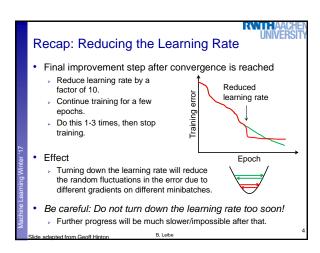
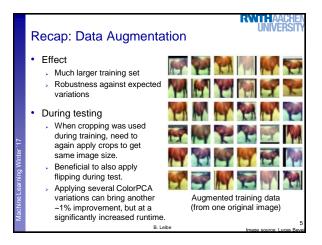
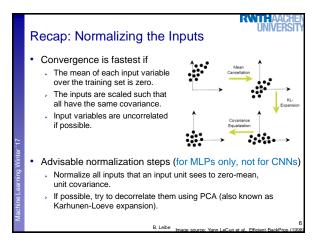


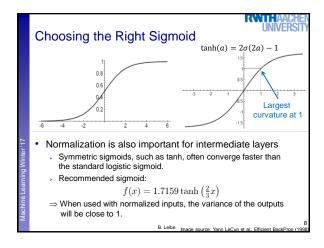
# Topics of This Lecture Recap: Tricks of the Trade Nonlinearities Initialization Advanced techniques Batch Normalization Dropout Convolutional Neural Networks Neural Networks for Computer Vision Convolutional Layers Pooling Layers

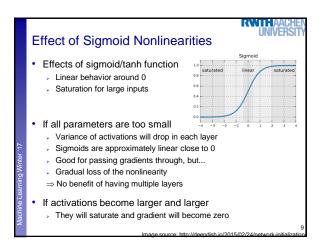


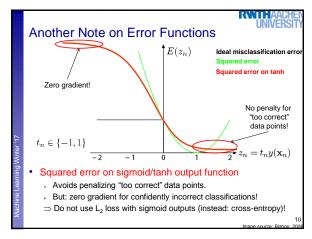


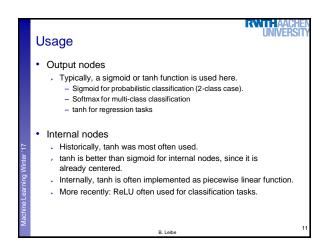


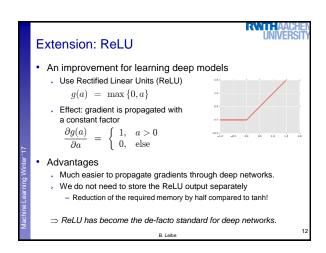
## Topics of This Lecture Recap: Tricks of the Trade Nonlinearities Initialization Advanced techniques Batch Normalization Dropout Convolutional Neural Networks Neural Networks for Computer Vision Convolutional Layers Pooling Layers





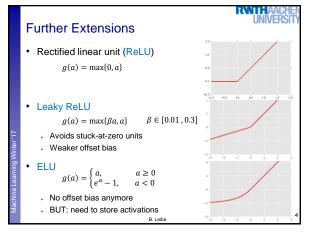


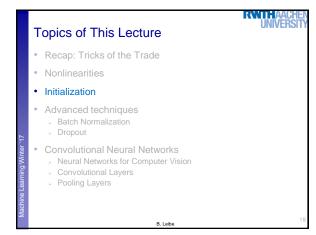


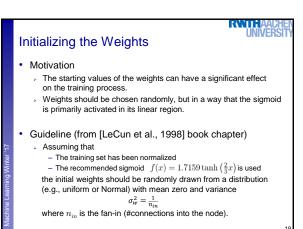


### Extension: ReLU • An improvement for learning deep models • Use Rectified Linear Units (ReLU) $g(a) = \max\{0, a\}$ • Effect: gradient is propagated with a constant factor $\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$ • Disadvantages / Limitations • A certain fraction of units will remain "stuck at zero". - If the initial weights are chosen such that the ReLU output is 0 for the entire training set, the unit will never pass through a gradient to change those weights.

