
1

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Machine Learning – Lecture 10

AdaBoost

20.11.2017

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: SVM – Analysis

• Traditional soft-margin formulation

subject to the constraints

• Different way of looking at it

 We can reformulate the constraints into the objective function.

where [x]+ := max{0,x}.
3

B. Leibe

“Hinge loss”L2 regularizer

“Most points should

be on the correct

side of the margin”

“Maximize

the margin”
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Bayesian Model Averaging

• Model Averaging

 Suppose we have H different models h = 1,…,H with prior

probabilities p(h).

 Construct the marginal distribution over the data set

• Average error of committee

 This suggests that the average error of a model can be reduced by a

factor of M simply by averaging M versions of the model!

 Unfortunately, this assumes that the errors are all uncorrelated. In

practice, they will typically be highly correlated.
4

B. Leibe

p(X) =

HX

h=1

p(Xjh)p(h)

ECOM =
1

M
EAV

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Topics of This Lecture

• AdaBoost
 Algorithm

 Analysis

 Extensions

• Analysis
 Comparing Error Functions

• Applications
 AdaBoost for face detection

• Decision Trees
 CART

 Impurity measures, Stopping criterion, Pruning

 Extensions, Issues

 Historical development: ID3, C4.5
5

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – “Adaptive Boosting”

• Main idea [Freund & Schapire, 1996]

 Iteratively select an ensemble of component classifiers

 After each iteration, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost:

 Construct a strong classifier as a thresholded linear combination of

the weighted weak classifiers:

6
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost: Intuition

8
B. Leibe

Consider a 2D feature space

with positive and negative

examples.

Each weak classifier splits

the training examples with at

least 50% accuracy.

Examples misclassified by a

previous weak learner are

given more emphasis at

future rounds.

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost: Intuition

9
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost: Intuition

10
B. Leibe

The final classifier is a

linear combination of

the weak classifiers

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Formalization

• 2-class classification problem

 Given: training set X = {x1, …, xN}

with target values T = {t1, …, tN }, tn 2 {-1,1}.

 Associated weights W={w1, …, wN} for each training point.

• Basic steps

 In each iteration, AdaBoost trains a new weak classifier hm(x) based

on the current weighting coefficients W(m).

 We then adapt the weighting coefficients for each point

– Increase wn if xn was misclassified by hm(x).

– Decrease wn if xn was classified correctly by hm(x).

 Make predictions using the final combined model

11
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

12
B. Leibe

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we

do this exactly?

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Historical Development

• Originally motivated by Statistical Learning Theory

 AdaBoost was introduced in 1996 by Freund & Schapire.

 It was empirically observed that AdaBoost often tends not to overfit.

(Breiman 96, Cortes & Drucker 97, etc.)

 As a result, the margin theory (Schapire et al. 98) developed, which

is based on loose generalization bounds.

– Note: margin for boosting is not the same as margin for SVM.

– A bit like retrofitting the theory…

 However, those bounds are too loose to be of practical value.

• Different explanation [Friedman, Hastie, Tibshirani, 2000]

 Interpretation as sequential minimization of an exponential error

function (“Forward Stagewise Additive Modeling”).

 Explains why boosting works well.

 Improvements possible by altering the error function.
13

B. Leibe

3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• Exponential error function

 where fm(x) is a classifier defined as a linear combination of base

classifiers hl(x):

• Goal

 Minimize E with respect to both the weighting coefficients ®l and the

parameters of the base classifiers hl(x).

fm(x) =
1

2

mX

l=1

®lhl(x)

AdaBoost – Minimizing Exponential Error

14
B. Leibe

E =

NX

n=1

expf¡tnfm(xn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

• Sequential Minimization

 Suppose that the base classifiers h1(x),…, hm-1(x) and their

coefficients ®1,…,®m-1 are fixed.

 Only minimize with respect to ®m and hm(x).

15
B. Leibe

=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with

=

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾
= const.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

 Observation:

– Correctly classified points: tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as

16
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

 Observation:

– Correctly classified points: tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as

17
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

18
B. Leibe

• Minimize with respect to hm(x):

 This is equivalent to minimizing

(our weighted error function from step 2a) of the algorithm)

 We’re on the right track. Let’s continue…

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

= const.= const.

