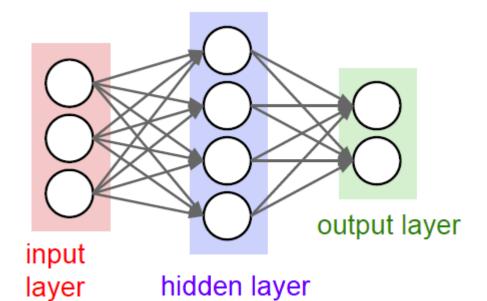
- Share the same parameters across different locations
- Convolutions with learned kernels

Learn *multiple* filters

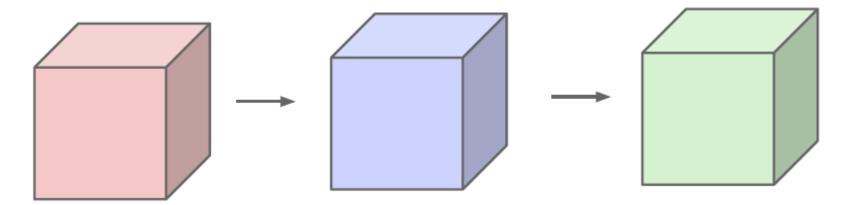
- E.g. 1000×1000 image
 100 filters
 10×10 filter size
- ⇒ 10k parameters
- Result: Response map
 - > size: 1000×1000×100
 - Only memory, not params!

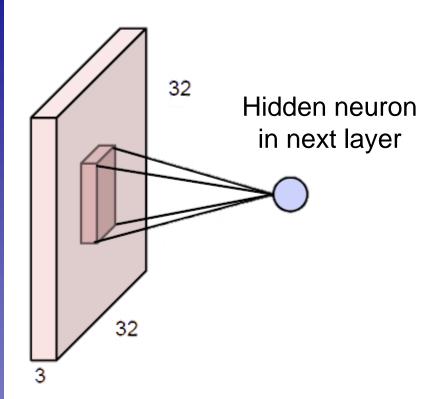
Important Conceptual Shift

Before



Now:





Example

image: 32×32×3 volume

Before: Full connectivity

 $32 \times 32 \times 3$ weights

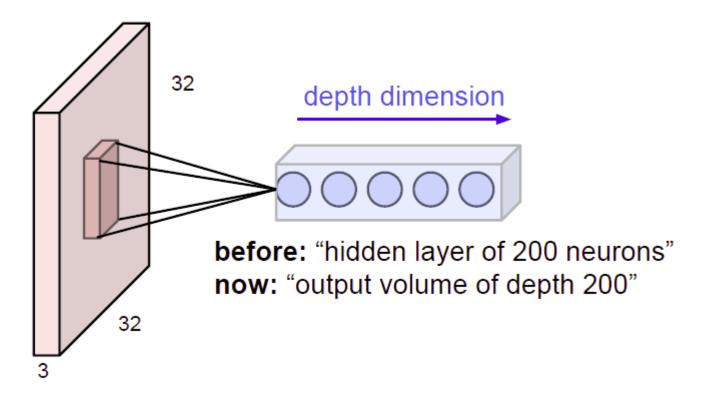
Now: Local connectivity

One neuron connects to, e.g.,

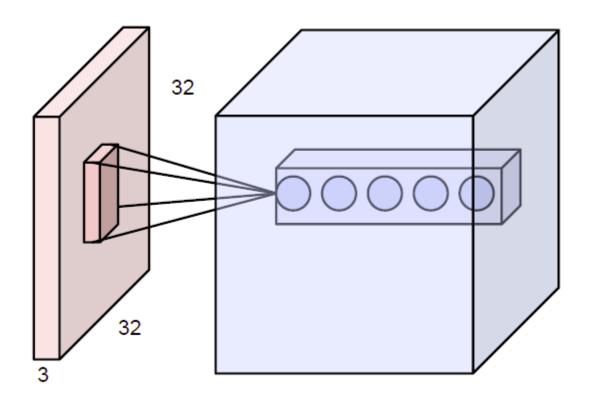
 $5 \times 5 \times 3$ region.

