

Machine Learning – Lecture 8

Nonlinear Support Vector Machines

09.11.2017

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

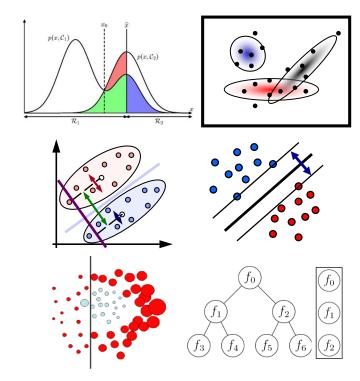
Announcements

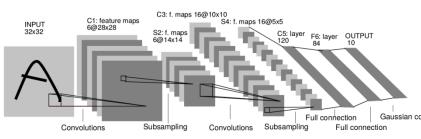
- Exam dates
 - Jst date: Monday, 07.03., 13:30h 16:00h
 - > 2nd date: Monday, 29.03., 10:30h 13:00h
 - The lecture dates have been optimized to avoid overlaps with other Computer Science Master lectures as much as possible.
 - > If you still have conflicts with *both* exam dates, please tell us.
 - If you're not a CS/SSE/MI student and want to take the exam and cannot register on Campus, please do NOT yet register with us.
 - We will collect those registrations in mid-January
- Please register for the exam on Campus until next week Friday (17.11.)!

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Topics of This Lecture

Support Vector Machines

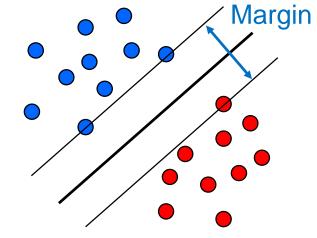
- Recap: Lagrangian (primal) formulation
- Dual formulation
- Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer's condition
 - Popular kernels
- Analysis
 - Error function
 - Applications

B. Leibe

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - > Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$



- Formulation as a convex optimization problem
 - Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n+b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values

 $t_n \in \{-1, 1\}$

Recap: SVM – Lagrangian Formulation

- Find hyperplane minimizing $\|\mathbf{w}\|^2$ under the constraints $t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n+b)-1\geq 0 \quad orall n$
- Lagrangian formulation
 - > Introduce positive Lagrange multipliers: a

 $a_n \geq 0 \quad \forall n$

- Minimize Lagrangian ("primal form") $L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \right\}$
- > I.e., find \mathbf{w} , b, and \mathbf{a} such that

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \left[\sum_{n=1}^{N} a_n t_n = 0 \right] \qquad \frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \left[\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n \right]$$

 \succ

Recap: SVM – Primal Formulation

Lagrangian primal form

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N a_n \left\{ t_n(\mathbf{w}^T \mathbf{x}_n + b) - 1 \right\}$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\}$$

- The solution of L_p needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

$$a_n \ge 0$$

 $t_n y(\mathbf{x}_n) - 1 \ge 0$

 $\mathbf{\Omega}$

$$a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\} = 0$$

$$egin{array}{ccc} {\sf KKT}:\ \lambda &\geq & 0\ f({f x}) &\geq & 0\ \lambda f({f x}) &= & 0 \end{array}$$

SVM – Solution (Part 1)

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Because of the KKT conditions, the following must also hold

$$a_n \left(t_n (\mathbf{w}^{\mathrm{T}} \mathbf{x}_n + b) - 1 \right) = 0$$

KKT:
$$\lambda f(\mathbf{x})=0$$

> This implies that $a_n > 0$ only for training data points for which

$$\left(t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n+b)-1\right)=0$$

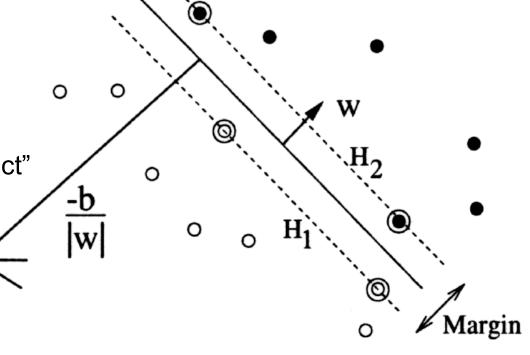
⇒ Only some of the data points actually influence the decision boundary!