@E

@hm(xn)

!
= 0

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

19
B. Leibe

• Minimize with respect to ®m:

 Update for the ® coefficients:

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

µ
1

2
e®m=2 +

1

2
e¡®m=2

¶ NX

n=1

w(m)
n I(hm(xn) 6= tn)

!
=

1

2
e¡®m=2

NX

n=1

w(m)
n

@E

@®m

!
= 0

PN

n=1 w
(m)
n I(hm(xn) 6= tn)PN

n=1 w
(m)
n

=
e¡®m=2

e®m=2 + e¡®m=2

²m =
1

e®m + 1

®m = ln

½
1¡ ²m

²m

¾

²m :=weighted

error

4

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Minimizing Exponential Error

20
B. Leibe

• Remaining step: update the weights

 Recall that

 Therefore

 Update for the weight coefficients.

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

This becomes

in the next iteration.

w(m+1)
n

w(m+1)
n = w(m)

n exp

½
¡1

2
tn®mhm(xn)

¾

= w(m)
n expf®mI(hm(xn) 6= tn)g

= :::

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Final Algorithm

21
B. Leibe

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ln

½
1¡ ²m

²m

¾

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost – Analysis

• Result of this derivation

 We now know that AdaBoost minimizes an exponential error

function in a sequential fashion.

 This allows us to analyze AdaBoost’s behavior in more detail.

 In particular, we can see how robust it is to outlier data points.

22
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Topics of This Lecture

• AdaBoost
 Algorithm

 Analysis

 Extensions

• Analysis
 Comparing Error Functions

• Applications
 AdaBoost for face detection

• Decision Trees
 CART

 Impurity measures, Stopping criterion, Pruning

 Extensions, Issues

 Historical development: ID3, C4.5
23

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate,

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 24
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 25
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)

5

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Recap: Error Functions

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1) sparsity

 Linear penalty for misclassified points (zn < 1) robustness

 Not differentiable around zn = 1 Cannot be optimized directly.

26
Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse

solutions!

Robust to outliers!

zn = tny(xn)

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 Continuous approximation to ideal misclassification function.

 Sequential minimization leads to simple AdaBoost scheme.

 Properties?
27

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 No penalty for too correct data points, fast convergence.

 Disadvantage: exponential penalty for large negative values!

 Less robust to outliers or misclassified data points!
28

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error
Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Discussion: Other Possible Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
29

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E = ¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Summary: AdaBoost

• Properties

 Simple combination of multiple classifiers.

 Easy to implement.

 Can be used with many different types of classifiers.

– None of them needs to be too good on its own.

– In fact, they only have to be slightly better than chance.

 Commonly used in many areas.

 Empirically good generalization capabilities.

• Limitations

 Original AdaBoost sensitive to mislabeled training data points.

– Because of exponential error function.

– Improvement by GentleBoost

 Single-class classifier

– Multiclass extensions available
30

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Topics of This Lecture

• AdaBoost
 Algorithm

 Analysis

 Extensions

• Analysis
 Comparing Error Functions

• Applications
 AdaBoost for face detection

• Decision Trees
 CART

 Impurity measures, Stopping criterion, Pruning

 Extensions, Issues

 Historical development: ID3, C4.5
31

B. Leibe

6

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Example Application: Face Detection

• Frontal faces are a good example of a class where

global appearance models + a sliding window detection

approach fit well:

 Regular 2D structure

 Center of face almost shaped like a “patch”/window

• Now we’ll take AdaBoost and see how the Viola-Jones

face detector works

32
B. LeibeSlide credit: Kristen Grauman

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Feature extraction

33
B. Leibe

Feature output is difference

between adjacent regions

[Viola & Jones, CVPR 2001]

Efficiently computable

with integral image: any

sum can be computed in

constant time

Avoid scaling images

scale features directly for

same cost

“Rectangular” filters

Value at (x,y) is

sum of pixels

above and to the

left of (x,y)

Integral image

Slide credit: Kristen Grauman

𝐷 = 𝐼 1 + 𝐼 4

− 𝐼 2 + 𝐼 3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Large Library of Filters

Considering all

possible filter

parameters:

position, scale, and

type:

180,000+ possible

features associated

with each 24 x 24

window

Use AdaBoost both to select the informative features

and to form the classifier

B. Leibe [Viola & Jones, CVPR 2001]Slide credit: Kristen Grauman
34

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost for Feature+Classifier Selection

• Want to select the single rectangle feature and threshold that

best separates positive (faces) and negative (non-faces)

training examples, in terms of weighted error.

Outputs of a

possible rectangle

feature on faces

and non-faces.

…

Resulting weak classifier:

For next round, reweight the

examples according to errors,

choose another filter/threshold

combo.

