
1

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Machine Learning – Lecture 11

Random Forests
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
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Recap: AdaBoost – “Adaptive Boosting” 

• Main idea [Freund & Schapire, 1996]

 Instead of resampling, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost: 

 Construct a strong classifier as a thresholded linear combination of 

the weighted weak classifiers:

3
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H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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1. Initialization: Set                 for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm

4
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Recap: AdaBoost – Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
5

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

6
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis
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Decision Trees

• Very old technique

 Origin in the 60s, might seem outdated.

• But…

 Can be used for problems with nominal data

– E.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}.

– Discrete values, no notion of similarity or even ordering.

 Interpretable results

– Learned trees can be written as sets of if-then rules.

 Methods developed for handling missing feature values.

 Successfully applied to broad range of tasks

– E.g. Medical diagnosis

– E.g. Credit risk assessment of loan applicants

 Some interesting novel developments building on top of them…

8
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Decision Trees

• Example:

 “Classify Saturday mornings according to whether they’re  

suitable for playing tennis.”

9
B. Leibe Image source: T. Mitchell, 1997
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Decision Trees

• Elements

 Each node specifies a test for some attribute.

 Each branch corresponds to a possible value of the attribute.

10
B. Leibe Image source: T. Mitchell, 1997
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Decision Trees

• Assumption

 Links must be mutually distinct and exhaustive

 I.e. one and only one link will be followed at each step.

• Interpretability

 Information in a tree can then be 

rendered as logical expressions.

 In our example:

11
B. Leibe

(Outlook = Sunny ^Humidity = Normal)

_ (Outlook = Overcast)

_ (Outlook = Rain ^Wind =Weak)

Image source: T. Mitchell, 1997
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Training Decision Trees

• Finding the optimal decision tree is NP-hard…

• Common procedure: Greedy top-down growing

 Start at the root node.

 Progressively split the training data into smaller and smaller subsets.

 In each step, pick the best attribute to split the data.

 If the resulting subsets are pure (only one label) or if no further 

attribute can be found that splits them, terminate the tree.

 Else, recursively apply the procedure to the subsets.

• CART framework

 Classification And Regression Trees (Breiman et al. 1993)

 Formalization of the different design choices.

12
B. Leibe
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CART Framework

• Six general questions

1. Binary or multi-valued problem?

– I.e. how many splits should there be at each node?

2. Which property should be tested at a node?

– I.e. how to select the query attribute?

3. When should a node be declared a leaf?

– I.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?

– Goal: reduce overfitting.

5. How to deal with impure nodes?

– I.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

13
B. Leibe
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CART – 1. Number of Splits

• Each multi-valued tree can be converted into an equivalent 

binary tree:

 Only consider binary trees here…

14
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART – 2. Picking a Good Splitting Feature 

• Goal

 Want a tree that is as simple/small as possible (Occam’s razor).

 But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search

 Efficient, but not guaranteed to find the smallest tree.

 Seek a property T at each node sj that makes the data in the child 

nodes as pure as possible.

 For formal reasons more convenient to define impurity i(sj).

 Several possible definitions explored.

15
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CART – Impurity Measures

• Misclassification impurity

16
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i(P )

P

“Fraction of the 

training patterns 

in category Ck that

end up in node sj.”

Problem:

discontinuous derivative!

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = 1 − max
𝑘

𝑝 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Entropy impurity

17
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i(P )

P

“Reduction in 

entropy = gain in

information.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = − 

𝑘

𝑝 𝐶𝑘 𝑠𝑗 log2 𝑝 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Gini impurity (variance impurity)

18

i(P )

P

“Expected error
rate at node sj if

the category label is 

selected randomly.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 =

𝑘≠𝑙

𝑝 𝐶𝑘 𝑠𝑗 𝑝 𝐶𝑙 𝑠𝑗

=
1

2
1 −

𝑘

𝑝2 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Which impurity measure should we choose?

 Some problems with misclassification impurity.

– Discontinuous derivative.

 Problems when searching over continuous parameter space.

– Sometimes misclassification impurity does not decrease when Gini 

impurity would.

 Both entropy impurity and Gini impurity perform well.

– No big difference in terms of classifier performance.

– In practice, stopping criterion and pruning method are often more 

important.