SVM – Support Vectors

 The training points for which a_n > 0 are called "support vectors".

Origin

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They *define* the margin and thus the hyperplane.
 - ⇒ Robustness to "too correct" points!



RWTHAACHEN UNIVERSITY

SVM – Solution (Part 2)

- Solution for the hyperplane
 - > To define the decision boundary, we still need to know b.
 - > Observation: any support vector \mathbf{x}_n satisfies

$$t_n y(\mathbf{x}_n) = t_n \left(\sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n + b \right) = 1 \quad \begin{array}{c} \text{KKT:} \\ f(\mathbf{x}) \ge 0 \end{array}$$

- > Using $t_n^2 = 1$ we can derive: $b = t_n \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n$
- > In practice, it is more robust to average over all support vectors:

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

SVM – Discussion (Part 1)

- Linear SVM
 - Linear classifier
 - SVMs have a "guaranteed" generalization capability.
 - Formulation as convex optimization problem.
 - \Rightarrow Globally optimal solution!
- Primal form formulation
 - Solution to quadratic prog. problem in M variables is in $\mathcal{O}(M^3)$.
 - > Here: D variables $\Rightarrow \mathcal{O}(D^3)$
 - Problem: scaling with high-dim. data ("curse of dimensionality")

SVM – Dual Formulation

Improving the scaling behavior: rewrite L_p in a dual form ۲

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b) - 1\}$$
$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n}t_{n}\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} - b\sum_{n=1}^{N} a_{n}t_{n} + \sum_{n=1}^{N} a_{n}$$

n=1

Using the constraint
$$\sum_{n=1}^{N} a_n t_n = 0$$
 we obtain
 $L_p = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n t_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n + \sum_{n=1}^{N} a_n$

$$\frac{\partial L_p}{\partial b} = 0$$

≻

RWTHAACHEN UNIVERSITY

SVM – Dual Formulation

RWTHAACHEN UNIVERSITY

SVM – Dual Formulation

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N \sum_{m=1}^N a_n a_m t_n t_m (\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n) + \sum_{n=1}^N a_n$$

$$\Rightarrow \text{ Applying } \frac{1}{2} \|\mathbf{w}\|^2 = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text{ and again using } \mathbf{w} = \sum_{n=1}^N a_n t_n \mathbf{x}_n$$

$$\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} = \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N a_n a_m t_n t_m (\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

Inserting this, we get the Wolfe dual

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

SVM – Dual Formulation

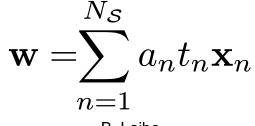
• Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$a_n \geq 0 \quad orall n \ \sum_{n=1}^N a_n t_n \ = \ 0$$

> The hyperplane is given by the N_S support vectors:



Slide adapted from Bernt Schiele

Machine Learning Winter '17

B. Leibe

18

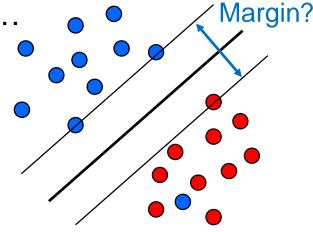
RWTHAACHEN UNIVERSITY

SVM – Discussion (Part 2)

- Dual form formulation
 - > In going to the dual, we now have a problem in N variables (a_n) .
 - Isn't this worse??? We penalize large training sets!
- However...
 - **1.** SVMs have sparse solutions: $a_n \neq 0$ only for support vectors!
 - \Rightarrow This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.
 - 2. We have avoided the dependency on the dimensionality.
 - \Rightarrow This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
 - \Rightarrow We'll see that later in today's lecture...

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.