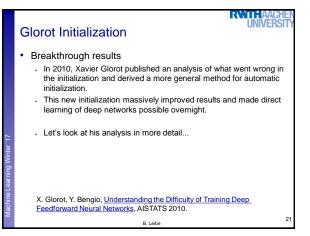
ReLU has an offset bias, since its outputs will always be positive







## • Apparently, this guideline was either little known or misunderstood for a long time • A popular heuristic (also the standard in Torch) was to use $W \sim U \left[ -\frac{1}{\sqrt{n_{in}}}, \frac{1}{\sqrt{n_{in}}} \right]$ • This looks almost like LeCun's rule. However... • When sampling weights from a uniform distribution [a,b]• Keep in mind that the standard deviation is computed as $\sigma^2 = \frac{1}{12}(b-a)^2$ • If we do that for the above formula, we obtain $\sigma^2 = \frac{1}{12} \left(\frac{2}{\sqrt{n_{in}}}\right)^2 = \frac{1}{3} \frac{1}{n_{in}}$ $\Rightarrow \text{Activations \& gradients will be attenuated with each layer! (bad)}$





### Analysis

- · Variance of neuron activations
  - Suppose we have an input  $\boldsymbol{X}$  with  $\boldsymbol{n}$  components and a linear neuron with random weights W that spits out a number Y.
  - What is the variance of Y?

$$Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$

> If inputs and outputs have both mean 0, the variance is

$$Var(W_iX_i) = E[X_i]^2 Var(W_i) + E[W_i]^2 Var(X_i) + Var(W_i) Var(X_i)$$

$$= Var(W_i)Var(X_i)$$

- ightharpoonup If the  $X_i$  and  $W_i$  are all i.i.d, then
  - $Var(Y) = Var(W_1X_1 + W_2X_2 + \dots + W_nX_n) = nVar(W_i)Var(X_i)$
- ⇒ The variance of the output is the variance of the input, but scaled by  $n \operatorname{Var}(W_i)$ .

### Analysis (cont'd)

- · Variance of neuron activations
  - if we want the variance of the input and output of a unit to be the same, then  $n \operatorname{Var}(W_i)$  should be 1. This means

$$\operatorname{Var}(W_i) = \frac{1}{n} = \frac{1}{n_{\mathrm{in}}}$$

If we do the same for the backpropagated gradient, we get

$$\operatorname{Var}(W_i) = \frac{1}{n_{\mathrm{out}}}$$

As a compromise, Glorot & Bengio proposed to use

$$\mathrm{Var}(W) = rac{2}{n_{\mathrm{in}} + n_{\mathrm{out}}}$$

⇒ Randomly sample the weights with this variance. That's it.

### Sidenote

When sampling weights from a uniform distribution [a,b]

, Again keep in mind that the standard deviation is computed as  $\sigma^2 = \frac{1}{12}(b-a)^2$ 

$$\sigma^2 = \frac{1}{12}(b-a)^2$$

Glorot initialization with uniform distribution 
$$W{\sim}U\left[-\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}},\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}},\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}\right]$$

Or when only taking into account the fan-in

$$W \sim U \left[ -\frac{\sqrt{3}}{\sqrt{n_{in}}}, \frac{\sqrt{3}}{\sqrt{n_{in}}} \right]$$

If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years

### Extension to ReLU

- · Important for learning deep models
  - Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$

- We can also improve them with proper initialization
  - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
  - He et al. made the derivations, derived to use instead

$$\mathrm{Var}(W) = rac{2}{n_{\mathrm{in}}}$$

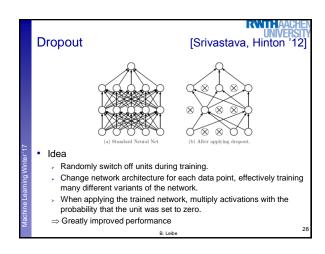
### Topics of This Lecture

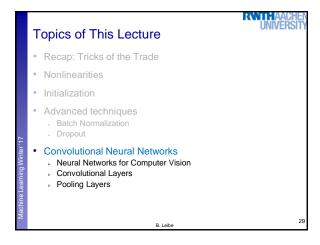
- · Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
  - Batch Normalization
  - Dropout
- Convolutional Neural Networks
  - Neural Networks for Computer Vision
  - Convolutional Layers
  - Pooling Layers

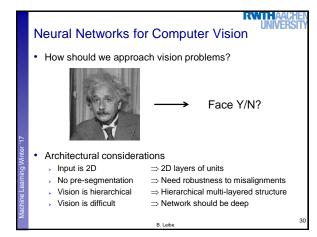
### **Batch Normalization**

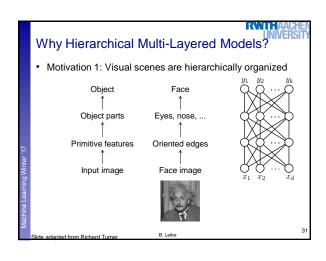
[loffe & Szegedy

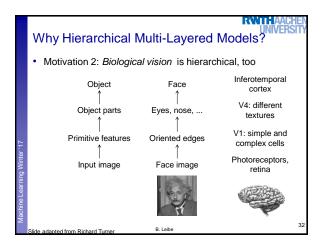
- Motivation
  - > Optimization works best if all inputs of a layer are normalized.
- Idea
  - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
  - > I.e., perform transformations on all activations
  - and undo those transformations when backpropagating gradients
  - Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.
    - Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)
- - Much improved convergence (but parameter values are important!)
  - > Widely used in practice