19
B. Leibe
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CART – 2. Picking a Good Splitting Feature 

• Application

 Select the query that decreases impurity the most

• Multiway generalization (gain ratio impurity):

 Maximize

 where the normalization factor ensures that large K are not 

inherently favored:

20
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Δ𝑖 𝑠𝑗 = 𝑖 𝑠𝑗 − 𝑃𝐿𝑖 𝑠𝑗,𝐿 − 1− 𝑃𝐿 𝑖(𝑠𝑗,𝑅)

𝑃𝐿 = fraction of 

points at left 

child node 𝑠𝑗,𝐿

Δ𝑖 𝑠𝑗 =
1

𝑍
𝑖 𝑠𝑗 − 

𝑚=1

𝑀

𝑃𝑚𝑖(𝑠𝑗,𝑚)

𝑍 = − 

𝑚=1

𝑀

𝑃𝑚 log2 𝑃𝑚
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• For efficiency, splits are often based on a single feature

 “Monothetic decision trees”

• Evaluating candidate splits

 Nominal attributes: exhaustive search over all possibilities.

 Real-valued attributes: only need to consider changes in label.

– Order all data points based on attribute xi.

– Only need to test candidate splits where label(xi)  label(xi+1).

CART – Picking a Good Splitting Feature

21
B. Leibe
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CART – 3. When to Stop Splitting

• Problem: Overfitting

 Learning a tree that classifies the training data perfectly may not lead 

to the tree with the best generalization to unseen data.

 Reasons

– Noise or errors in the training data.

– Poor decisions towards the leaves of the tree that are based on very 

little data.

• Typical behavior

22
B. LeibeSlide adapted from Raymond Mooney

hypothesis complexity

a
c
c
u
ra

c
y

on training data

on test data
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CART – Overfitting Prevention (Pruning)

• Two basic approaches for decision trees

 Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make reliable 

decisions.

 Postpruning: Grow the full tree, then remove subtrees that do not 

have sufficient evidence.

• Label leaf resulting from pruning with the majority class of 

the remaining data, or a class probability distribution. 

23
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N

CN = argmax
k

p(CkjN)

N

p(CkjN)

Slide adapted from Raymond Mooney
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Decision Trees – Computational Complexity 

• Given

 Data points {x1,…,xN}

 Dimensionality D

• Complexity

 Storage:

 Test runtime:

 Training runtime:

– Most expensive part.

– Critical step: selecting the optimal splitting point.

– Need to check D dimensions, for each need to sort N data points.

24
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O(DN2 logN)

O(logN)

O(N)

O(DN logN)
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Summary: Decision Trees

• Properties

 Simple learning procedure, fast evaluation.

 Can be applied to metric, nominal, or mixed data.

 Often yield interpretable results.

25
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Summary: Decision Trees

• Limitations

 Often produce noisy (bushy) or weak (stunted) classifiers.

 Do not generalize too well.

 Training data fragmentation: 

– As tree progresses, splits are selected based on less and less data.

 Overtraining and undertraining:

– Deep trees: fit the training data well, will not generalize well to new test 

data.

– Shallow trees: not sufficiently refined.

 Stability

– Trees can be very sensitive to details of the training points.

– If a single data point is only slightly shifted, a radically different tree may 

come out!

 Result of discrete and greedy learning procedure. 

 Expensive learning step

– Mostly due to costly selection of optimal split. 26
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

27
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Randomized Decision Trees (Amit & Geman 1997)

• Decision trees: main effort on finding good split

 Training runtime: 

 This is what takes most effort in practice.

 Especially cumbersome with many attributes (large D).

• Idea: randomize attribute selection

 No longer look for globally optimal split.

 Instead randomly use subset of K attributes on which to base 

the split.

 Choose best splitting attribute e.g. by maximizing the information 

gain (= reducing entropy):

28
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O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Randomized Decision Trees

• Randomized splitting

 Faster training:                            with               .

 Use very simple binary feature tests.

 Typical choice

– K = 10 for root node.

– K = 100d for node at level d.

• Effect of random split

 Of course, the tree is no longer as powerful as a single classifier…

 But we can compensate by building several trees.

29
B. Leibe

O(KN2 logN) K ¿D
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Ensemble Combination

• Ensemble combination

 Tree leaves (l,´) store posterior probabilities of the target classes.

 Combine the output of several trees by averaging their posteriors 

(Bayesian model combination)

30
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pl;´(Cjx)

p(Cjx) = 1

L

LX

l=1

pl;´(Cjx)

a

a

a

a

aa 





T1 T2 T3
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Applications: Character Recognition

• Computer Vision: Optical character recognition

 Classify small (14x20) images of hand-written characters/digits

into one of 10 or 26 classes.

• Simple binary features

 Tests for individual binary pixel

values.

 Organized in randomized tree.

