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Recap: SVM — Analysis
* Traditional soft-margin formulation
N
. 1 2 “Maximize
wembD. g crt 2 e+ O; &n the margin”

subject to the constraints

“Most points should
tay(xn) = 16,

be on the correct
side of the margin”

 Different way of looking at it
» We can reformulate the constraints into the objective function.

N
1 2
min = ||w||*+C 1 —tay(xn
i, 3 I+ € 31— byl
n=
L, regularizer
where [z], := max{0,z}.

“Hinge loss”

de adapted from Chyistonh | ampert B Leibe
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Topics of This Lecture

* AdaBoost
» Algorithm
» Analysis
» Extensions

* Analysis
» Comparing Error Functions

¢ Applications
» AdaBoost for face detection

¢ Decision Trees
» CART
» Impurity measures, Stopping criterion, Pruning
» Extensions, Issues
» Historical development: ID3, C4.5

B. Leibe

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Bayesian Model Averaging

* Model Averaging

» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y p(XIh)p(h)

h=1
* Average error of committee

Ecom = MEAV

» This suggests that the average error of a model can be reduced by a
factor of M simply by averaging M versions of the model!

» Unfortunately, this assumes that the errors are all uncorrelated. In
practice, they will typically be highly correlated.

B. Leibe
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AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
» lteratively select an ensemble of component classifiers
» After each iteration, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.
¢ Components
> h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
» H(x): “strong” or final classifier
* AdaBoost:

» Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:
M

H(x) = sign (Z amhm(x)>

m=1
B. Leibe
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AdaBoost: Intuition

o @ Consider a 2D feature space

Weak ® L) with positive and negative
Classifier 1 ==
examples.

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

Machine Learning Winter ‘17

ide credit- Kristen Grauman B. Leibe

Eigure adapted from Freund & Schapir

AdaBoost: Intuition

Weights
Weak Increased
Classifier 1 ]
Weak

Y Classifier 2 ———
Weak ————————
classifier 3 @

The final classifieris a

linear combination of .‘..

the weak classifiers

Machine Learning Winter ‘17

ide credit- Kristen Grauman B Leibe Eiqwe adapted fiom Freund
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AdaBoost — Algorithm

e 1
1. Initialization: Set w§}> =5 forn=1,...,N.
2. Form=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
= (m) o JL A
I = S0 # ) s {“ i
n—
b) Estimate the weighted error of this classifier on X:
o S () # )
ZInVZI wll”
c) Calculate a weighting coefficient for h,,(x):

Q= 7

true

How should we

d) Update the weighting coefficients: do this exactly?

w;"”'l) =7
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AdaBoost: Intuition

e @ Weights ..
Weak ® e o Increased ° !
Classifier 1 ~.2_-----"~ Py
) Weak '@
@9 Classifier 2 —— @
de credit: Kristen Grauman B. Leibe Eiqure adaoted from Freund & Schapir

AdaBoost — Formalization

* 2-class classification problem
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ...ty }, t, € {-1,1}.

» Associated weights W={wy, ..., wy} for each training point.

* Basic steps
» In each iteration, AdaBoost trains a new weak classifier h,,(x) based
on the current weighting coefficients W),
» We then adapt the weighting coefficients for each point
- Increase w, if x,, was misclassified by h,,,(x).
- Decrease w, if x,, was classified correctly by h,,(x).
» Make predictions using the final combined model

M
H(x) = sign Z amhm(x)>
m=1

1
B. Leibe
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AdaBoost — Historical Development

* Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to overfit.
(Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed, which
is based on loose generalization bounds.
— Note: margin for boosting is not the same as margin for SVM.
— A bit like retrofitting the theory...
» However, those bounds are too loose to be of practical value.

v

* Different explanation [Friedman, Hastie, Tibshirani, 2000]
» Interpretation as sequential minimization of an exponential error
function (“Forward Stagewise Additive Modeling”).
» Explains why boosting works well.
» Improvements possible by altering the error function.