 \Rightarrow Only $5 \times 5 \times 3$ shared weights.

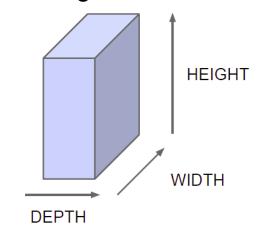
- Note: Connectivity is
 - Local in space (5×5) inside 32×32
 - But full in depth (all 3 depth channels)



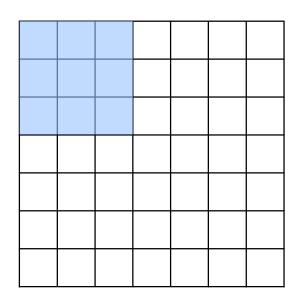
- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth



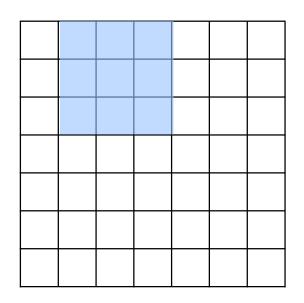
Naming convention:



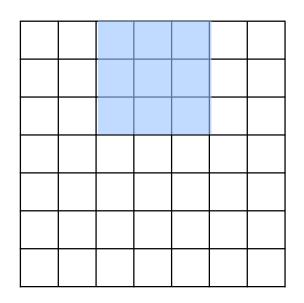
- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.



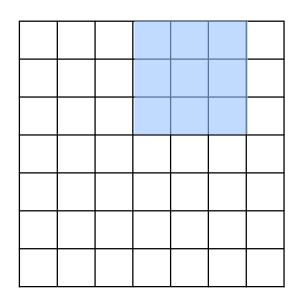
Example: 7×7 input assume 3×3 connectivity stride 1



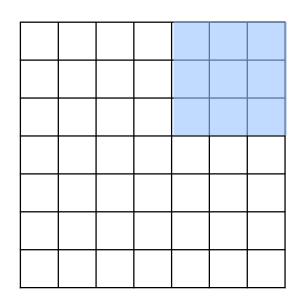
Example: 7×7 input assume 3×3 connectivity stride 1



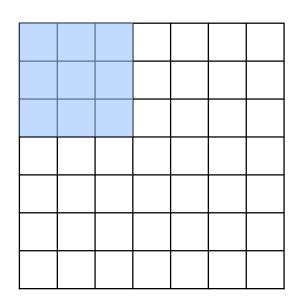
Example: 7×7 input assume 3×3 connectivity stride 1



Example: 7×7 input assume 3×3 connectivity stride 1



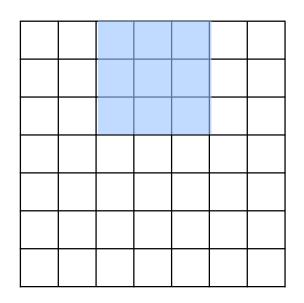
Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output



Example: 7×7 input assume 3×3 connectivity stride 1

What about stride 2?

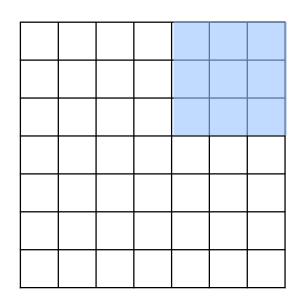
 \Rightarrow 5×5 output



Example: 7×7 input assume 3×3 connectivity stride 1

 \Rightarrow 5×5 output

What about stride 2?



Example:

 7×7 input assume 3×3 connectivity stride 1

 \Rightarrow 5×5 output

What about stride 2?

 \Rightarrow 3×3 output

0	0	0	0	0		
0						
0						
0						
0						

Example:

 7×7 input assume 3×3 connectivity stride 1

 \Rightarrow 5×5 output

What about stride 2?

