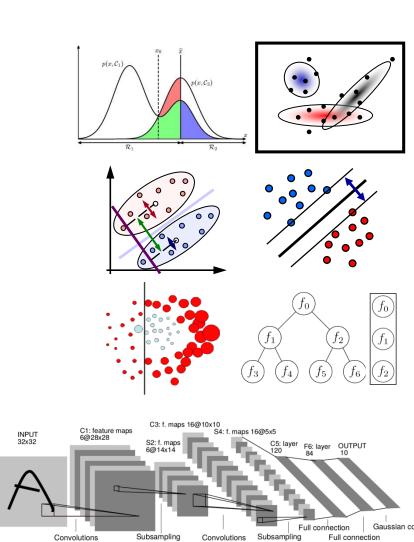


Machine Learning – Lecture 10

AdaBoost

20.11.2017


Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Recap: SVM – Analysis

Traditional soft-margin formulation

$$\min_{\mathbf{w}\in\mathbb{R}^D,\,\boldsymbol{\xi}_n\in\mathbb{R}^+}\,\frac{1}{2}\,\|\mathbf{w}\|^2 + C\sum_{n=1}^N\boldsymbol{\xi}_n$$

subject to the constraints

$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n$$

"Most points should be on the correct

side of the margin"

"Maximize

the margin"

- Different way of looking at it
 - We can reformulate the constraints into the objective function.

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N [1 - t_n y(\mathbf{x}_n)]_+$$
L₂ regularizer "Hinge loss"

where $[x]_{+} := \max\{0,x\}.$

3

Recap: Bayesian Model Averaging

- Model Averaging
 - > Suppose we have H different models h = 1,...,H with prior probabilities p(h).
 - Construct the marginal distribution over the data set

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h)$$

Average error of committee

$$\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}$$

- > This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
- Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Topics of This Lecture

AdaBoost

- Algorithm
- Analysis
- Extensions

Analysis

- Comparing Error Functions
- Applications
 - AdaBoost for face detection

Decision Trees

- CART
- Impurity measures, Stopping criterion, Pruning
- Extensions, Issues
- Historical development: ID3, C4.5

AdaBoost - "Adaptive Boosting"

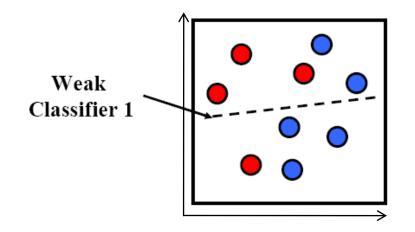
Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of component classifiers
- After each iteration, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

Components

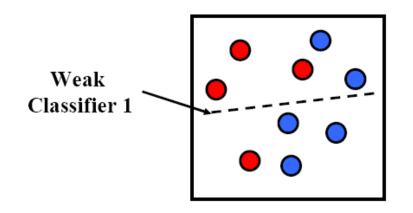
- $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- \rightarrow $H(\mathbf{x})$: "strong" or final classifier

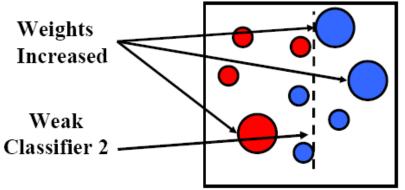

AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

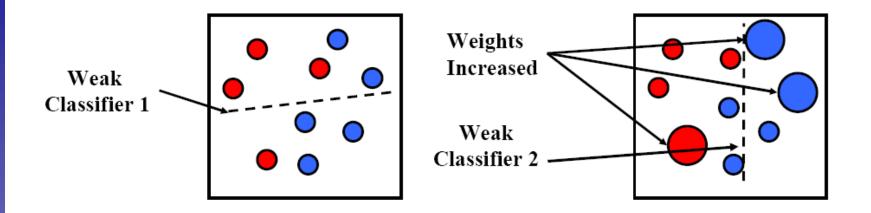
$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

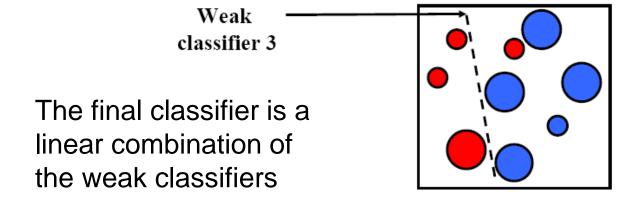
AdaBoost: Intuition


Consider a 2D feature space with positive and negative examples.


Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.


AdaBoost: Intuition



AdaBoost: Intuition

AdaBoost - Formalization

- 2-class classification problem
 - Given: training set $\mathbf{X}=\{\mathbf{x}_1,\,...,\,\mathbf{x}_N\}$ with target values $\mathbf{T}=\{t_1,\,...,\,t_N\,\},\,t_n\in\{\text{-}1,1\}.$
 - Associated weights $\mathbf{W} = \{w_1, ..., w_N\}$ for each training point.

Basic steps

- In each iteration, AdaBoost trains a new weak classifier $h_m(\mathbf{x})$ based on the current weighting coefficients $\mathbf{W}^{(m)}$.
- We then adapt the weighting coefficients for each point
 - Increase w_n if \mathbf{x}_n was misclassified by $h_m(\mathbf{x})$.
 - Decrease w_n if \mathbf{x}_n was classified correctly by $h_m(\mathbf{x})$.
- Make predictions using the final combined model

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

AdaBoost – Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = ?$$

How should we do this exactly?

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is not the same as margin for SVM.
 - A bit like retrofitting the theory...
 - However, those bounds are too loose to be of practical value.
- Different explanation

[Friedman, Hastie, Tibshirani, 2000]

- Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
- Explains why boosting works well.
- Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

Exponential error function

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$

where $f_m(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_l(\mathbf{x})$:

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

- Goal
 - Minimize E with respect to both the weighting coefficients α_l and the parameters of the base classifiers $h_l(\mathbf{x})$.

AdaBoost - Minimizing Exponential Error

Sequential Minimization

- Suppose that the base classifiers $h_1(\mathbf{x}), \ldots, h_{m-1}(\mathbf{x})$ and their coefficients $\alpha_1, \ldots, \alpha_{m-1}$ are fixed.
- \Rightarrow Only minimize with respect to α_m and $h_m(\mathbf{x})$.

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$
 with $f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$

$$= \sum_{n=1}^{N} \exp \left\{ -t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m h_m(\mathbf{x}_n) \right\}$$

= const.

$$= \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

 \Rightarrow collect in \mathcal{T}_m

AdaBoost – Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$
 - $t_n h_m(\mathbf{x}_n) = -1$ – Misclassified points: \Rightarrow collect in \mathcal{F}_m
- Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)$$

AdaBoost – Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$

 \Rightarrow collect in \mathcal{T}_m

- Misclassified points:
- $t_n h_m(\mathbf{x}_n) = -1$

 \Rightarrow collect in \mathcal{F}_m

Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

AdaBoost - Minimizing Exponential Error

• Minimize with respect to $h_m(\mathbf{x})$: $\frac{\partial E}{\partial h_m(\mathbf{x}_n)} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$= const.$$

⇒ This is equivalent to minimizing

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

(our weighted error function from step 2a) of the algorithm)

⇒ We're on the right track. Let's continue...

AdaBoost – Minimizing Exponential Error

Minimize with respect to α_m : $\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$

$$\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$\left(\frac{1}{2}e^{\alpha_m/2} + \frac{1}{2}e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) \stackrel{!}{=} \frac{1}{2}e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

weighted error
$$\epsilon_{m}:=\underbrace{\left(\frac{\sum_{n=1}^{N}w_{n}^{(m)}I(h_{m}(\mathbf{x}_{n})\neq t_{n})}{\sum_{n=1}^{N}w_{n}^{(m)}}\right)}=\frac{e^{-\alpha_{m}/2}}{e^{\alpha_{m}/2}+e^{-\alpha_{m}/2}}$$

 \Rightarrow Update for the α coefficients:

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

AdaBoost - Minimizing Exponential Error

- Remaining step: update the weights
 - Recall that

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

This becomes $w_n^{(m+1)}$ in the next iteration.

Therefore

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m h_m(\mathbf{x}_n)\right\}$$
$$= \dots$$
$$= w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

⇒ Update for the weight coefficients.

