

Machine Learning – Lecture 12

Neural Networks

30.11.2017

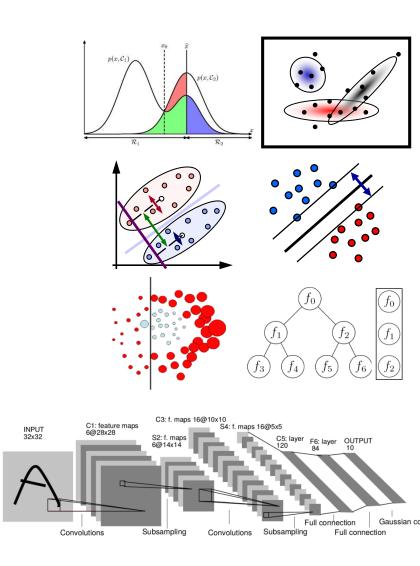
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

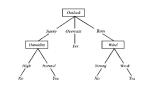
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - > Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks



RWTHAACHEN UNIVERSITY

Recap: Decision Tree Training

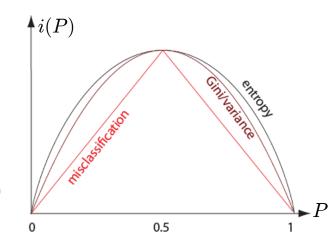


- Goal
 - Select the query (=split) that decreases impurity the most

$$\Delta i(s_j) = i(s_j) - P_L i(s_{j,L}) - (1 - P_L)i(s_{j,R})$$

- Impurity measures
 - Entropy impurity (information gain):

$$i(s_j) = -\sum_k p(C_k|s_j) \log_2 p(C_k|s_j)$$



Gini impurity:

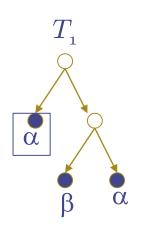
$$i(s_j) = \sum_{k \neq l} p(C_k|s_j) p(C_l|s_j) = \frac{1}{2} \left[1 - \sum_k p^2(C_k|s_j) \right]$$

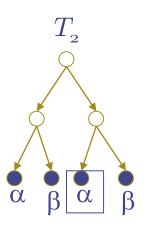
Recap: Randomized Decision Trees

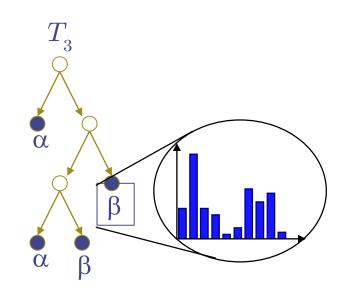
- Decision trees: main effort on finding good split
 - > Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - \triangleright Especially cumbersome with many attributes (large D).
- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):

$$\triangle E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)$$

Recap: Ensemble Combination







- Ensemble combination
 - > Tree leaves (l,η) store posterior probabilities of the target classes.

$$p_{l,\eta}(\mathcal{C}|\mathbf{x})$$

 Combine the output of several trees by averaging their posteriors (Bayesian model combination)

$$p(C|\mathbf{x}) = \frac{1}{L} \sum_{l=1}^{L} p_{l,\eta}(C|\mathbf{x})$$

B. Leibe

RWTHAACHEN UNIVERSITY

Recap: Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (50 1,000) trees.
- Injecting randomness
 - Bootstrap sampling process
 - On average only 63% of training examples used for building the tree
 - Remaining 37% out-of-bag samples used for validation.
 - Random attribute selection
 - Randomly choose subset of K attributes to select from at each node.
 - Faster training procedure.
- Simple majority vote for tree combination
- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

RWTHAACHEN UNIVERSITY

Today's Topic

Topics of This Lecture

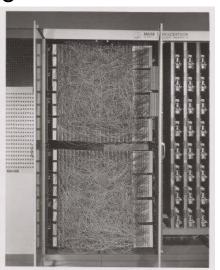
- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