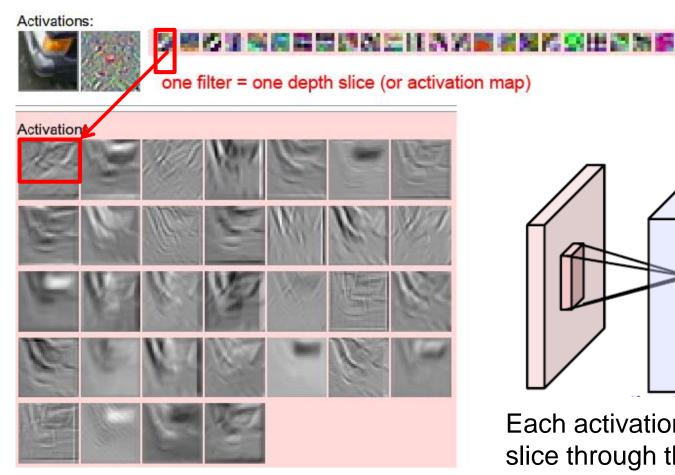
 \Rightarrow 3×3 output

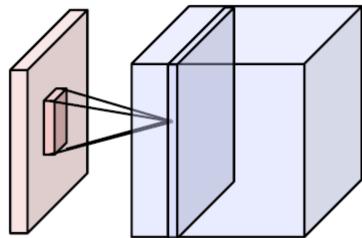
- Replicate this column of hidden neurons across space, with some stride.
- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.

RWTHAACHEN UNIVERSITY

5×5 filters

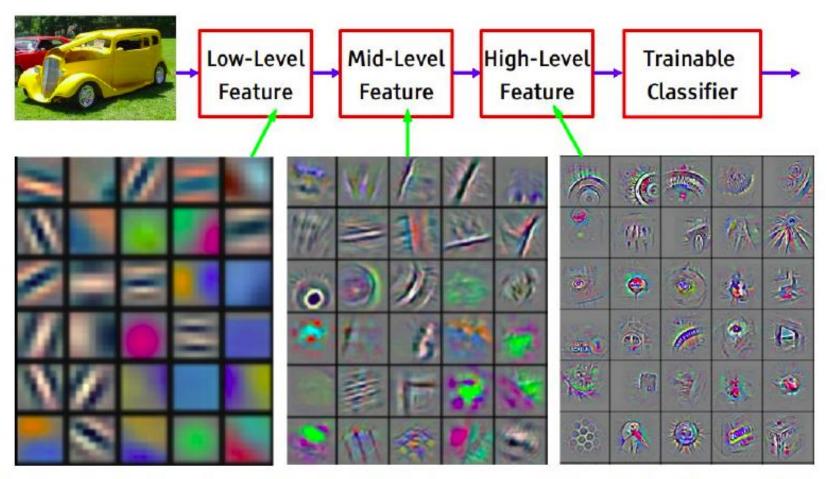
Activation Maps of Convolutional Filters





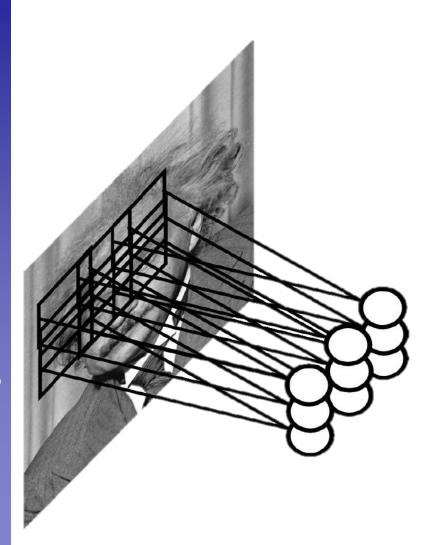
Each activation map is a depth slice through the output volume.