13
B. Leibe
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AdaBoost — Minimizing Exponential Error

* Exponential error function
N
E= Z €xp {7tnf7n(xn)}
n=1

» where f,,(x) is a classifier defined as a linear combination of base

classifiers hy(x):
m

= —Zalhl

~
3
£
= * Goal
E » Minimize E with respect to both the weighting coefficients ¢, and the
3 parameters of the base classifiers h(x).
2
S
8
=
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AdaBoost — Minimizing Exponential Error
ol 1
E= Z wflm> exp {7 itnamhm(xn)}
n=1
» Observation:
— Correctly classified points: ¢,h,,(x,) = +1 = collectin 7,,
— Misclassified points: toh(x,) = - = collectin F,,
- » Rewrite the error function as
~§ E=em/? Z w;"”)
= ni
s €Tom
2
£
3
E = (e"‘"’/z ) Zw " (R (%) 7 )
S
©
=
16
B. Leibe
RWTH/ACHEN
AdaBoost — Minimizing Exponential Error
* Minimize with respect to h,,(x): _9E . 0
M Ol (%)
E= (eam/z —om/z) Zw(M) I(hn (%) # o) + e 0m/2 Zw(m
n=1
%/—/ %/—/
= const. = const.

= This is equivalent to minimizing
Im = Z Wy, 7£ tn)
(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...
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AdaBoost — Minimizing Exponential Error

* Sequential Minimization

» Suppose that the base classifiers h,(x),..., h,,.,(x) and their
coefficients a,,.. are fixed.

Qg

= Only minimize W|th respect to a,, and h,,(x).

E= Zexp{ tnfm(Xn)} with fin(x Zaihi(x

n=1
al 1
= Z exp {—tnfm,l(xn) - 5t‘nozmhm(xn)}
n=1 Y
= const.
al 1
= Z wg"ﬂ exp {7 5ifnozmhm(xn) }
n=1
B. Leibe 15
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AdaBoost — Minimizing Exponential Error

a 1
E= Z wﬁbm) exp {7—tnamhm(xn)}
n=1 2
» Observation:
— Correctly classified points: t,h,,(x,) = +1
— Misclassified points:

= collect in 7,

m

th (%) = = = collectin F,

m

» Rewrite the error function as
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N
= (e"“”/z — e"""’/z) Z W (i (%) # ty) + € 0m/? Zw m)
n=1
B. Leibe H
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AdaBoost — Minimizing Exponential Error
OE |
* Minimize with respectto o,,; 57— =0
N N
E= (e”"‘/z - e"""‘/z) Z W (B (%) # ty) + €0 /? Zwﬁf”)
n=1 n=1

N
G/Eam/z +¥c—um/2>z W I (k) £ £) ;}/efum/zzwgn)

n=1 n=1
weighted

v e—m/2
€m 1= =
error m em/2 + e—am/2

1
em 4 1

1—en
&y = In -
m

= Update for the « coefficients:

19
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AdaBoost — Minimizing Exponential Error

* Remaining step: update the weights
» Recall that

N
1
E= Z wflm> exp {7 itnamhm(xn)}

n=1

This becomes w(™*+Y

in the next iteration.
» Therefore
1
wm D) = (M) exp {—gtnamhm(xn)}

=w(™ exp {amI (A (%n) # ta)}

= Update for the weight coefficients.

Machine Learning Winter ‘17
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AdaBoost — Analysis

* Result of this derivation

» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

» This allows us to analyze AdaBoost's behavior in more detail.
» In particular, we can see how robust it is to outlier data points.

Machine Learning Winter ‘17
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Recap: Error Functions

[ {_]_ 1} E(zn) Ideal misclassification errof

Not differentiable! ——

) a0 ] 7" #n = ty(%n)

* |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 24

Jmage source: Bishop, 2001
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AdaBoost — Final Algorithm

1. Initialization: Set  w() = Iif_ar n=1,..,N.
2. Form=1,....M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W) b\(\[ninimizinq the weighted error function
T =Y W I (X) # t)
b) Estimate the Weigh(éa] error of this classifier on X:

S W T (i (%) # t)

€m

c) Calculate a weighting coefficient for h,,(x):
p =Ind ——m
€m

d) Update the weighting coefficients:
u-f]’”‘*q) = u,,(]'”) CX]) {{lﬂl ](]LTTI(XTL) # t”)}

B. Leibe
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Topics of This Lecture
* Analysis
» Comparing Error Functions
%
£
B. Leibe 3
RWTH CHET
Recap: Error Functions
= {_1: 1} E(zn) Ideal misclassification erro

Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

N ’/,
) - 0 1=

* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 25

lmage souce: Bishop, 2001

3 Zn = tny(xn)

~
g
=
o
=
£
8
3
)
=
H
S
I}
=




Recap: Error Functions

Robust to outliers!