31
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Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees, 

Neural Computation, Vol. 9(7), pp. 1545-1588, 1997. P
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Applications: Character Recognition

• Image patches (“Tags”)

 Randomly sampled 44 patches

 Construct a randomized tree

based on binary single-pixel tests

 Each leaf node corresponds to a 

“patch class” and produces a tag

• Representation of digits (“Queries”)

 Specific spatial arrangements of tags

 An image answers “yes” if any such

structure is found anywhere

 How do we know which spatial 

arrangements to look for?
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Applications: Character Recognition

• Answer: Create a second-level decision tree!

 Start with two tags connected by an arc

 Search through extensions of confirmed queries

(or rather through a subset of them, there are lots!)

 Select query with best information gain

 Recurse…

• Classification

 Average estimated

posterior distribu-

tions stored in 

the leaves.

33
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Applications: Fast Keypoint Detection

• Computer Vision: fast keypoint detection

 Detect keypoints: small patches in the image used for matching

 Classify into one of ~200 categories (visual words)

• Extremely simple features

 E.g. pixel value in a color channel (CIELab)

 E.g. sum of two points in the patch

 E.g. difference of two points in the patch

 E.g. absolute difference of two points

• Create forest of randomized decision trees

 Each leaf node contains probability distribution over 200 classes

 Can be updated and re-normalized incrementally.
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Application: Fast Keypoint Detection

35
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M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, Feature Harvesting for 
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

36
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http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
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Random Forests (Breiman 2001)

• General ensemble method

 Idea: Create ensemble of many (very simple) trees.

• Empirically very good results

 Often as good as SVMs (and sometimes better)!

 Often as good as Boosting (and sometimes better)!

• Standard decision trees: main effort on finding good split

 Random Forests trees put very little effort in this.

 CART algorithm with Gini coefficient, no pruning.

 Each split is only made based on a random subset of the available 

attributes.

 Trees are grown fully (important!).

• Main secret

 Injecting the “right kind of randomness”.
37
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Random Forests – Algorithmic Goals

• Create many trees (50 – 1,000)

• Inject randomness into trees such that 

 Each tree has maximal strength

– I.e. a fairly good model on its own

 Each tree has minimum correlation with the other trees.

– I.e. the errors tend to cancel out.

• Ensemble of trees votes for final result

 Simple majority vote for category.

 Alternative (Friedman)

– Optimally reweight the trees via regularized regression (lasso).
38
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Random Forests – Injecting Randomness (1) 

• Bootstrap sampling process

 Select a training set by choosing N times with replacement from 

all N available training examples.

 On average, each tree is grown on only ~63% of the original 

training data.

 Remaining 37% “out-of-bag” (OOB) data used for validation.

– Provides ongoing assessment of model performance in the current tree.

– Allows fitting to small data sets without explicitly holding back any data 

for testing.

– Error estimate is unbiased and behaves as if we had an independent 

test sample of the same size as the training sample.
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Random Forests – Injecting Randomness (2)

• Random attribute selection

 For each node, randomly choose subset of K attributes on which the 

split is based (typically                   ).

 Faster training procedure

– Need to test only few attributes.

 Minimizes inter-tree dependence

– Reduce correlation between different trees.

• Each tree is grown to maximal size and is left unpruned

 Trees are deliberately overfit

 Become some form of nearest-neighbor predictor.
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Bet You’re Asking…

How can this possibly ever work???
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A Graphical Interpretation

42
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.
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A Graphical Interpretation

43
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.
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A Graphical Interpretation

44
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining 

them, we obtain

a finer subdivision

of the feature 

space…
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A Graphical Interpretation

45
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining 

them, we obtain

a finer subdivision

of the feature 

space…

…which at the

same time also

better reflects the

uncertainty due to

the bootstrapped

sampling. 
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Summary: Random Forests

• Properties

 Very simple algorithm.

 Resistant to overfitting – generalizes well to new data.

 Faster training

 Extensions available for clustering, distance learning, etc.

• Limitations

 Memory consumption

– Decision tree construction uses much more memory.

 Well-suited for problems with little training data

– Little performance gain when training data is really large.
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You Can Try It At Home…

• Free implementations available

 Original RF implementation by Breiman & Cutler

– http://www.stat.berkeley.edu/users/breiman/RandomForests/

– Papers, documentation, and code…

– …in Fortran 77.

 But also newer version available in Fortran 90!

– http://www.irb.hr/en/research/projects/it/2004/2004-111/

 Fast Random Forest implementation for Java (Weka)

– http://code.google.com/p/fast-random-forest/
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L. Breiman, Random Forests, Machine Learning, Vol. 45(1), pp. 5-32, 2001.
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Chapters 8.2-8.4 of Duda & Hart. 
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