SVM – Non-Separable Data

- Non-separable data
 - I.e. the following inequalities cannot be satisfied for all data points

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1 \qquad \text{for} \quad t_{n} = +1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1 \qquad \text{for} \quad t_{n} = -1$$

Instead use

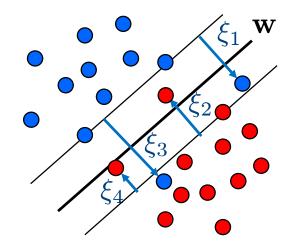
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1 - \xi_{n} \quad \text{for} \quad t_{n} = +1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1 + \xi_{n} \quad \text{for} \quad t_{n} = -1$$

with "slack variables"

 $\xi_n \ge 0 \quad \forall n$

SVM – Soft-Margin Classification

- Slack variables
 - > One slack variable $\xi_n \ge 0$ for each training data point.
- Interpretation
 - > $\xi_n = 0$ for points that are on the correct side of the margin.
 - > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points (linear penalty).



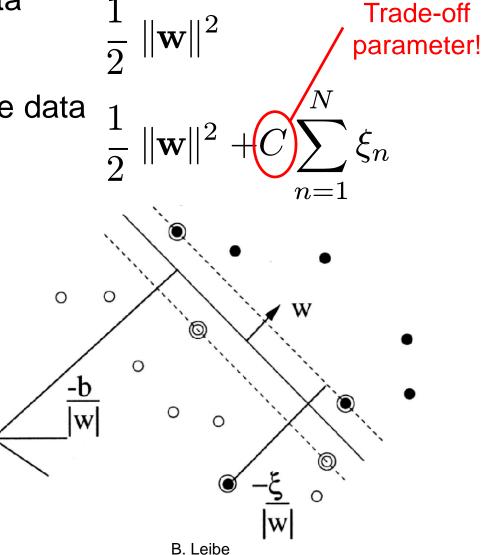
Point on decision boundary: $\xi_n = 1$

 $\begin{array}{l} \text{Misclassified point:} \\ \xi_n > 1 \end{array}$

> We do not have to set the slack variables ourselves! \Rightarrow They are jointly optimized together with w.

SVM – Non-Separable Data

- Separable data
 - Minimize
- Non-separable data
 - Minimize



SVM – New Primal Formulation

• New SVM Primal: Optimize

KKT conditions

$$a_n \ge 0 \qquad \mu_n \ge 0 \qquad \begin{array}{ll} \mathsf{KKT:} & \lambda \ge & \lambda \le & \lambda \le$$

()

0

()

SVM – New Dual Formulation

• New SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$egin{array}{ccc} 0 & \cdot & a_n & \cdot & C \ \sum_{n=1}^N a_n t_n & = & 0 \end{array}$$

This is all that changed!

This is again a quadratic programming problem
 ⇒ Solve as before... (more on that later)

SVM – New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

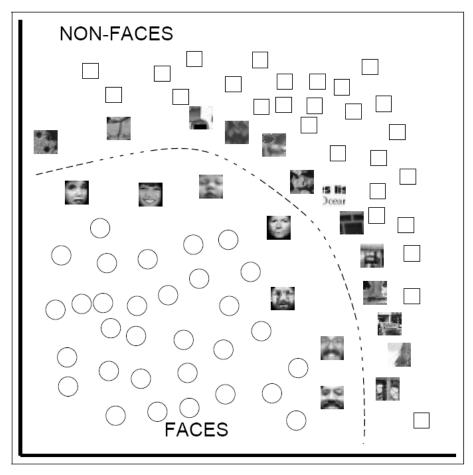
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- > Again sparse solution: $a_n = 0$ for points outside the margin.
- \Rightarrow The slack points with $\xi_n > 0$ are now also support vectors!
- > Compute b by averaging over all $N_{\mathcal{M}}$ points with $0 < a_n < C$:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{M}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

Interpretation of Support Vectors

- Those are the hard examples!
 - We can visualize them, e.g. for face detection



RWTHAACHEN UNIVERSITY

Topics of This Lecture

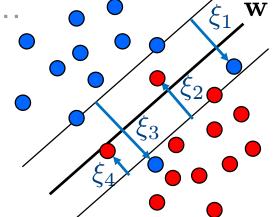
- Support Vector Machines
 - Recap: Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification

Nonlinear Support Vector Machines

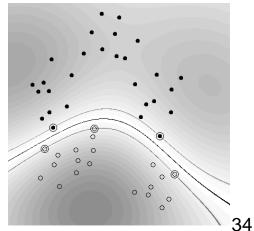
- Nonlinear basis functions
- The Kernel trick
- Mercer's condition
- Popular kernels
- Analysis
 - Error function
- Applications

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
 - \Rightarrow Slack variables.