1957 Rosenblatt invents the Perceptron

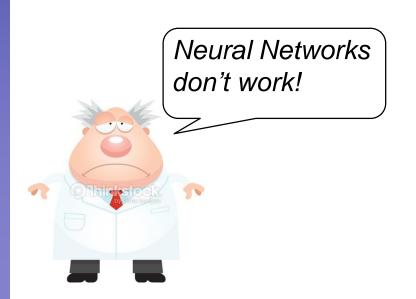
- And a cool learning algorithm: "Perceptron Learning"
- Hardware implementation "Mark I Perceptron" for 20×20 pixel image analysis

The New York Times

"The embryo of an electronic computer that [...] will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."



- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
 - They showed that (single-layer) Perceptrons cannot solve all problems.
 - This was misunderstood by many that they were worthless.



1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

- Some notable successes with multi-layer perceptrons.
- Backpropagation learning algorithm

OMG! They work like the human brain!

Oh no! Killer robots will achieve world domination!

- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
 - Some notable successes with multi-layer perceptrons.
 - Backpropagation learning algorithm
 - But they are hard to train, tend to overfit, and have unintuitive parameters.
 - So, the excitement fades again...

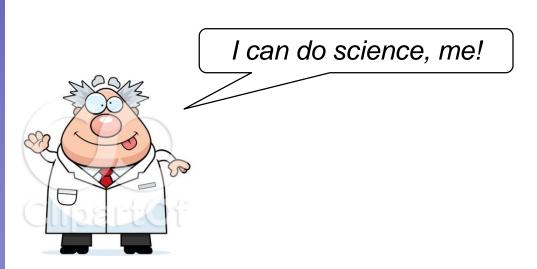
1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

- Notably Support Vector Machines
- Machine Learning becomes a discipline of its own.



1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

- Notably Support Vector Machines
- Machine Learning becomes a discipline of its own.
- The general public and the press still love Neural Networks.

I'm doing Machine Learning.

So, you're using Neural Networks?

Actually...

- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
- 1995+ Interest shifts to other learning methods
- 2005+ Gradual progress
 - Better understanding how to successfully train deep networks
 - Availability of large datasets and powerful GPUs
 - Still largely under the radar for many disciplines applying ML

Are you using Neural Networks?

Come on. Get real!

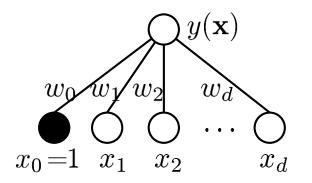
- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
- 1995+ Interest shifts to other learning methods
- 2005+ Gradual progress
- 2012 Breakthrough results
 - ImageNet Large Scale Visual Recognition Challenge
 - A ConvNet halves the error rate of dedicated vision approaches.
 - Deep Learning is widely adopted.

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Perceptrons (Rosenblatt 1957)

Standard Perceptron



Output layer

Weights

Input layer

- Input Layer
 - Hand-designed features based on common sense
- Outputs

Linear outputs
$$y(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + w_0$$

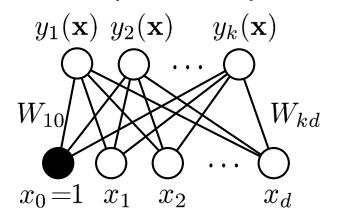
Logistic outputs

$$y(\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0)$$

Learning = Determining the weights w

Extension: Multi-Class Networks

One output node per class



Output layer

Weights

Input layer

- Outputs
 - Linear outputs

$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} x_i$$

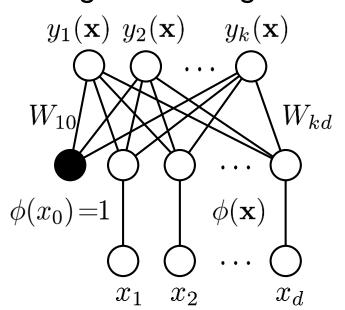
Logistic outputs

$$y_k(\mathbf{x}) = \sigma\left(\sum_{i=0}^d W_{ki} x_i\right)$$

⇒ Can be used to do multidimensional linear regression or multiclass classification.