AdaBoost - Final Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ or n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

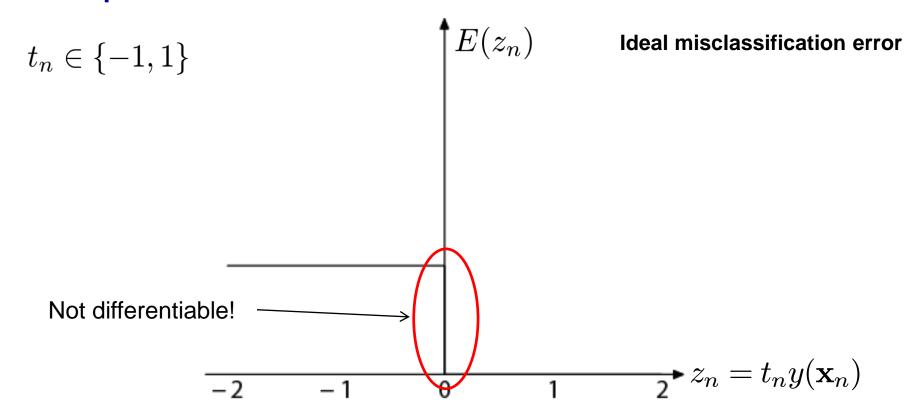
$$\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\}$$

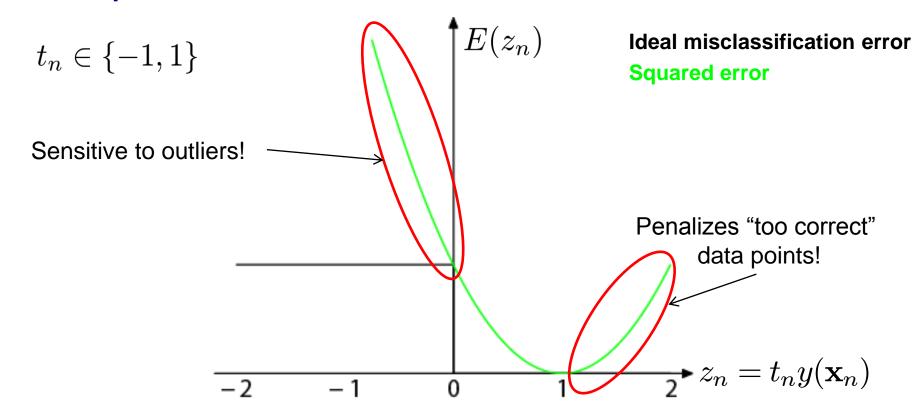
AdaBoost – Analysis

- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost's behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.



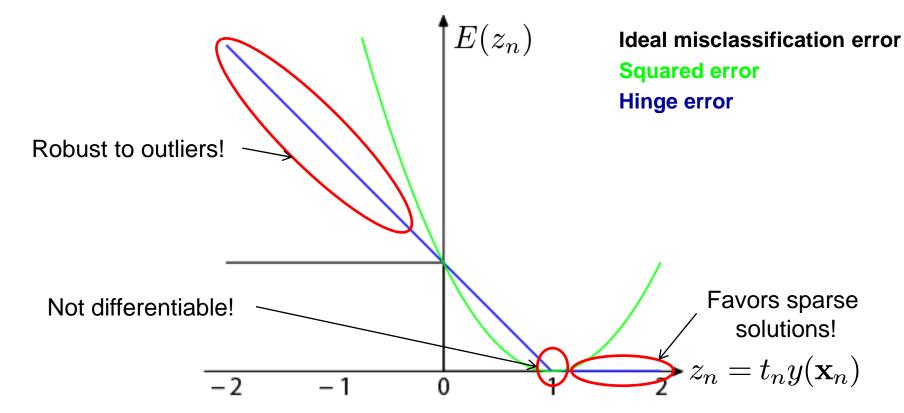
Topics of This Lecture

- AdaBoost
 - > Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - > CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5