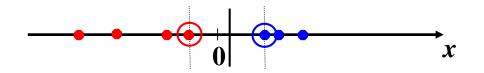


- Only looked at linear decision boundaries...
 - This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.

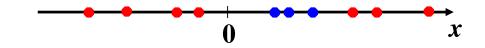


Nonlinear SVM

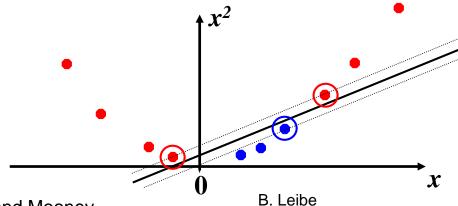
- Linear SVMs
 - Datasets that are linearly separable with some noise work well:



But what are we going to do if the dataset is just too hard?



How about... mapping data to a higher-dimensional space:

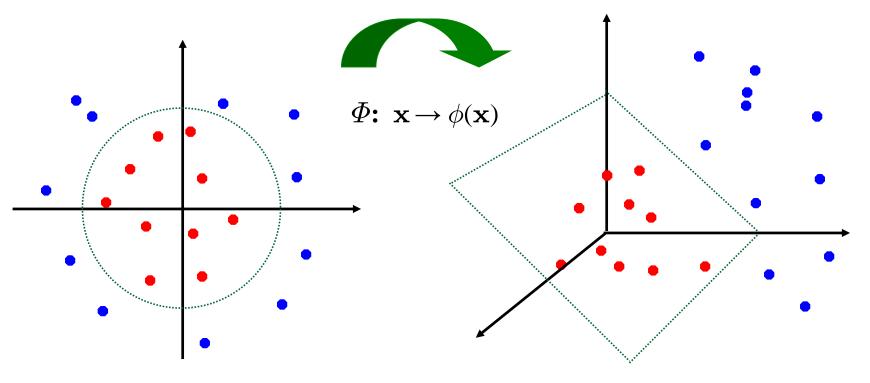


Machine Learning Winter '17

35

Nonlinear SVM – Feature Spaces

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Nonlinear SVM

- General idea
 - > Nonlinear transformation ϕ of the data points \mathbf{x}_n :

$$\mathbf{x} \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \to \mathcal{H}$$

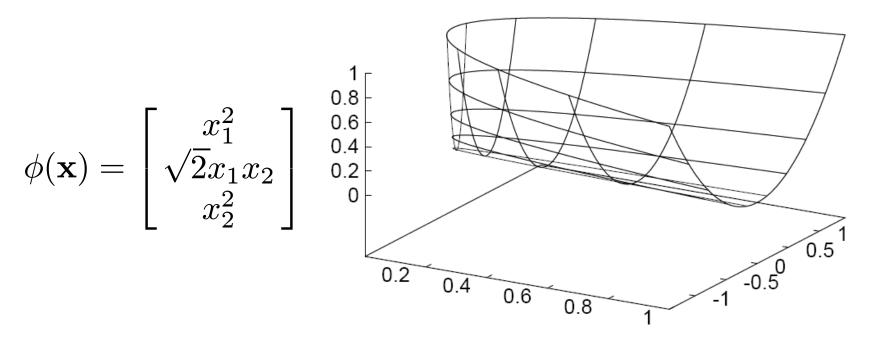
> Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})

$$\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b = 0$$

 \Rightarrow Nonlinear classifier in \mathbb{R}^D .

What Could This Look Like?

- Example:
 - > Mapping to polynomial space, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$:



- Motivation: Easier to separate data in higher-dimensional space.
- But wait isn't there a big problem?
 - How should we evaluate the decision function?

Problem with High-dim. Basis Functions

- Problem
 - In order to apply the SVM, we need to evaluate the function

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b$$

Using the hyperplane, which is itself defined as

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

 \Rightarrow What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$?

> Oh-oh...

