Machine Learning - Lecture 7

Linear Support Vector Machines

06.11.2017

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals
, Bayes Decision Theory
, Probability Density Estimation
- Classification Approaches
, Linear Discriminants

, Support Vector Machines
, Ensemble Methods \& Boosting
, Randomized Trees, Forests \& Ferns

- Deep Learning
, Foundations
, Convolutional Neural Networks
, Recurrent Neural Networks

Recap: Generalized Linear Models

- Generalized linear model

$$
y(\mathbf{x})=g\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}+w_{0}\right)
$$

> $g(\cdot)$ is called an activation function and may be nonlinear.

- The decision surfaces correspond to

$$
y(\mathbf{x})=\text { const } . \quad \Leftrightarrow \quad \mathbf{w}^{\mathrm{T}} \mathbf{x}+w_{0}=\text { const } .
$$

, If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \mathbf{x}.

- Advantages of the non-linearity
- Can be used to bound the influence of outliers and "too correct" data points.
, When using a sigmoid for $g(\cdot)$, we can interpret the $y(\mathbf{x})$ as posterior probabilities.

Recap: Extension to Nonlinear Basis Fcts.

- Generalization
> Transform vector \mathbf{x} with M nonlinear basis functions $\phi_{j}(\mathbf{x})$:

$$
y_{k}(\mathbf{x})=\sum_{j=1}^{M} w_{k j} \phi_{j}(\mathbf{x})+w_{k 0}
$$

- Advantages
, Transformation allows non-linear decision boundaries.
- By choosing the right ϕ_{j}, every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvantage
, The error function can in general no longer be minimized in closed form.
\Rightarrow Minimization with Gradient Descent

Recap: Basis Functions

- Generally, we consider models of the following form

$$
y_{k}(\mathbf{x})=\sum_{j=0}^{M} w_{k j} \phi_{j}(\mathbf{x})=\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})
$$

, where $\phi_{j}(\mathbf{x})$ are known as basis functions.
, In the simplest case, we use linear basis functions: $\phi_{d}(\mathbf{x})=x_{d}$.

- Other popular basis functions

Recap: Iterative Methods for Estimation

- Gradient Descent ($1^{\text {st }}$ order)

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\left.\eta \nabla E(\mathbf{w})\right|_{\mathbf{w}^{(\tau)}}
$$

, Simple and general
, Relatively slow to converge, has problems with some functions

- Newton-Raphson (2 $2^{\text {nd }}$ order)

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\left.\eta \mathbf{H}^{-1} \nabla E(\mathbf{w})\right|_{\mathbf{w}^{(\tau)}}
$$

where $\mathbf{H}=\nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

- Local quadratic approximation to the target function
- Faster convergence

Recap: Gradient Descent

- Iterative minimization
, Start with an initial guess for the parameter values $w_{k j}^{(0)}$.
, Move towards a (local) minimum by following the gradient.
- Basic strategies
, "Batch learning"

$$
w_{k j}^{(\tau+1)}=w_{k j}^{(\tau)}-\left.\eta \frac{\partial E(\mathbf{w})}{\partial w_{k j}}\right|_{\mathbf{w}^{(\tau)}}
$$

, "Sequential updating"

$$
w_{k j}^{(\tau+1)}=w_{k j}^{(\tau)}-\left.\eta \frac{\partial E_{n}(\mathbf{w})}{\partial w_{k j}}\right|_{\mathbf{w}^{(\tau)}}
$$

where

$$
E(\mathbf{w})=\sum_{n=1}^{N} E_{n}(\mathbf{w})
$$

Recap: Gradient Descent

- Example: Quadratic error function

$$
E(\mathbf{w})=\sum_{n=1}^{N}\left(y\left(\mathbf{x}_{n} ; \mathbf{w}\right)-\mathbf{t}_{n}\right)^{2}
$$

- Sequential updating leads to delta rule (=LMS rule)

$$
\begin{aligned}
w_{k j}^{(\tau+1)} & =w_{k j}^{(\tau)}-\eta\left(y_{k}\left(\mathbf{x}_{n} ; \mathbf{w}\right)-t_{k n}\right) \phi_{j}\left(\mathbf{x}_{n}\right) \\
& =w_{k j}^{(\tau)}-\eta \delta_{k n} \phi_{j}\left(\mathbf{x}_{n}\right)
\end{aligned}
$$

, where

$$
\delta_{k n}=y_{k}\left(\mathbf{x}_{n} ; \mathbf{w}\right)-t_{k n}
$$

\Rightarrow Simply feed back the input data point, weighted by the classification error.