Recap: Error Functions

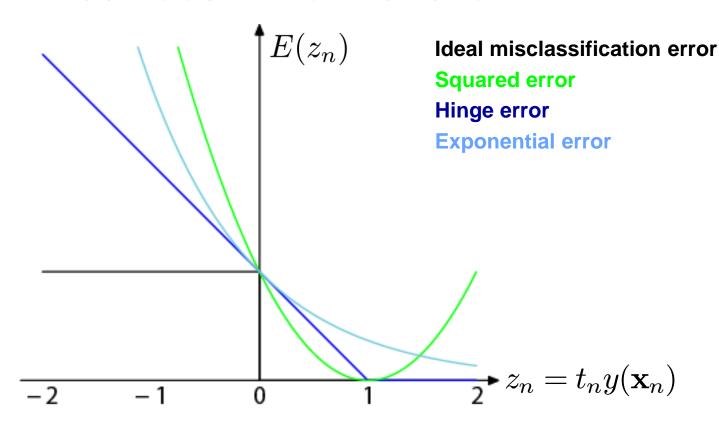
- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

Recap: Error Functions

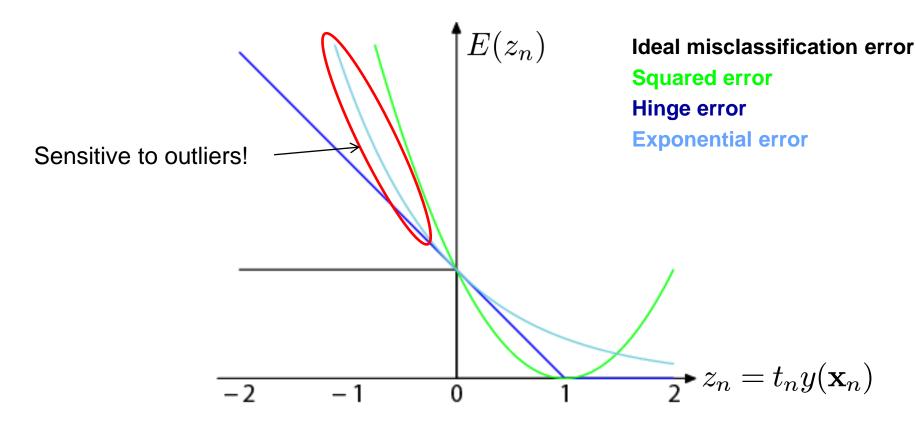


- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

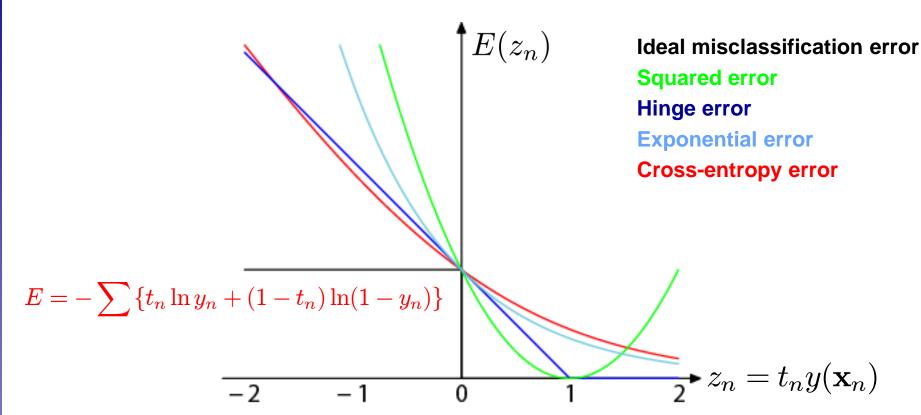
25


Recap: Error Functions

- "Hinge error" used in SVMs
 - > Zero error for points outside the margin $(z_n > 1)$ \Rightarrow sparsity
 - Linear penalty for misclassified points $(z_n < 1)$ \Rightarrow robustness
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.


Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Properties?


Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
 - No penalty for too correct data points, fast convergence.
 - Disadvantage: exponential penalty for large negative values!
 - ⇒ Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions

- "Cross-entropy error" used in Logistic Regression
 - \rightarrow Similar to exponential error for z>0.
 - \triangleright Only grows linearly with large negative values of z.
 - ⇒ Make AdaBoost more robust by switching to this error function.
 - ⇒ "GentleBoost"

Summary: AdaBoost

Properties

- Simple combination of multiple classifiers.
- Easy to implement.
- Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
- Commonly used in many areas.
- Empirically good generalization capabilities.