Solution: The Kernel Trick

- Important observation
 - > $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$
$$= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b$$

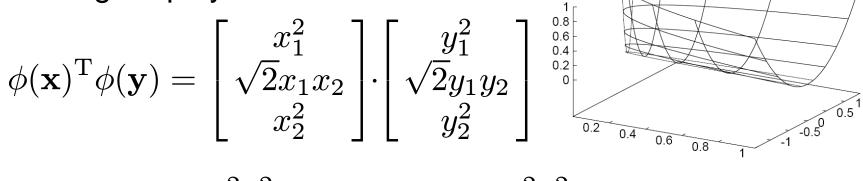
- > Trick: Define a so-called kernel function $k(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

> The kernel function *implicitly* maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Back to Our Previous Example...

• 2nd degree polynomial kernel:



$$= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

$$= (\mathbf{x}^{\mathrm{T}}\mathbf{y})^2 =: k(\mathbf{x}, \mathbf{y})$$

> Whenever we evaluate the kernel function $k(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\mathsf{T}}\mathbf{y})^2$, we implicitly compute the dot product in the higher-dimensional feature space.

RWTHAACHEN UNIVERSITY

SVMs with Kernels

Using kernels

Machine Learning Winter '17

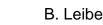
Applying the kernel trick is easy. Just replace every dot product by a kernel function...

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} \rightarrow k(\mathbf{x}, \mathbf{y})$$

- …and we're done.
- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.

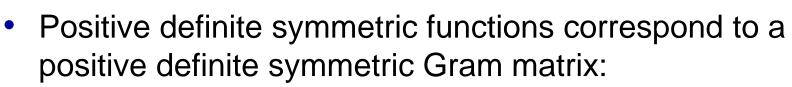
"Sounds like magic ...

- > The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
- When is this the case?



Which Functions are Valid Kernels?

- Mercer's theorem (modernized version):
 - > Every positive definite symmetric function is a kernel.



	$k(\mathbf{x}_1, \mathbf{x}_1)$	$k(\mathbf{x}_1, \mathbf{x}_2)$	$k(\mathbf{x}_1,\mathbf{x}_3)$	 $k(\mathbf{x}_1, \mathbf{x}_n)$
	$k(\mathbf{x}_2, \mathbf{x}_1)$	$k(\mathbf{x}_2,\mathbf{x}_2)$	$k(\mathbf{x}_2,\mathbf{x}_3)$	$k(\mathbf{x}_2,\mathbf{x}_n)$
K =				
	$k(\mathbf{x}_n, \mathbf{x}_1)$	$k(\mathbf{x}_n, \mathbf{x}_2)$	$k(\mathbf{x}_n, \mathbf{x}_3)$	 $k(\mathbf{x}_n, \mathbf{x}_n)$

(positive definite = all eigenvalues are > 0)

Kernels Fulfilling Mercer's Condition

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^{p}$$

Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}
ight\}$$
 e.g. Gaussian

Hyperbolic tangent kernel

$$k(\mathbf{x}, \mathbf{y}) = \tanh(\mathbf{x}\mathbf{x}^{\mathrm{T}}\mathbf{y} + \delta)$$
 e.g. Sigmoid

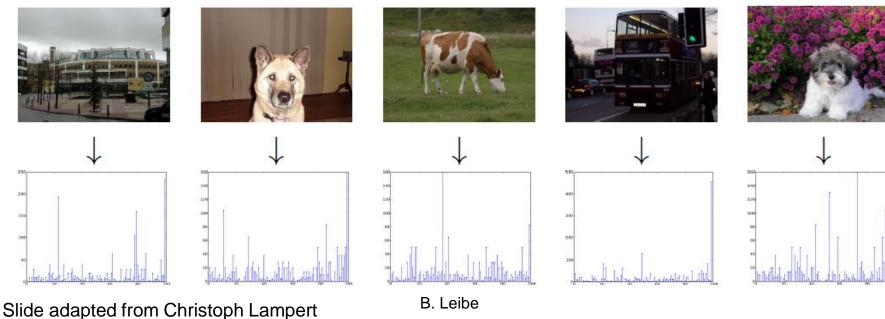
Actually, this was wrong in the original SVM paper...