B. Leibe [Viola & Jones, CVPR 2001]Slide credit: Kristen Grauman
35

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

AdaBoost for Efficient Feature Selection

• Image features = weak classifiers

• For each round of boosting:

 Evaluate each rectangle filter on each example

 Sort examples by filter values

 Select best threshold for each filter (min error)

– Sorted list can be quickly scanned for the optimal threshold

 Select best filter/threshold combination

 Weight on this features is a simple function of error rate

 Reweight examples

36
B. Leibe

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.

(first version appeared at CVPR 2001)

Slide credit: Kristen Grauman

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Viola-Jones Face Detector: Results

37
B. LeibeSlide credit: Kristen Grauman

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

7

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Viola-Jones Face Detector: Results

38
B. LeibeSlide credit: Kristen Grauman

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

References and Further Reading

• More information on Classifier Combination and Boosting

can be found in Chapters 14.1-14.3 of Bishop’s book.

• A more in-depth discussion of the statistical interpretation

of AdaBoost is available in the following paper:

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),

pages 337-374, 2000.

B. Leibe
39

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Topics of This Lecture

• AdaBoost
 Algorithm

 Analysis

 Extensions

• Analysis
 Comparing Error Functions

• Applications
 AdaBoost for face detection

• Decision Trees
 CART

 Impurity measures, Stopping criterion, Pruning

 Extensions, Issues

 Historical development: ID3, C4.5
40

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Decision Trees

• Very old technique

 Origin in the 60s, might seem outdated.

• But…

 Can be used for problems with nominal data

– E.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}.

– Discrete values, no notion of similarity or even ordering.

 Interpretable results

– Learned trees can be written as sets of if-then rules.

 Methods developed for handling missing feature values.

 Successfully applied to broad range of tasks

– E.g. Medical diagnosis

– E.g. Credit risk assessment of loan applicants

 Some interesting novel developments building on top of them…

41
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Decision Trees

• Example:

 “Classify Saturday mornings according to whether they’re

suitable for playing tennis.”

42
B. Leibe Image source: T. Mitchell, 1997

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Decision Trees

• Elements

 Each node specifies a test for some attribute.

 Each branch corresponds to a possible value of the attribute.

43
B. Leibe Image source: T. Mitchell, 1997

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

8

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Decision Trees

• Assumption

 Links must be mutually distinct and exhaustive

 I.e. one and only one link will be followed at each step.

• Interpretability

 Information in a tree can then be

rendered as logical expressions.

 In our example:

44
B. Leibe

(Outlook = Sunny ^Humidity = Normal)

_ (Outlook = Overcast)

_ (Outlook = Rain ^Wind = Weak)

Image source: T. Mitchell, 1997

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Training Decision Trees

• Finding the optimal decision tree is NP-hard…

• Common procedure: Greedy top-down growing

 Start at the root node.

 Progressively split the training data into smaller and smaller subsets.

 In each step, pick the best attribute to split the data.

 If the resulting subsets are pure (only one label) or if no further

attribute can be found that splits them, terminate the tree.

 Else, recursively apply the procedure to the subsets.

• CART framework

 Classification And Regression Trees (Breiman et al. 1993)

 Formalization of the different design choices.

45
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART Framework

• Six general questions

1. Binary or multi-valued problem?

– I.e. how many splits should there be at each node?

2. Which property should be tested at a node?

– I.e. how to select the query attribute?

3. When should a node be declared a leaf?

– I.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?

– Goal: reduce overfitting.

5. How to deal with impure nodes?

– I.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

46
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – 1. Number of Splits

• Each multi-valued tree can be converted into an equivalent

binary tree:

 Only consider binary trees here…

47
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – 2. Picking a Good Splitting Feature

• Goal

 Want a tree that is as simple/small as possible (Occam’s razor).

 But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search

 Efficient, but not guaranteed to find the smallest tree.

 Seek a property T at each node sj that makes the data in the child

nodes as pure as possible.

 For formal reasons more convenient to define impurity i(sj).

 Several possible definitions explored.

48
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – Impurity Measures

• Misclassification impurity

49
B. Leibe

i(P)

P

“Fraction of the

training patterns

in category Ck that

end up in node sj.”

Problem:

discontinuous derivative!