Limitations

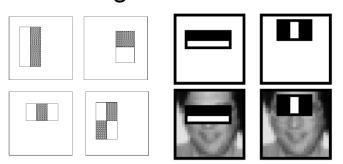
- Original AdaBoost sensitive to mislabeled training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
- Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- AdaBoost
 - > Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - > CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

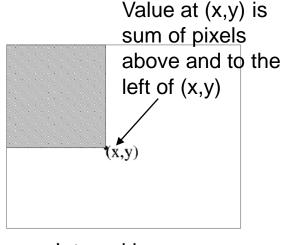
Example Application: Face Detection

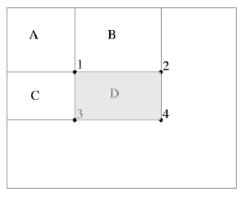
- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window



Now we'll take AdaBoost and see how the Viola-Jones face detector works

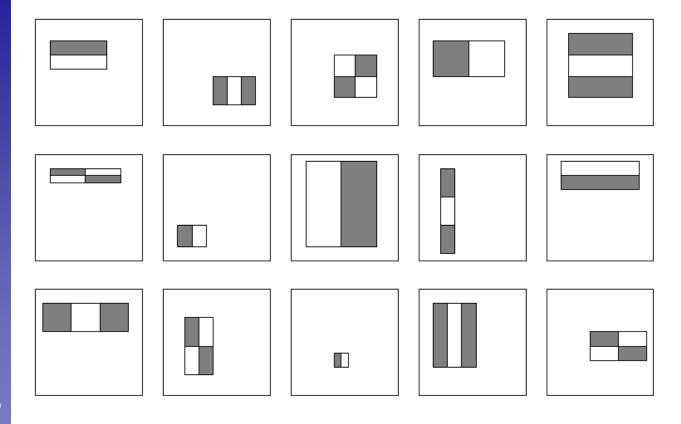
Feature extraction


"Rectangular" filters


Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

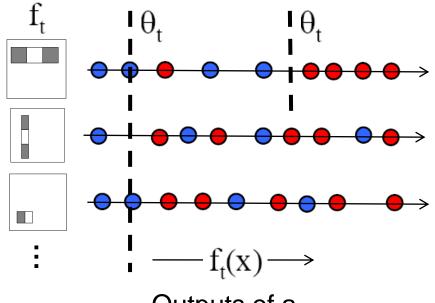
Avoid scaling images >
scale features directly for
same cost


Integral image

$$D = I(1) + I(4) - (I(2) + I(3))$$

Large Library of Filters

Considering all possible filter parameters: position, scale, and type:


180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

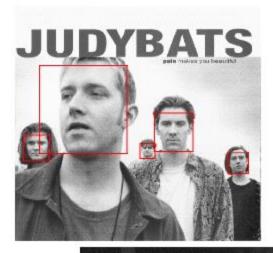
Outputs of a possible rectangle feature on faces and non-faces.

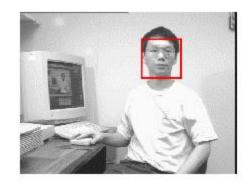
Resulting weak classifier:

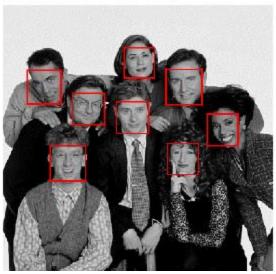
$$h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$$

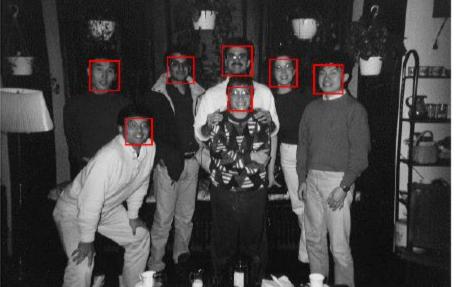
For next round, reweight the examples according to errors, choose another filter/threshold combo.