Extension: Non-Linear Basis Functions

Straightforward generalization



Output layer

Weights

Feature layer

Mapping (fixed)

Input layer

- Outputs
 - Linear outputs

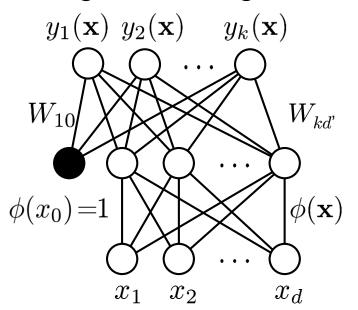
$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} \phi(x_i)$$

Logistic outputs

$$y_k(\mathbf{x}) = \sigma \left(\sum_{i=0}^d W_{ki} \phi(\mathbf{x}_i) \right)$$

Extension: Non-Linear Basis Functions

Straightforward generalization



Output layer

Weights

Feature layer

Mapping (fixed)

Input layer

Remarks

- Perceptrons are generalized linear discriminants!
- Everything we know about the latter can also be applied here.
- Note: feature functions $\phi(\mathbf{x})$ are kept fixed, not learned!

Perceptron Learning

- Very simple algorithm
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- This is guaranteed to converge to a correct solution if such a solution exists.

Perceptron Learning

- Let's analyze this algorithm...
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- Translation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)}$$

Perceptron Learning

- Let's analyze this algorithm...
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- Translation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

- This is the Delta rule a.k.a. LMS rule!
- ⇒ Perceptron Learning corresponds to 1st-order (stochastic) Gradient Descent of a quadratic error function!

Loss Functions

We can now also apply other loss functions

Least-squares regression
$$L(t,y(\mathbf{x})) = \sum_n \left(y(\mathbf{x}_n) - t_n\right)^2$$

L1 loss:

$$L(t, y(\mathbf{x})) = \sum_{n} |y(\mathbf{x}_n) - t_n|$$

Cross-entropy loss

$$L(t, y(\mathbf{x})) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Hinge loss

$$L(t, y(\mathbf{x})) = \sum_{n} [1 - t_n y(\mathbf{x}_n)]_{+}$$

Softmax loss

$$L(t, y(\mathbf{x})) = -\sum_{n} \sum_{k} \left\{ \mathbb{I}\left(t_{n} = k\right) \ln \frac{\exp(y_{k}(\mathbf{x}))}{\sum_{j} \exp(y_{j}(\mathbf{x}))} \right\}$$

B. Leibe

⇒ Logistic regression

⇒ Median regression

⇒ Multi-class probabilistic classification

25

Regularization

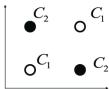
- In addition, we can apply regularizers
 - E.g., an L2 regularizer

$$E(\mathbf{w}) = \sum L(t_n, y(\mathbf{x}_n; \mathbf{w})) + \lambda ||\mathbf{w}||^2$$

- > This is known as weight decay in Neural Networks.
- We can also apply other regularizers, e.g. L1 ⇒ sparsity
- Since Neural Networks often have many parameters, regularization becomes very important in practice.
- We will see more complex regularization techniques later on...

Limitations of Perceptrons

- What makes the task difficult?
 - Perceptrons with fixed, hand-coded input features can model any separable function perfectly...
 - ...given the right input features.
 - For some tasks this requires an exponential number of input features.
 - E.g., by enumerating all possible binary input vectors as separate feature units (similar to a look-up table).
 - But this approach won't generalize to unseen test cases!
 - ⇒ It is the feature design that solves the task!
 - Once the hand-coded features have been determined, there are very strong limitations on what a perceptron can learn.
 - Classic example: XOR function.



Wait...