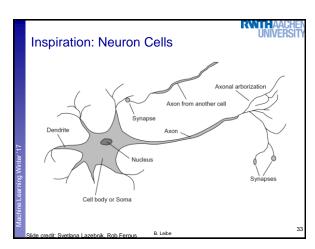


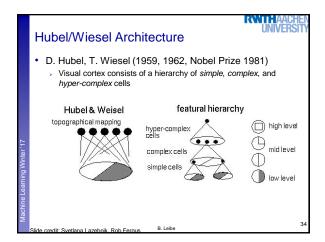


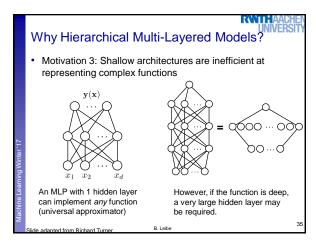


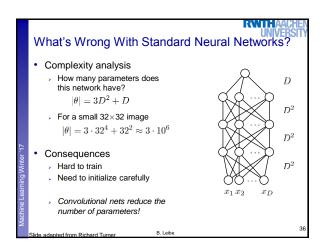


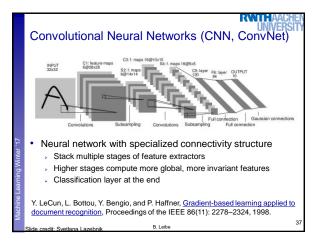


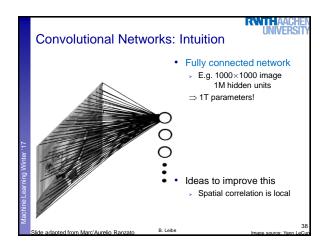


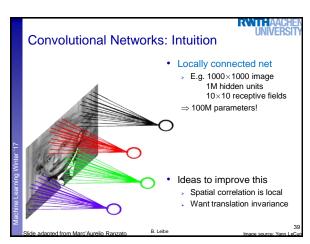


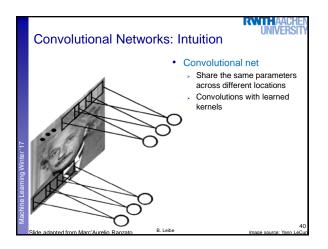


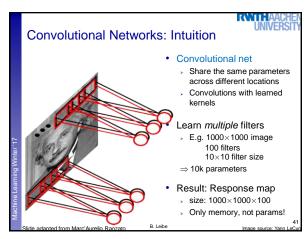


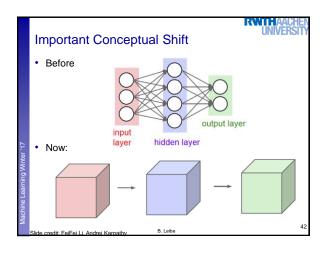


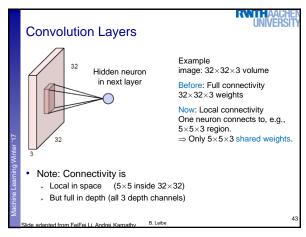


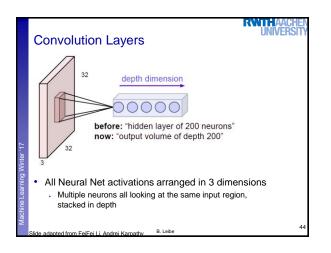


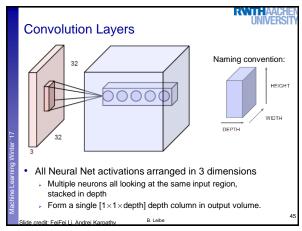


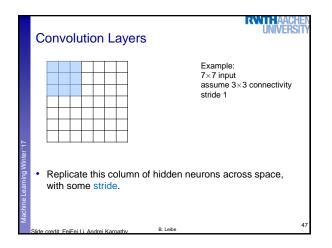


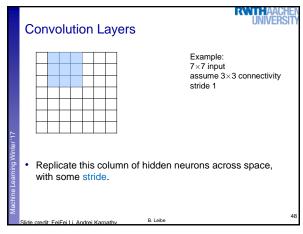


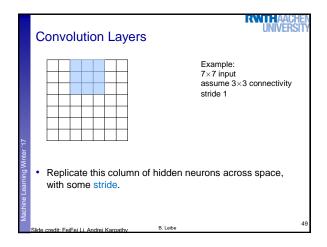


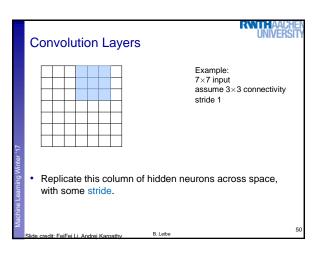


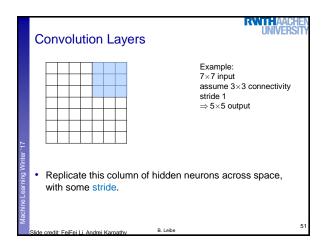


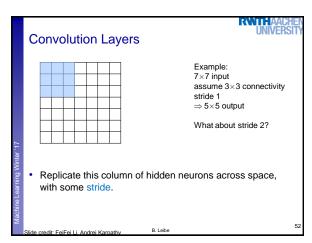


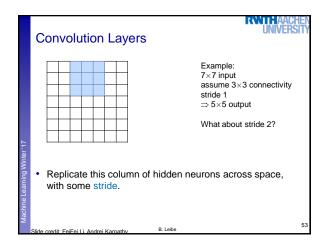