(and many, many more...)

Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - Compare two images by any histogram kernel, e.g. χ^2 kernel

$$k_{\chi^2}(h, h') = \exp\left(-\frac{1}{\gamma}\sum_j \frac{(h_j - h'_j)^2}{h_j + h'_j}\right)$$



Nonlinear SVM – Dual Formulation

• SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_m, \mathbf{x}_n)$$

under the conditions

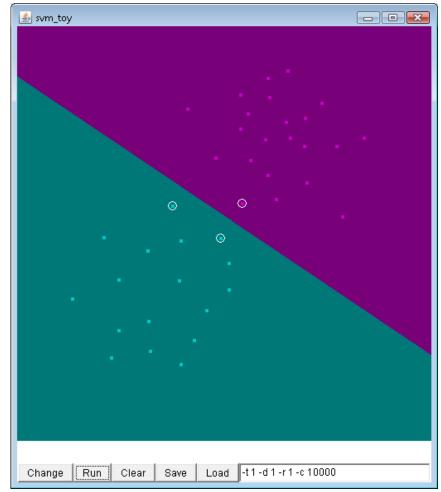
$$0 \cdot a_n \cdot C$$
$$\sum_{n=1}^N a_n t_n = 0$$

Classify new data points using

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \mathbf{k}(\mathbf{x}_n, \mathbf{x}) + b$$

RWTHAACHEN UNIVERSITY

SVM Demo



Applet from libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on <u>http://www.kernel-machines.org/</u>

Summary: SVMs

- Limitations
 - How to select the right kernel?
 - Best practice guidelines are available for many applications
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - \Rightarrow There are techniques to reduce the effective SV set.
 - > Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Support Vector Machines
 - Recap: Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - Popular kernels
 - Analysis
 - Error function
- Applications

SVM – Analysis

Traditional soft-margin formulation

$$\min_{\mathbf{w}\in\mathbb{R}^{D},\,\boldsymbol{\xi}_{n}\in\mathbb{R}^{+}} \frac{1}{2} \|\mathbf{w}\|^{2} + C\sum_{n=1}^{N} \boldsymbol{\xi}_{n}$$

λT

"Maximize the margin"

subject to the constraints

$$t_n y(\mathbf{x}_n) \geq 1 - \boldsymbol{\xi}_n$$

"Most points should be on the correct side of the margin"

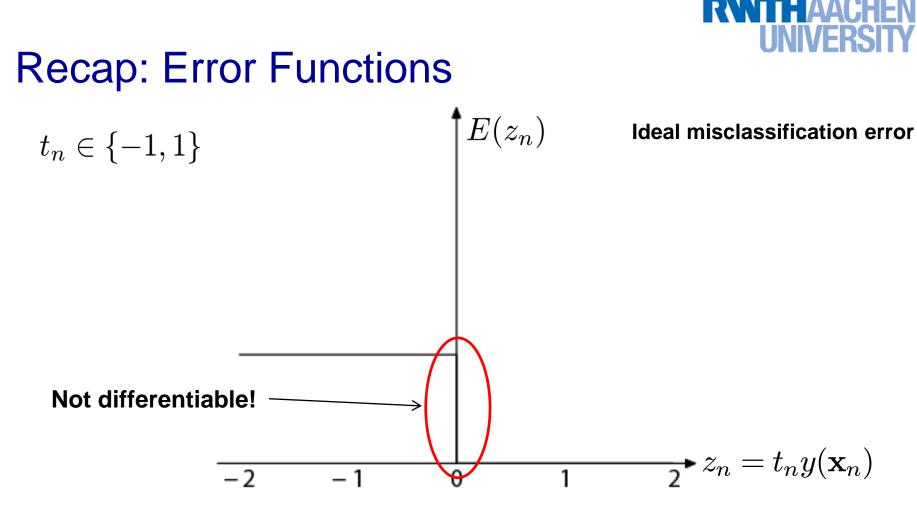
- Different way of looking at it
 - We can reformulate the constraints into the objective function.