Not differentiable! \

RWTHAACHE

Ideal misclassification erro
Squared error
Hinge error

/ Favors sparse

Machine Learning Winter ‘17

Discussion: AdaBoost Error Function

Bz, Ideal misclassification erro E(z,) Ideal misclassification erro
Squared error Squared error
Hinge error Hinge error
Sensitive to outliers! Exponential erro Exponential error

-2 =1 0

* Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.
~ Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

B. Leibe

7 < 3 Zn:tny(x'rz)

28

Jmage source: Bishop, 200¢
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Discussion: AdaBoost Error Function

RWTHACHE

Ideal misclassification erro
Squared error

Hinge error

Exponential error

E=— toIny, + (1 —t,)In(1 —y,
Y Yy

~ ; ~ \
= J/ solutions! = N\ /
5] S - 5] N _
£ ) 4 0 W o = tay(x0) £ ) 4 0 1 3" 2 = tny(Xn)
=) . » . > .
‘= * “Hinge error” used in SVMs i ° Exponential error used in AdaBoost
ﬁ » Zero error for points outside the margin (z, > 1) = sparsity E » Continuous approximation to ideal misclassification function.
% » Linear penalty for misclassified points (z, < 1) = robustness % » Sequential minimization leads to simple AdaBoost scheme.
é » Not differentiable around z, = 1 = Cannot be optimized directly. § » Properties?
26 27
B. Leibe |mage source: Bishop. 2001 B. Leibe Image source: Bishop, 200
RWTH/ACHEN RWTH/ACHEN

Discussion: Other Possible Error Functions

Cross-entropy error

¢ “Cross-entropy error” used in Logistic Regression

~ Similar to exponential error for z2>0.

» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.

= “GentleBoost” B. Leibe

3 Zn = tny(xn)

29

lmage souce: Bishop, 2001

Summary: AdaBoost Topics of This Lecture
* Properties
» Simple combination of multiple classifiers.
» Easy to implement.
» Can be used with many different types of classifiers.
— None of them needs to be too good on its own.
— In fact, they only have to be slightly better than chance.
» Commonly used in many areas.

» Empirically good generalization capabilities. * Applications

Lo » AdaBoost for face detection
* Limitations

» Original AdaBoost sensitive to mislabeled training data points.
— Because of exponential error function.
— Improvement by GentleBoost

» Single-class classifier
— Multiclass extensions available
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RWTH/THE
Example Application: Face Detection

* Frontal faces are a good example of a class where
global appearance models + a sliding window detection
approach fit well:

» Regular 2D structure
» Center of face almost shaped like a “patch”/window

* Now we'll take AdaBoost and see how the Viola-Jones
face detector works

Machine Learning Winter ‘17

32

ide credit- Kristen Grauman B. Leibe

Large Library of Filters

Considering all
possible filter
parameters:
position, scale, and
type:

180,000+ possible
features associated
with each 24 x 24

=1 || =

" W

~ .
N N | window
IR =
= 11 | ]
o
£
§ Use AdaBoost both to select the informative features
= and to form the classifier
=
=3
©
s
34
de credit Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]

AdaBoost for Efficient Feature Selection

¢ Image features = weak classifiers

* For each round of boosting:
» Evaluate each rectangle filter on each example

Sort examples by filter values
Select best threshold for each filter (min error)

— Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
Weight on this features is a simple function of error rate
Reweight examples

v

v

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

ide credit- Kristen Grauman B. Leibe
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Feature extraction

“Rectangular” filters
5 g Feature output is difference
between adjacent regions
N — 1
? |

Value at (xy) is

. sum of pixels
Efficiently computable F | above and to the
s ) »
= with integral image: any | left of (xy) : R
g sum can be computed in ‘ e s
= constant time ] L a
o
= Avoid scaling images >
E ’
©f|  scale features directly for Integral image D= 1)+
[
3| same cost (1@ +13)
£
[*]
2
’ 33
de credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001

AdaBoost for Feature+Classifier Selection

¢ Want to select the single rectangle feature and threshold that
best separates positive (faces) and negative (non-faces)
training examples, in terms of weighted error.