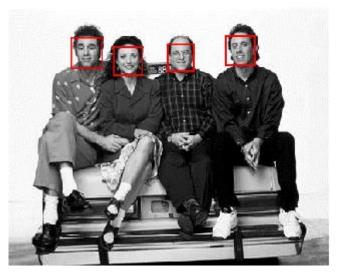
AdaBoost for Efficient Feature Selection

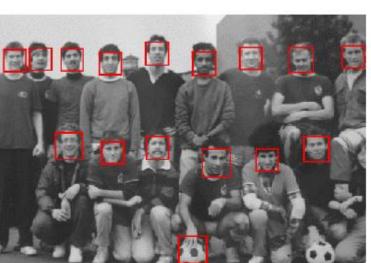

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

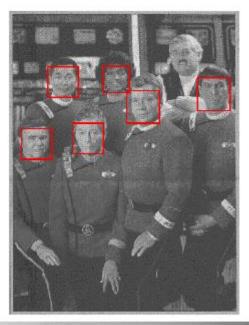

P. Viola, M. Jones, <u>Robust Real-Time Face Detection</u>, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001)

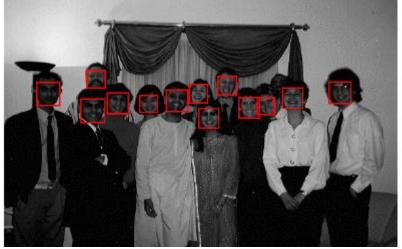

RWTHAACHEN UNIVERSITY


Viola-Jones Face Detector: Results

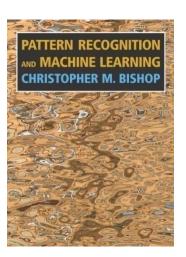







RWTHAACHEN UNIVERSITY

Viola-Jones Face Detector: Results



References and Further Reading

 More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
 - J. Friedman, T. Hastie, R. Tibshirani, <u>Additive Logistic Regression: a Statistical View of Boosting</u>, *The Annals of Statistics*, Vol. 38(2), pages 337-374, 2000.

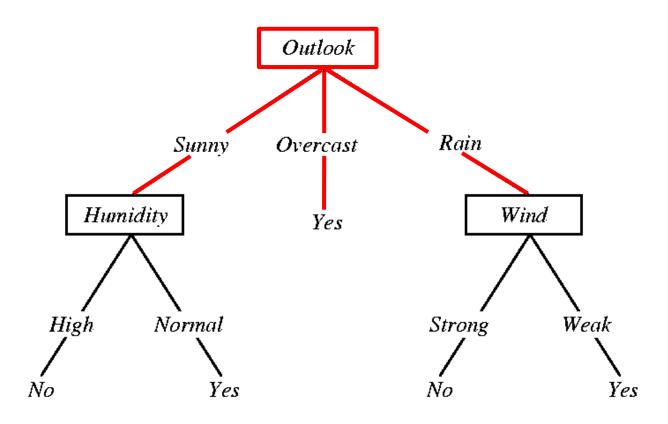
Topics of This Lecture

- AdaBoost
 - > Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5


Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.
- But...
 - Can be used for problems with nominal data
 - E.g. attributes color ∈ {red, green, blue} or weather ∈ {sunny, rainy}.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

Decision Trees



Example:

"Classify Saturday mornings according to whether they're suitable for playing tennis."

Decision Trees

Elements

- Each node specifies a test for some attribute.
- Each branch corresponds to a possible value of the attribute.