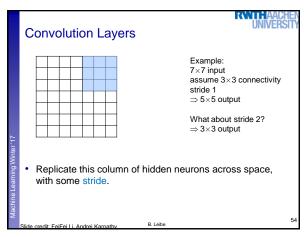


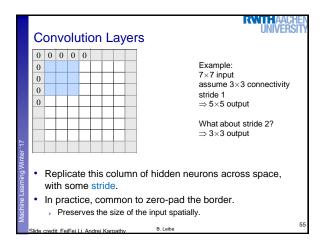


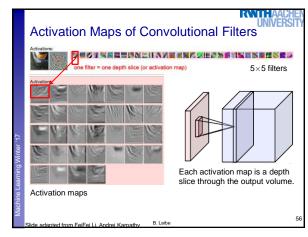


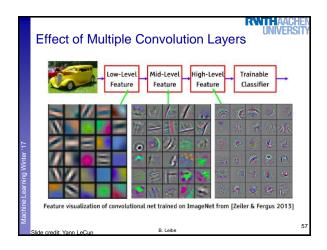


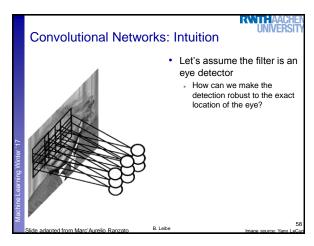


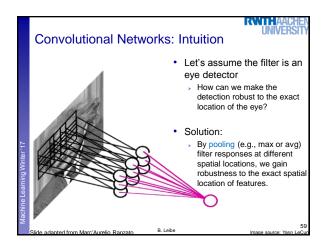


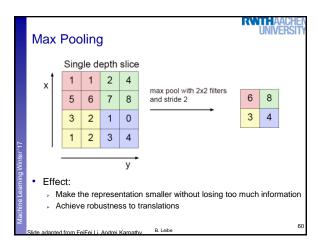


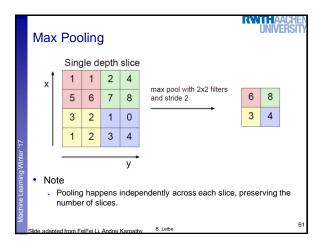


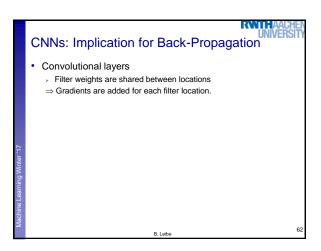


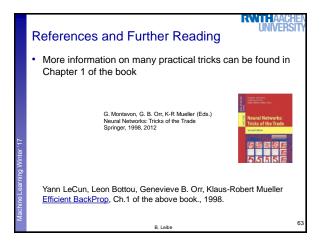


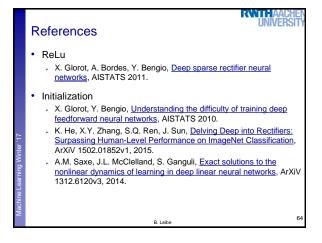














### References and Further Reading

- · Batch Normalization
  - S. loffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift</u>, ArXiV 1502.03167, 2015.
- Dropout
  - N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.
     Salakhutdinov, <u>Dropout: A Simple Way to Prevent Neural Networks from Overfitting</u>, JMLR, Vol. 15:1929-1958, 2014.

B. Leibe

65