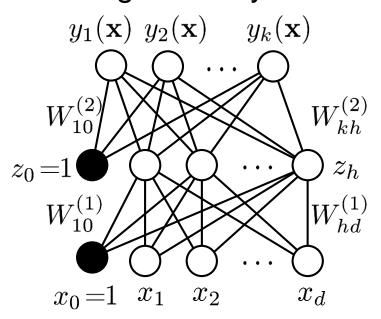
- Didn't we just say that...
 - Perceptrons correspond to generalized linear discriminants
 - And Perceptrons are very limited...
 - Doesn't this mean that what we have been doing so far in this lecture has the same problems???
- Yes, this is the case.
 - A linear classifier cannot solve certain problems (e.g., XOR).
 - However, with a non-linear classifier based on the right kind of features, the problem becomes solvable.
 - \Rightarrow So far, we have solved such problems by hand-designing good features ϕ and kernels $\phi^{\top}\phi$.
 - ⇒ Can we also learn such feature representations?

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Multi-Layer Perceptrons

Adding more layers



Output layer

Hidden layer

Mapping (learned!)

Input layer

Output

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

Multi-Layer Perceptrons

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

- Activation functions $g^{(k)}$:
 - For example: $g^{(2)}(a) = \sigma(a)$, $g^{(1)}(a) = a$
- The hidden layer can have an arbitrary number of nodes
 - There can also be multiple hidden layers.
- Universal approximators
 - A 2-layer network (1 hidden layer) can approximate any continuous function of a compact domain arbitrarily well! (assuming sufficient hidden nodes)

Learning with Hidden Units

- Networks without hidden units are very limited in what they can learn
 - More layers of linear units do not help ⇒ still linear
 - Fixed output non-linearities are not enough.
- We need multiple layers of adaptive non-linear hidden units.
 But how can we train such nets?
 - Need an efficient way of adapting all weights, not just the last layer.
 - Learning the weights to the hidden units = learning features
 - This is difficult, because nobody tells us what the hidden units should do.
 - ⇒ Main challenge in deep learning.

Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function

$$E(\mathbf{W}) = \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \lambda \Omega(\mathbf{W})$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.

$$imes$$
 E.g., $L(t,y(\mathbf{x};\mathbf{W})) = \sum_n \left(y(\mathbf{x}_n;\mathbf{W}) - t_n\right)^2$ L₂ loss

$$\Omega(\mathbf{W}) = ||\mathbf{W}||_F^2$$

L₂ regularizer ("weight decay")

 \Rightarrow Update each weight $W_{ij}^{(k)}$ in the direction of the gradient $\frac{\partial E(\mathbf{W})}{\partial W_{ij}^{(k)}}$

Gradient Descent

- Two main steps
 - 1. Computing the gradients for each weight
 - Adjusting the weights in the direction of the gradient

today

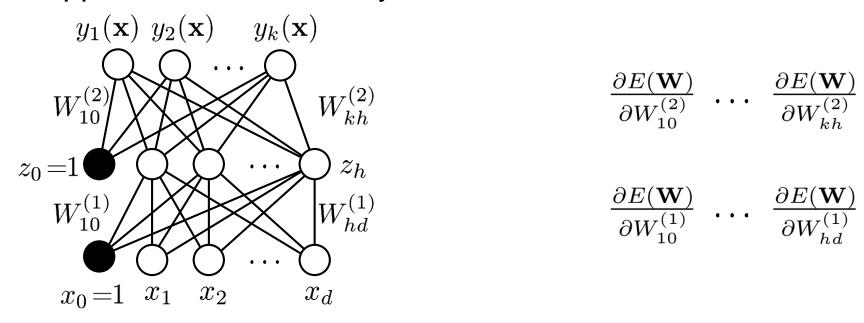
next lecture

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

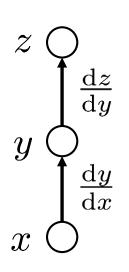
Approach 1: Naive Analytical Differentiation



- Compute the gradients for each variable analytically.
- What is the problem when doing this?