Recap: Gradient Descent

- Cases with differentiable, non-linear activation function

$$
y_{k}(\mathbf{x})=g\left(a_{k}\right)=g\left(\sum_{j=0}^{M} w_{k i} \phi_{j}\left(\mathbf{x}_{n}\right)\right)
$$

- Gradient descent (again with quadratic error function)

$$
\begin{aligned}
\frac{\partial E_{n}(\mathbf{w})}{\partial w_{k j}} & =\frac{\partial g\left(a_{k}\right)}{\partial w_{k j}}\left(y_{k}\left(\mathbf{x}_{n} ; \mathbf{w}\right)-t_{k n}\right) \phi_{j}\left(\mathbf{x}_{n}\right) \\
w_{k j}^{(\tau+1)} & =w_{k j}^{(\tau)}-\eta \delta_{k n} \phi_{j}\left(\mathbf{x}_{n}\right) \\
\delta_{k n} & =\frac{\partial g\left(a_{k}\right)}{\partial w_{k j}}\left(y_{k}\left(\mathbf{x}_{n} ; \mathbf{w}\right)-t_{k n}\right)
\end{aligned}
$$

Recap: Probabilistic Discriminative Models

- Consider models of the form

$$
\begin{aligned}
p\left(\mathcal{C}_{1} \mid \boldsymbol{\phi}\right) & =y(\boldsymbol{\phi})=\sigma\left(\mathrm{w}^{T} \boldsymbol{\phi}\right) \\
p\left(\mathcal{C}_{2} \mid \boldsymbol{\phi}\right) & =1-p\left(\mathcal{C}_{1} \mid \boldsymbol{\phi}\right)
\end{aligned}
$$

- This model is called logistic regression.
- Properties
, Probabilistic interpretation
, But discriminative method: only focus on decision hyperplane
, Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling $p\left(\phi \mid \mathcal{C}_{k}\right)$ and $p\left(\mathcal{C}_{k}\right)$.

Recap: Logistic Regression

- Let's consider a data set $\left\{\phi_{n}, t_{n}\right\}$ with $n=1, \ldots, N$, where $\phi_{n}=\boldsymbol{\phi}\left(\mathbf{x}_{n}\right)$ and $t_{n} \in\{0,1\}, \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{T}$.
- With $y_{n}=p\left(\mathcal{C}_{1} \mid \phi_{n}\right)$, we can write the likelihood as

$$
p(\mathbf{t} \mid \mathbf{w})=\prod_{n=1}^{N} y_{n}^{t_{n}}\left\{1-y_{n}\right\}^{1-t_{n}}
$$

- Define the error function as the negative log-likelihood

$$
\begin{aligned}
E(\mathbf{w}) & =-\ln p(\mathbf{t} \mid \mathbf{w}) \\
& =-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\}
\end{aligned}
$$

. This is the so-called cross-entropy error function.

Recap: Iteratively Reweighted Least Squares

- Update equations

$$
\begin{aligned}
\mathbf{w}^{(\tau+1)}= & \mathbf{w}^{(\tau)}-\left(\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T}(\mathbf{y}-\mathbf{t}) \\
& =\left(\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi}\right)^{-1}\left\{\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi} \mathbf{w}^{(\tau)}-\boldsymbol{\Phi}^{T}(\mathbf{y}-\mathbf{t})\right\} \\
& =\left(\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{R} \mathbf{z} \\
& \quad \text { with } \quad \mathbf{z}=\mathbf{\Phi} \mathbf{w}^{(\tau)}-\mathbf{R}^{-1}(\mathbf{y}-\mathbf{t})
\end{aligned}
$$

- Very similar form to pseudo-inverse (normal equations)
, But now with non-constant weighing matrix \mathbf{R} (depends on w).
, Need to apply normal equations iteratively.
\Rightarrow Iteratively Reweighted Least-Squares (IRLS)

Topics of This Lecture

- Softmax Regression
, Multi-class generalization
, Gradient descent solution
- Note on Error Functions
, Ideal error function
, Quadratic error
, Cross-entropy error
- Linear Support Vector Machines
, Lagrangian (primal) formulation
, Dual formulation
, Discussion

Softmax Regression

- Multi-class generalization of logistic regression
- In logistic regression, we assumed binary labels $t_{n} \in\{0,1\}$.
, Softmax generalizes this to K values in 1-of- K notation.