$$\min_{\mathbf{w} \in \mathbb{R}^{D}} \underbrace{\frac{1}{2} \|\mathbf{w}\|^{2}}_{\mathbf{L}_{2} \text{ regularizer}} + C \sum_{n=1}^{N} [1 - t_{n} y(\mathbf{x}_{n})]_{+}$$

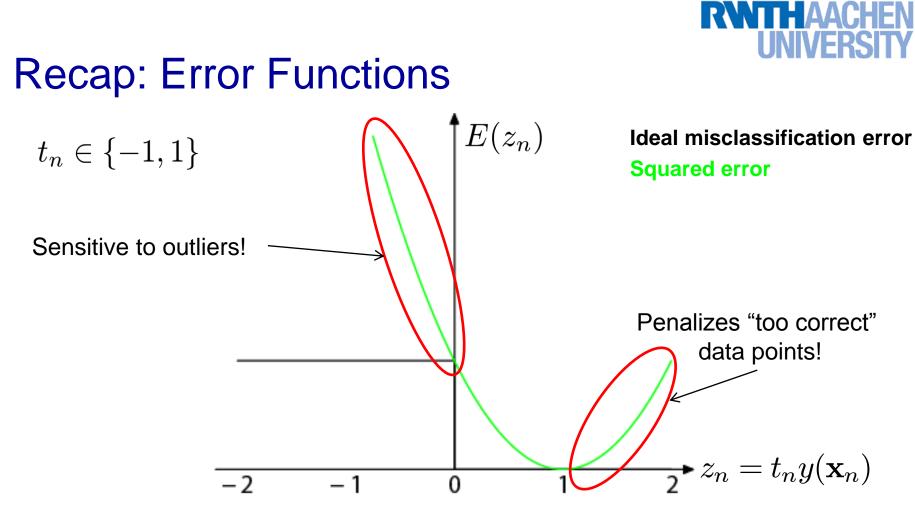
$$\underbrace{\mathbf{L}_{2} \text{ regularizer}}_{\mathbf{H}_{2} \text{ regularizer}} \quad \text{``Hinge loss''}$$

$$\text{where } [x]_{+} := \max\{0, x\}.$$

Slide adapted from Christoph Lampert



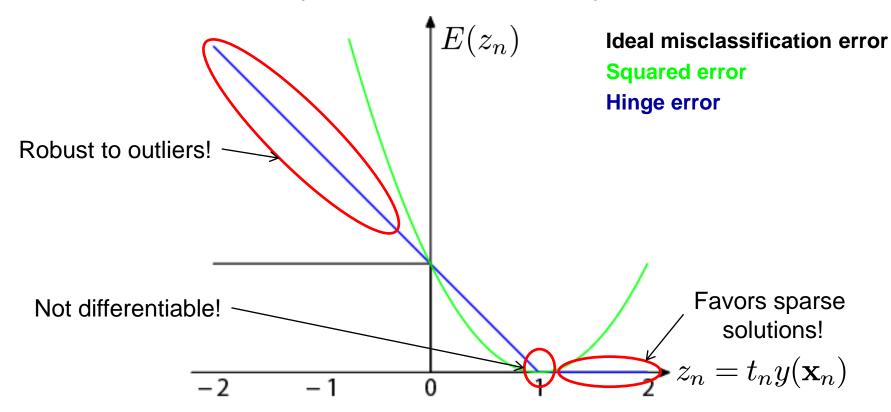
- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - > Unfortunately, it is not differentiable.
 - > The gradient is zero for misclassified points.
 - \Rightarrow We cannot minimize it by gradient descent.



Squared error used in Least-Squares Classification

- Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- > Penalizes "too correct" data points
- \Rightarrow Generally does not lead to good classifiers.