Excursion: Chain Rule of Differentiation

One-dimensional case: Scalar functions



$$\Delta z = \frac{\mathrm{d}z}{\mathrm{d}y} \Delta y$$

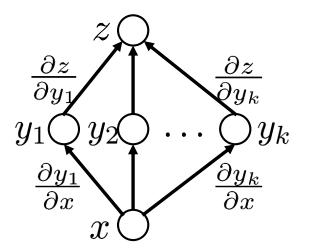
$$\Delta y = \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$

$$\Delta y = \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$
$$\Delta z = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

Excursion: Chain Rule of Differentiation

Multi-dimensional case: Total derivative



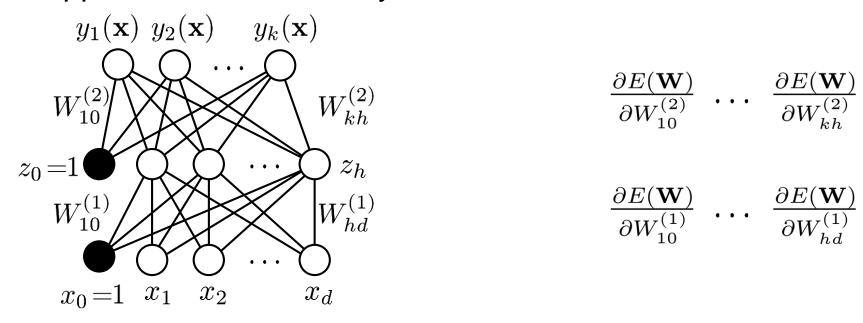
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} + \dots$$

$$=\sum_{i=1}^{k}\frac{\partial z}{\partial y_i}\frac{\partial y_i}{\partial x}$$

 \Rightarrow Need to sum over all paths that lead to the target variable x.

Obtaining the Gradients

Approach 1: Naive Analytical Differentiation



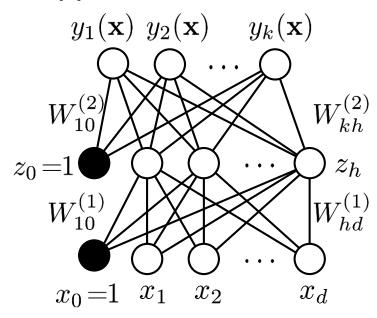
- Compute the gradients for each variable analytically.
- What is the problem when doing this?
- ⇒ With increasing depth, there will be exponentially many paths!
- \Rightarrow Infeasible to compute this way.

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

Approach 2: Numerical Differentiation



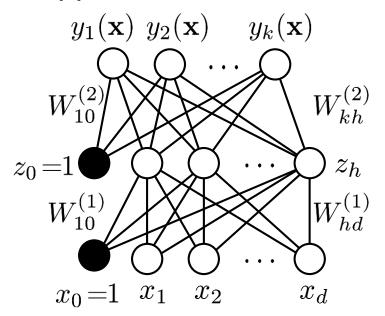
- Given the current state $\mathbf{W}^{(\tau)}$, we can evaluate $E(\mathbf{W}^{(\tau)})$.
- Idea: Make small changes to $\mathbf{W}^{(\tau)}$ and accept those that improve $E(\mathbf{W}^{(\tau)})$.
- ⇒ Horribly inefficient! Need several forward passes for each weight. Each forward pass is one run over the entire dataset!

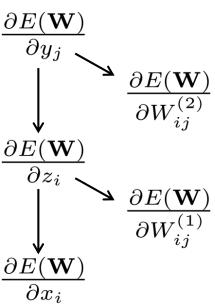
Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

Approach 3: Incremental Analytical Differentiation



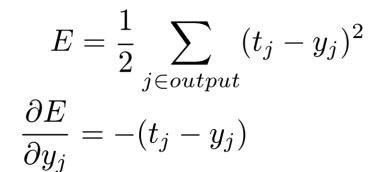


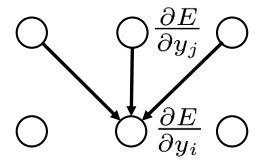
- Idea: Compute the gradients layer by layer.
- Each layer below builds upon the results of the layer above.
- ⇒ The gradient is propagated backwards through the layers.
- ⇒ Backpropagation algorithm