I f 10, 19, Resulting weak classifier:
|._.| 1 |
! ! +1 i [x)> 8
] eteeeseeoe i if [(x) > 6,
= 1 -1 otherwise
5 ;
iy o 1 )
= . 1 - For next round, reweight the
] —Iw— i
£ examples according to errors,
g Outputs of a choose another filter/threshold
2 possible rectangle combo.
£ feature on faces
g and non-faces.
3
de credit Kristen Grauman B. Leibe Nio@wi
RWTH CHET

Viola-Jones Face Detector: Results

JUDYBATS
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de credit Kristen Grauman B. Leibe



http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

RWTHACHE

Viola-Jones Face Detector: Results References and Further Reading

* More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

=

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

= =
g g
c c . . . P . .
H = * A more in-depth discussion of the statistical interpretation
£ = of AdaBoost is available in the following paper:
:"E E » J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a
2 B Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
5 5 pages 337-374, 2000.
© ©
= ] 38 = ; 39
ide credit: Kristen Grauman B. Leibe B. Leibe
Topics of This Lecture Decision Trees
* Very old technique
» Origin in the 60s, might seem outdated.
* But...
» Can be used for problems with nominal data
— E.g. attributes color € {red, green, blue} or weather € {sunny, rainy}.
— Discrete values, no notion of similarity or even ordering.
= = » Interpretable results
g ‘a:, — Learned trees can be written as sets of if-then rules.
§ é » Methods developed for handling missing feature values.
g * Decision Trees g » Successfully applied to broad range of tasks
g - CART . o . g — E.g. Medical diagnosis
i > |mpur|ty measures, Stopping criterion, Pruning ﬁ — E.g. Credit risk assessment of loan applicants
% » Extensions, Issues % s int fi | devel ts buildi t f th
8 . Historical development: ID3, C4.5 8 ~ Some interesting novel developments building on top of them...
B. Leibe 40 B. Leibe 4
Decision Trees Decision Trees
[t |
Sunny Overcast Rain Synny Overcast Rain
~ ~
¥ High Normal Strong Weak e High Normal Strong Wealk
= =
= No Yes No Yes = No Yes No Yes
[} o
£ £
€ €
Bl - Example: SN Elements
2 » “Classify Saturday mornings according to whether they’re 2 » Each node specifies a test for some attribute.
5 suitable for playing tennis.” 5 » Each branch corresponds to a possible value of the attribute.
= 42 = 4
B. Leibe Image source: T Mitchell 1097 B. Leibe

3
Amage source: T Mitchell 1907



http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

Decision Trees

* Assumption
» Links must be mutually distinct and exhaustive
» l.e. one and only one link will be followed at each step.

(Outlook = Sunny A Humidity = Normal)
V (Outlook = Owvercast)
V (Outlook = Rain A Wind = Weak)

Machine Learning Winter ‘17

B. Leibe

* Interpretability yes
» Information in a tree can then be
rendered as logical expressions. High - Normal Strong - Weak
gical exp /0K 7N
» In our example: No Yes No Yes

Image source: T Mitchell, 199;

CART Framework

* Six general questions
1. Binary or multi-valued problem?
— lL.e. how many splits should there be at each node?

2. Which property should be tested at a node?
— lL.e. how to select the query attribute?

3. When should a node be declared a leaf?
— l.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?
— Goal: reduce overfitting.

5. How to deal with impure nodes?
— l.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

Machine Learning Winter ‘17

B. Leibe
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CART - 2. Picking a Good Splitting Feature

¢ Goal
» Want a tree that is as simple/small as possible (Occam’s razor).
» But: Finding a minimal tree is an NP-hard optimization problem.

* Greedy top-down search
» Efficient, but not guaranteed to find the smallest tree.

Seek a property T"at each node s; that makes the data in the child
nodes as pure as possible.

» For formal reasons more convenient to define impurity i(s;).
» Several possible definitions explored.
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B. Leibe
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48

Training Decision Trees

Finding the optimal decision tree is NP-hard...

* Common procedure: Greedy top-down growing
» Start at the root node.
» Progressively split the training data into smaller and smaller subsets.
» In each step, pick the best attribute to split the data.

» If the resulting subsets are pure (only one label) or if no further
attribute can be found that splits them, terminate the tree.

» Else, recursively apply the procedure to the subsets.

* CART framework
» Classification And Regression Trees (Breiman et al. 1993)
» Formalization of the different design choices.

Machine Learning Winter ‘17
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TOWTHACHET]
CART — 1. Number of Splits

* Each multi-valued tree can be converted into an equivalent
binary tree:

Grapefruis. Lemon Cherry  Grape

= Only consider binary trees here...

Machine Learning Winter ‘17
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B. Leibe Lmage source: RO Duda PE Hait DG Stork, 200

TOWTHACHET]
CART — Impurity Measures

Problem:

i(P) / discontinuous derivative!

“Fraction of the
training patterns
in category C;, that
end up in node s;.”