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = 1 − max
𝑘

𝑝 𝐶𝑘 𝑠𝑗

9

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – Impurity Measures

• Entropy impurity

50
B. Leibe

i(P)

P

“Reduction in

entropy = gain in

information.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = −

𝑘

𝑝 𝐶𝑘 𝑠𝑗 log2 𝑝 𝐶𝑘 𝑠𝑗

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – Impurity Measures

• Gini impurity (variance impurity)

51

i(P)

P

“Expected error
rate at node sj if

the category label is

selected randomly.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 =

𝑘≠𝑙

𝑝 𝐶𝑘 𝑠𝑗 𝑝 𝐶𝑙 𝑠𝑗

=
1

2
1 −

𝑘

𝑝2 𝐶𝑘 𝑠𝑗

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – Impurity Measures

• Which impurity measure should we choose?

 Some problems with misclassification impurity.

– Discontinuous derivative.

 Problems when searching over continuous parameter space.

– Sometimes misclassification impurity does not decrease when Gini

impurity would.

 Both entropy impurity and Gini impurity perform well.

– No big difference in terms of classifier performance.

– In practice, stopping criterion and pruning method are often more

important.

52
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – 2. Picking a Good Splitting Feature

• Application

 Select the query that decreases impurity the most

• Multiway generalization (gain ratio impurity):

 Maximize

 where the normalization factor ensures that large K are not

inherently favored:

53
B. Leibe

Δ𝑖 𝑠𝑗 = 𝑖 𝑠𝑗 − 𝑃𝐿𝑖 𝑠𝑗,𝐿 − 1− 𝑃𝐿 𝑖(𝑠𝑗,𝑅)

𝑃𝐿 = fraction of

points at left

child node 𝑠𝑗,𝐿

Δ𝑖 𝑠𝑗 =
1

𝑍
𝑖 𝑠𝑗 −

𝑚=1

𝑀

𝑃𝑚𝑖(𝑠𝑗,𝑚)

𝑍 = −

𝑚=1

𝑀

𝑃𝑚 log2 𝑃𝑚

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

• For efficiency, splits are often based on a single feature

 “Monothetic decision trees”

• Evaluating candidate splits

 Nominal attributes: exhaustive search over all possibilities.

 Real-valued attributes: only need to consider changes in label.

– Order all data points based on attribute xi.

– Only need to test candidate splits where label(xi) label(xi+1).

CART – Picking a Good Splitting Feature

54
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – 3. When to Stop Splitting

• Problem: Overfitting

 Learning a tree that classifies the training data perfectly may not lead

to the tree with the best generalization to unseen data.

 Reasons

– Noise or errors in the training data.

– Poor decisions towards the leaves of the tree that are based on very

little data.

• Typical behavior

55
B. LeibeSlide adapted from Raymond Mooney

hypothesis complexity

a
c
c
u
ra

c
y

on training data

on test data

10

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

CART – Overfitting Prevention (Pruning)

• Two basic approaches for decision trees

 Prepruning: Stop growing tree as some point during top-down

construction when there is no longer sufficient data to make reliable

decisions.

 Postpruning: Grow the full tree, then remove subtrees that do not

have sufficient evidence.

• Label leaf resulting from pruning with the majority class of

the remaining data, or a class probability distribution.

56
B. Leibe

N

CN = argmax
k

p(CkjN)

N

p(CkjN)

Slide adapted from Raymond Mooney

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Decision Trees – Computational Complexity

• Given

 Data points {x1,…,xN}

 Dimensionality D

• Complexity

 Storage:

 Test runtime:

 Training runtime:

– Most expensive part.

– Critical step: selecting the optimal splitting point.

– Need to check D dimensions, for each need to sort N data points.

66
B. Leibe

O(DN2 logN)

O(logN)

O(N)

O(DN logN)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Summary: Decision Trees

• Properties

 Simple learning procedure, fast evaluation.

 Can be applied to metric, nominal, or mixed data.

 Often yield interpretable results.

67
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

Summary: Decision Trees

• Limitations

 Often produce noisy (bushy) or weak (stunted) classifiers.

 Do not generalize too well.

 Training data fragmentation:

– As tree progresses, splits are selected based on less and less data.

 Overtraining and undertraining:

– Deep trees: fit the training data well, will not generalize well to new test

data.

– Shallow trees: not sufficiently refined.

 Stability

– Trees can be very sensitive to details of the training points.

– If a single data point is only slightly shifted, a radically different tree may

come out!

 Result of discrete and greedy learning procedure.

 Expensive learning step

– Mostly due to costly selection of optimal split. 68

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
7

References and Further Reading

• More information on Decision Trees can be found in

Chapters 8.2-8.4 of Duda & Hart.

B. Leibe
69

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2nd Ed., Wiley-Interscience, 2000