Core steps

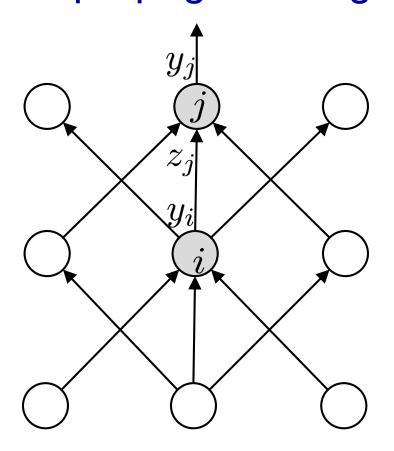
- Convert the discrepancy between each output and its target value into an error derivate.
- 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.

3. Use error derivatives *w.r.t.* activities to get error derivatives *w.r.t.* the incoming weights





$$\frac{\partial E}{\partial y_i} \longrightarrow \frac{\partial E}{\partial w_{ik}}$$



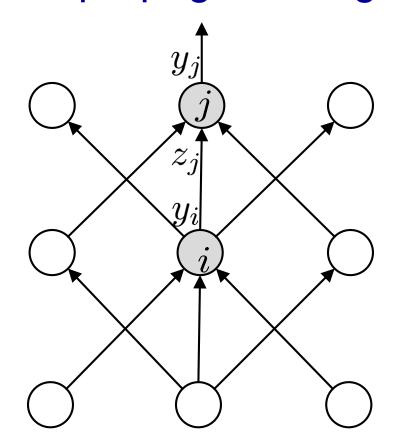
E.g. with sigmoid output nonlinearity

$$\frac{\partial E}{\partial z_{i}} = \frac{\partial y_{j}}{\partial z_{i}} \frac{\partial E}{\partial y_{i}} = \frac{\mathbf{y}_{j}(1 - \mathbf{y}_{j})}{\partial y_{i}} \frac{\partial E}{\partial y_{j}}$$

Notation

- $> y_i$ Output of layer j
- > z_i Input of layer j

Connections: $z_j = \sum_i w_{ij} y_i$ $y_j = g(z_j)$



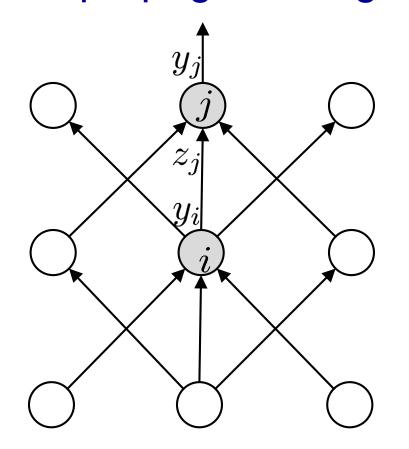
$$\frac{\partial E}{\partial z_j} = \frac{\partial y_j}{\partial z_j} \frac{\partial E}{\partial y_j} = y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

$$\frac{\partial E}{\partial y_i} = \sum_{j} \frac{\partial z_j}{\partial y_i} \frac{\partial E}{\partial z_j} = \sum_{j} \mathbf{w_{ij}} \frac{\partial E}{\partial z_j}$$

Notation

- y_i Output of layer j
- $\triangleright z_i$ Input of layer j

Connections: $z_j = \sum_i w_{ij} y_i$



$$\frac{\partial E}{\partial z_j} = \frac{\partial y_j}{\partial z_j} \frac{\partial E}{\partial y_j} = y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

$$\frac{\partial E}{\partial y_i} = \sum_{j} \frac{\partial z_j}{\partial y_i} \frac{\partial E}{\partial z_j} = \sum_{j} w_{ij} \frac{\partial E}{\partial z_j}$$