Rain

Strong

Wind

Weak

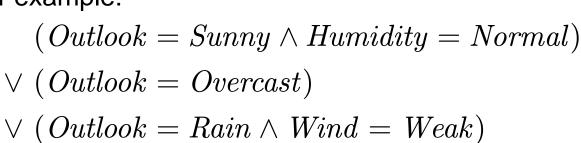
Outlook

Overcast

Yes

Sunny

Normal


Humidity

Decision Trees

- Assumption
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

Interpretability

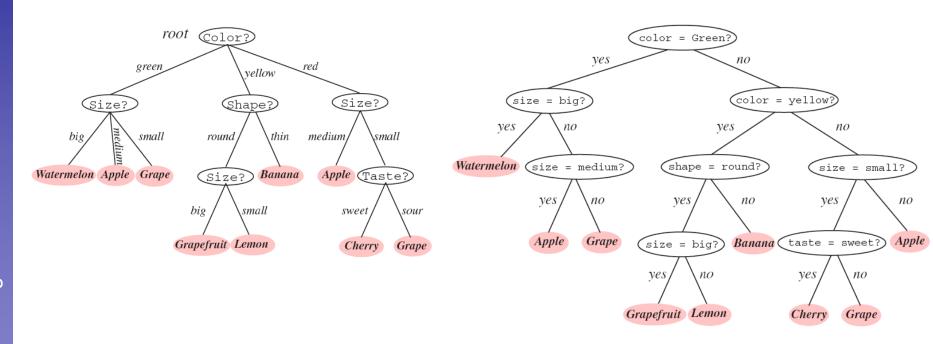
- Information in a tree can then be rendered as logical expressions.
- In our example:

Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

CART framework

- Classification And Regression Trees (Breiman et al. 1993)
- Formalization of the different design choices.


CART Framework

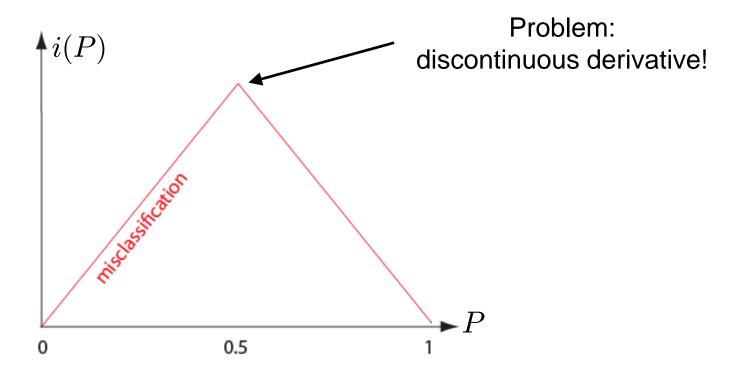
- Six general questions
 - 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 - 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 - 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 - 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 - 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 - 6. How should missing attributes be handled?

CART – 1. Number of Splits

 Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here...

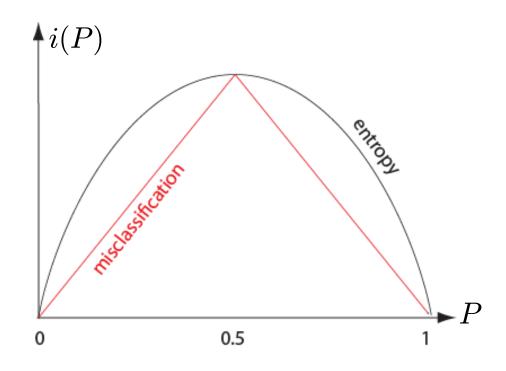
CART – 2. Picking a Good Splitting Feature


Goal

- Want a tree that is as simple/small as possible (Occam's razor).
- But: Finding a minimal tree is an NP-hard optimization problem.

Greedy top-down search

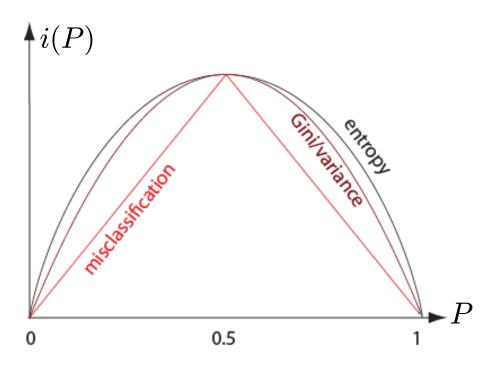
- Efficient, but not guaranteed to find the smallest tree.
- Seek a property T at each node s_j that makes the data in the child nodes as pure as possible.
- For formal reasons more convenient to define impurity $i(s_i)$.
- Several possible definitions explored.



Misclassification impurity

$$i(s_j) = 1 - \max_k p(C_k|s_j)$$

"Fraction of the training patterns in category C_k that end up in node s_j ."