* Misclassification impurity

i(sj) =1- maxp
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B. Leibe Image souce: RO Duda PE Hai DG Sigrk, 200




CART — Impurity Measures

i(P)
_,// .
/
o
/ "5;9
Ty
/ )
= )
§ 0 05 1
=
. . .
Entropy impurit;
g Py Impurity “Reduction in
E i(s5)=- z p(Ck|s;) log, p(Ck|s;)  entropy = gain in
o T information.
-
2
B. Leibe 50

Image source: RO, Duda, P.E. Hart, DG, Stork, 200:

CART — Impurity Measures

* Which impurity measure should we choose?
» Some problems with misclassification impurity.
— Discontinuous derivative.
= Problems when searching over continuous parameter space.

— Sometimes misclassification impurity does not decrease when Gini
impurity would.

» Both entropy impurity and Gini impurity perform well.

= — No big difference in terms of classifier performance.
g — In practice, stopping criterion and pruning method are often more
] important.
o
£
=
&
L33
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CART - Picking a Good Splitting Feature

* For efficiency, splits are often based on a single feature
» “Monothetic decision trees”

5

¢ Evaluating candidate splits
» Nominal attributes: exhaustive search over all possibilities.
» Real-valued attributes: only need to consider changes in label.
— Order all data points based on attribute ;.

— Only need to test candidate splits where label(z;) = label(z ).
B. Leibe
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CART — Impurity Measures

* Gini impurity (variance impurity) Expected
Xpected error
i(sj) = E p(Ck|sj) p(Cl|sj) rate at node s, if

k=l the category label is

1 selected randomly.”
=5 |1= > p2(els)
K 51

Image source: R.O, Duda, PE, Hart, D.G. Stork, 200

TRWTH/JCHEN
CART - 2. Picking a Good Splitting Feature

* Application
» Select the query that decreases impurity the most
Ai(s;) = i(sj) — PLi(s;L) — (1= PLi(sjg)
P, = fraction of
points at left
* Multiway generalization (gain ratio impurity): ~ child node s;,
» Maximize

M
1
8i(s) = 7| i(5) = D BuiCsim)
m=1

» where the normalization factor ensures that large K are not
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inherently favored: M
Z=- z Py log, Py
m=1 53
B. Leibe
RWTH CHET

CART — 3. When to Stop Splitting

* Problem: Overfitting
» Learning a tree that classifies the training data perfectly may not lead
to the tree with the best generalization to unseen data.
» Reasons
— Noise or errors in the training data.
— Poor decisions towards the leaves of the tree that are based on very

little data.
* Typical behavior
on training data

on test data

accuracy

hypothesis complexity

55

ide adanted from Ravmand Mognes B. Leibe
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CART - Overfitting Prevention (Pruning)

* Two basic approaches for decision trees

» Prepruning: Stop growing tree as some point during top-down
construction when there is no longer sufficient data to make reliab
decisions.

» Postpruning: Grow the full tree, then remove subtrees that do not
have sufficient evidence.

* Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

& o

Cn = a.rgml?.xp(ck\N)

p(Ck|N)

ide adapted from Raymond Moone, 8. Leibe

RWTHAACHE

le

56

Summary: Decision Trees

* Properties
» Simple learning procedure, fast evaluation.
» Can be applied to metric, nominal, or mixed data.
» Often yield interpretable results.

B. Leibe

67
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References and Further Reading

* More information on Decision Trees can be found in
Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, PE. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

B. Leibe

RWTHAACHE

69

Machine Learning Winter ‘17

~
g
=
=)
=
£
©
5]
4
o
£
=
S
)
=

Decision Trees — Computational Complexity

* Given
~ Data points {x;,...,xy}
» Dimensionality D

e Complexity
» Storage: O(N)
» Test runtime: O(log N)

. Training runtime:  O(DN?log N)

— Most expensive part.
— Critical step: selecting the optimal splitting point.

— Need to check D dimensions, for each need to sort N data points.

O(DNlogN)
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Summary: Decision Trees

* Limitations
Often produce noisy (bushy) or weak (stunted) classifiers.

Do not generalize too well.
Training data fragmentation:

— As tree progresses, splits are selected based on less and less data.

Overtraining and undertraining:

— Deep trees: fit the training data well, will not generalize well to new test

data.
— Shallow trees: not sufficiently refined.
Stability

— Trees can be very sensitive to details of the training points.
— If a single data point is only slightly shifted, a radically different tree may

come out!
= Result of discrete and greedy learning procedure.
Expensive learning step
— Mostly due to costly selection of optimal split.
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