Effect of Multiple Convolution Layers



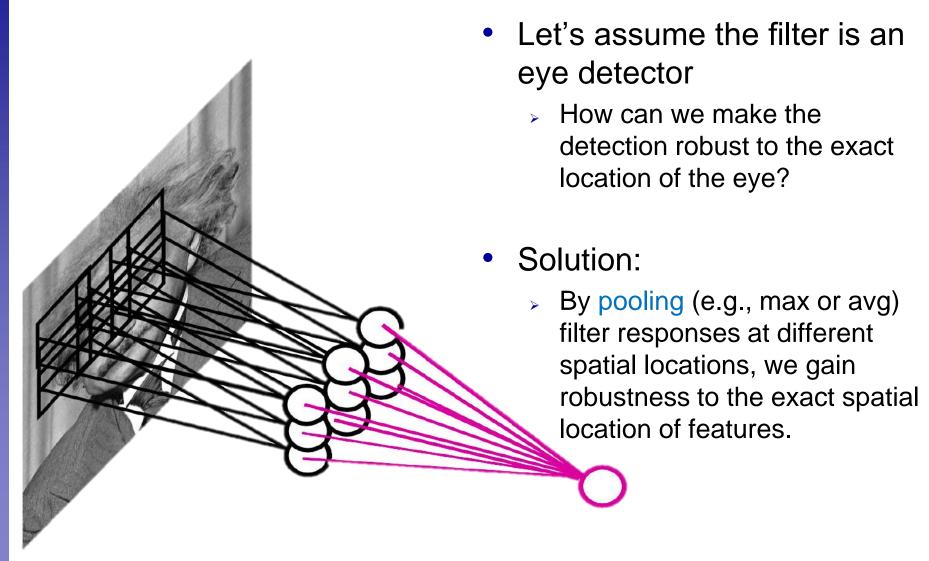
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional Networks: Intuition



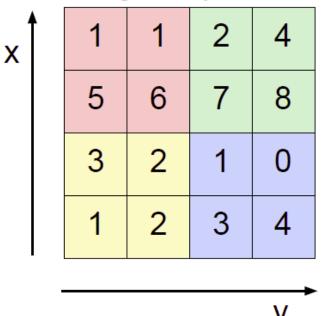
- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

Convolutional Networks: Intuition



Max Pooling

Single depth slice



max pool with 2x2 filters and stride 2

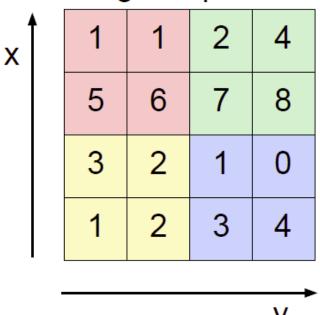
6	8		
3	4		

• Effect:

- Make the representation smaller without losing too much information
 - Achieve robustness to translations

Max Pooling

Single depth slice



max pool with 2x2 filters and stride 2

6	8
3	4

Note

Pooling happens independently across each slice, preserving the number of slices.

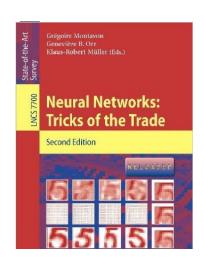
CNNs: Implication for Back-Propagation

- Convolutional layers
 - Filter weights are shared between locations
 - ⇒ Gradients are added for each filter location.

References and Further Reading

 More information on many practical tricks can be found in Chapter 1 of the book

> G. Montavon, G. B. Orr, K-R Mueller (Eds.) Neural Networks: Tricks of the Trade Springer, 1998, 2012



Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller Efficient BackProp, Ch.1 of the above book., 1998.

References

ReLu

X. Glorot, A. Bordes, Y. Bengio, <u>Deep sparse rectifier neural</u> <u>networks</u>, AISTATS 2011.

Initialization

- X. Glorot, Y. Bengio, <u>Understanding the difficulty of training deep</u> feedforward neural networks, AISTATS 2010.
- K. He, X.Y. Zhang, S.Q. Ren, J. Sun, <u>Delving Deep into Rectifiers:</u> <u>Surpassing Human-Level Performance on ImageNet Classification</u>, ArXiV 1502.01852v1, 2015.
- A.M. Saxe, J.L. McClelland, S. Ganguli, <u>Exact solutions to the</u> <u>nonlinear dynamics of learning in deep linear neural networks</u>, ArXiV 1312.6120v3, 2014.

References and Further Reading

Batch Normalization

S. Ioffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift</u>, ArXiV 1502.03167, 2015.

Dropout

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, <u>Dropout: A Simple Way to Prevent Neural Networks from Overfitting</u>, JMLR, Vol. 15:1929-1958, 2014.