Entropy impurity

$$i(s_j) = -\sum_k p(C_k|s_j) \log_2 p(C_k|s_j)$$

"Reduction in entropy = gain in information."

Gini impurity (variance impurity)

$$i(s_j) = \sum_{k \neq l} p(C_k|s_j) p(C_l|s_j)$$
$$= \frac{1}{2} \left[1 - \sum_{k} p^2(C_k|s_j) \right]$$

"Expected error rate at node s_j if the category label is selected randomly."

51

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - ⇒ Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

CART – 2. Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most

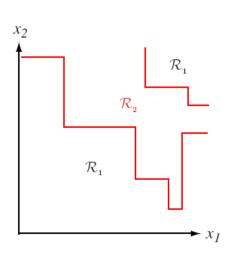
$$\Delta i(s_j) = i(s_j) - P_L i(s_{j,L}) - (1 - P_L)i(s_{j,R})$$

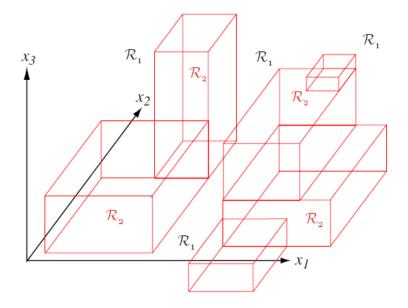
 P_L = fraction of points at left child node $s_{i,L}$

- Multiway generalization (gain ratio impurity):
 - Maximize

$$\Delta i(s_j) = \frac{1}{Z} \left(i(s_j) - \sum_{m=1}^{M} P_m i(s_{j,m}) \right)$$

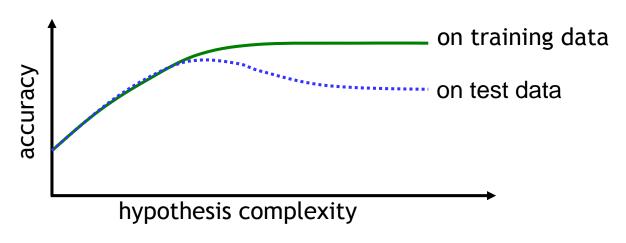
where the normalization factor ensures that large K are not inherently favored:
M


$$Z = -\sum_{m=1}^{N} P_m \log_2 P_m$$

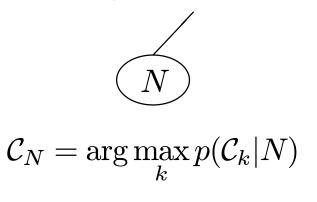

B. Leibe

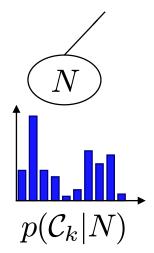
CART – Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"


- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute x_i .
 - Only need to test candidate splits where $label(x_i) \neq label(x_{i+1})$.

CART – 3. When to Stop Splitting


- Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.


Typical behavior

CART – Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

Decision Trees - Computational Complexity

- Given
 - ightharpoonup Data points $\{\mathbf{x}_1,...,\mathbf{x}_N\}$
 - ightharpoonup Dimensionality D
- Complexity

ightharpoonup Storage: O(N)

ightharpoonup Test runtime: $O(\log N)$

ightharpoonup Training runtime: $O(DN^2 \log N)$

- Most expensive part.
- Critical step: selecting the optimal splitting point.
- Need to check ${\cal D}$ dimensions, for each need to sort ${\cal N}$ data points.

$$O(DN \log N)$$

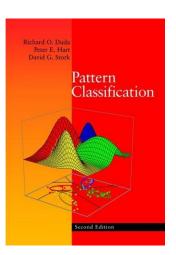
Summary: Decision Trees

Properties

- Simple learning procedure, fast evaluation.
- Can be applied to metric, nominal, or mixed data.
- Often yield interpretable results.

Summary: Decision Trees

Limitations


- Often produce noisy (bushy) or weak (stunted) classifiers.
- Do not generalize too well.
- Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
- Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
- Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - ⇒ Result of discrete and greedy learning procedure.
- Expensive learning step
 - Mostly due to costly selection of optimal split.

References and Further Reading

 More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

> R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification 2nd Ed., Wiley-Interscience, 2000