Error Functions (Loss Functions)

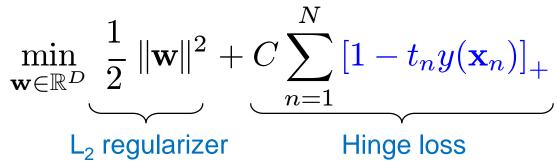


"Hinge error" used in SVMs

- Zero error for points outside the margin $(z_n > 1) \implies$ sparsity
- > Linear penalty for misclassified points ($z_n < 1$) \Rightarrow robustness
- > Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

SVM – Discussion

SVM optimization function



- Hinge loss enforces sparsity
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer! There, only a subset of input dimensions are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - > Currently most efficient: *stochastic gradient descent*

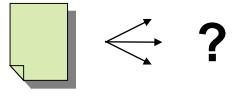
RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Support Vector Machines
 - Recap: Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - Popular kernels
- Analysis
 - > Error function
 - **Applications**

Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories



• Representation:

- "Bag-of-words" approach
- Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10.000 dimensions)
 - Few irrelevant features
- This was one of the first applications of SVMs
 - T. Joachims (1997)

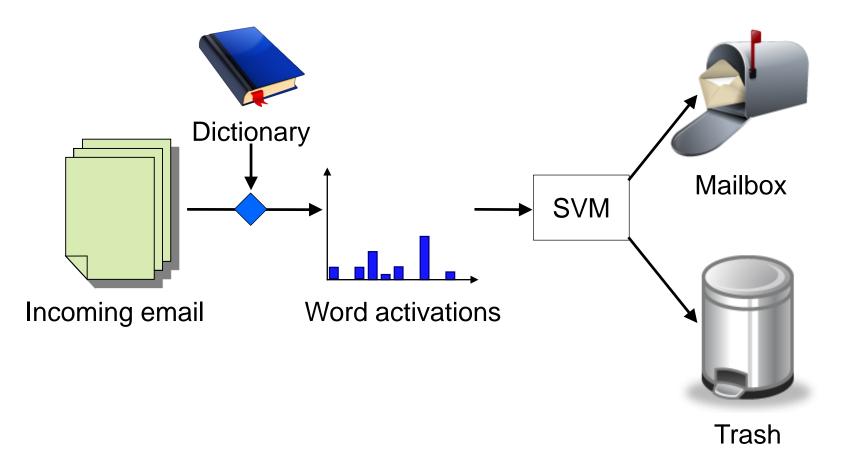
Example Application: Text Classification

• Results:

					SVM (poly)				SVM (rbf)				
					degree $d =$				width $\gamma =$				
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
<u> </u>					combined: 86.0			combined: 86.4					

Example Application: Text Classification

• This is also how you could implement a simple spam filter...



Example Application: OCR

- Handwritten digit recognition
 - > US Postal Service Database
 - Standard benchmark task for many learning algorithms

Historical Importance

- USPS benchmark
 - > 2.5% error: human performance
- Different learning algorithms
 - > 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - ▶ 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network
- Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - > 4.1% error: Gaussian kernel (σ =0.3, 291 support vectors)

Example Application: OCR

- Results
 - > Almost no overfitting with higher-degree kernels.

degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	pprox 33000	227	4.7
3	$pprox 1 imes 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$pprox 1 imes 10^{16}$	422	4.5

Example Application: Object Detection

Sliding-window approach

Obj./non-obj. Classifier

- E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

[Dalal & Triggs, CVPR 2005]

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Many Other Applications

- Lots of other applications in all fields of technology
 - > OCR
 - Text classification
 - Computer vision

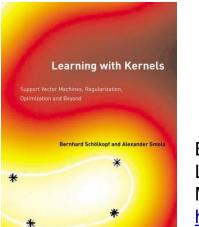
> ...

- High-energy physics
- Monitoring of household appliances
- > Protein secondary structure prediction
- Design on decision feedback equalizers (DFE) in telephony

(Detailed references in <u>Schoelkopf & Smola, 2002</u>, pp. 221)

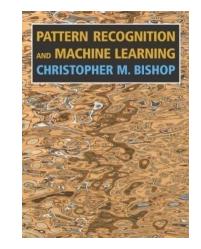
References and Further Reading

 More information on SVMs can be found in Chapter 7.1 of Bishop's book. You can also look at Schölkopf & Smola (some chapters available online).



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

B. Schölkopf, A. Smola Learning with Kernels MIT Press, 2002 http://www.learning-with-kernels.org/



- A more in-depth introduction to SVMs is available in the following tutorial:
 - C. Burges, <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.