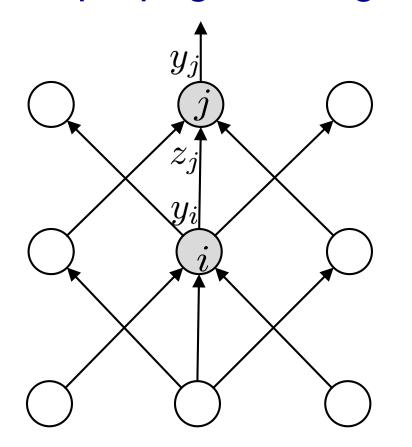
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial z_j}{\partial w_{ij}} \frac{\partial E}{\partial z_j} = \mathbf{y_i} \frac{\partial E}{\partial z_j}$$

Notation

- y_i Output of layer j
- $> z_i$ Input of layer j

Connections:
$$z_j = \sum_i w_{ij} y_i$$
 $rac{\partial z_j}{\partial w_{ij}} = y_i$

B. Leibe



$$\frac{\partial E}{\partial z_j} = \frac{\partial y_j}{\partial z_j} \frac{\partial E}{\partial y_j} = y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

$$\frac{\partial E}{\partial y_i} = \sum_{j} \frac{\partial z_j}{\partial y_i} \frac{\partial E}{\partial z_j} = \sum_{j} \mathbf{w_{ij}} \frac{\partial E}{\partial z_j}$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial z_j}{\partial w_{ij}} \frac{\partial E}{\partial z_j} = \mathbf{y_i} \frac{\partial E}{\partial z_j}$$

- Efficient propagation scheme
 - y_i is already known from forward pass! (Dynamic Programming)
 - \Rightarrow Propagate back the gradient from layer j and multiply with y_i .

Summary: MLP Backpropagation

Forward Pass

$$\mathbf{y}^{(0)} = \mathbf{x}$$
for $k = 1, ..., l$ do
 $\mathbf{z}^{(k)} = \mathbf{W}^{(k)} \mathbf{y}^{(k-1)}$
 $\mathbf{y}^{(k)} = g_k(\mathbf{z}^{(k)})$
endfor
 $\mathbf{y} = \mathbf{y}^{(l)}$
 $E = L(\mathbf{t}, \mathbf{y}) + \lambda \Omega(\mathbf{W})$

Backward Pass

$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}} = \frac{\partial}{\partial \mathbf{y}} L(\mathbf{t}, \mathbf{y}) + \lambda \frac{\partial}{\partial \mathbf{y}} \Omega$$
for $k = l, l\text{-}1, ..., 1$ do
$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{z}^{(k)}} = \mathbf{h} \odot g'(\mathbf{y}^{(k)})$$

$$\frac{\partial E}{\partial \mathbf{W}^{(k)}} = \mathbf{h} \mathbf{y}^{(k-1)\top} + \lambda \frac{\partial \Omega}{\partial \mathbf{W}^{(k)}}$$

$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}^{(k-1)}} = \mathbf{W}^{(k)\top} \mathbf{h}$$
endfor

Notes

- ightharpoonup For efficiency, an entire batch of data ${f X}$ is processed at once.
- O denotes the element-wise product

Analysis: Backpropagation

- Backpropagation is the key to make deep NNs tractable
 - However...
- The Backprop algorithm given here is specific to MLPs
 - It does not work with more complex architectures, e.g. skip connections or recurrent networks!
 - Whenever a new connection function induces a different functional form of the chain rule, you have to derive a new Backprop algorithm for it.

- ⇒ Tedious...
- Let's analyze Backprop in more detail
 - This will lead us to a more flexible algorithm formulation
 - Next lecture...

References and Further Reading

 More information on Neural Networks can be found in Chapters 6 and 7 of the Goodfellow & Bengio book

> I. Goodfellow, Y. Bengio, A. Courville Deep Learning MIT Press, 2016

https://goodfeli.github.io/dlbook/