$$
\mathbf{y}(\mathbf{x} ; \mathbf{w})=\left[\begin{array}{c}
P(y=1 \mid \mathbf{x} ; \mathbf{w}) \\
P(y=2 \mid \mathbf{x} ; \mathbf{w}) \\
\vdots \\
P(y=K \mid \mathbf{x} ; \mathbf{w})
\end{array}\right]=\frac{1}{\sum_{j=1}^{K} \exp \left(\mathbf{w}_{j}^{\top} \mathbf{x}\right)}\left[\begin{array}{c}
\exp \left(\mathbf{w}_{1}^{\top} \mathbf{x}\right) \\
\exp \left(\mathbf{w}_{2}^{\top} \mathbf{x}\right) \\
\vdots \\
\exp \left(\mathbf{w}_{K}^{\top} \mathbf{x}\right)
\end{array}\right]
$$

, This uses the softmax function

$$
\frac{\exp \left(a_{k}\right)}{\sum_{j} \exp \left(a_{j}\right)}
$$

, Note: the resulting distribution is normalized.

Softmax Regression Cost Function

- Logistic regression
> Alternative way of writing the cost function with indicator function $\mathbb{I}(\cdot)$

$$
\begin{aligned}
E(\mathbf{w}) & =-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\} \\
& =-\sum_{n=1}^{N} \sum_{k=0}^{1}\left\{\mathbb{I}\left(t_{n}=k\right) \ln P\left(y_{n}=k \mid \mathbf{x}_{n} ; \mathbf{w}\right)\right\}
\end{aligned}
$$

- Softmax regression
, Generalization to K classes using indicator functions.

$$
E(\mathbf{w})=-\sum_{n=1}^{N} \sum_{k=1}^{K}\left\{\mathbb{I}\left(t_{n}=k\right) \ln \frac{\exp \left(\mathbf{w}_{k}^{\top} \mathbf{x}\right)}{\sum_{j=1}^{K} \exp \left(\mathbf{w}_{j}^{\top} \mathbf{x}\right)}\right\}
$$

Optimization

- Again, no closed-form solution is available
, Resort again to Gradient Descent
, Gradient

$$
\nabla_{\mathbf{w}_{k}} E(\mathbf{w})=-\sum_{n=1}^{N}\left[\mathbb{I}\left(t_{n}=k\right) \ln P\left(y_{n}=k \mid \mathbf{x}_{n} ; \mathbf{w}\right)\right]
$$

- Note
> $\nabla_{\mathbf{w} k} E(\mathbf{w})$ is itself a vector of partial derivatives for the different components of \mathbf{w}_{k}.
, We can now plug this into a standard optimization package.

Topics of This Lecture

- Softmax Regression
, Multi-class generalization
, Gradient descent solution
- Note on Error Functions
, Ideal error function
, Quadratic error
, Cross-entropy error
- Linear Support Vector Machines
, Lagrangian (primal) formulation
, Dual formulation
, Discussion

Note on Error Functions

$$
t_{n} \in\{-1,1\}
$$

- Ideal misclassification error function (black)
, This is what we want to approximate (error = \#misclassifications)
, Unfortunately, it is not differentiable.
, The gradient is zero for misclassified points.
\Rightarrow We cannot minimize it by gradient descent.

Note on Error Functions

$t_{n} \in\{-1,1\}$

Sensitive to outliers!

Ideal misclassification error Squared error
iers!

- Squared error used in Least-Squares Classification
, Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- Penalizes "too correct" data points
\Rightarrow Generally does not lead to good classifiers.

Comparing Error Functions (Loss Functions)

- Cross-Entropy Error
, Minimizer of this error is given by posterior class probabilities.
, Concave error function, unique minimum exists.
, Robust to outliers, error increases only roughly linearly
. But no closed-form solution, requires iterative estimation.

Overview: Error Functions

- Ideal Misclassification Error
- This is what we would like to optimize.
- But cannot compute gradients here.
- Quadratic Error

, Easy to optimize, closed-form solutions exist.
, But not robust to outliers.
- Cross-Entropy Error
- Minimizer of this error is given by posterior class probabilities.
, Concave error function, unique minimum exists.
, But no closed-form solution, requires iterative estimation.
\Rightarrow Analysis tool to compare classification approaches

Topics of This Lecture

- Softmax Regression
, Multi-class generalization
, Gradient descent solution
- Note on Error Functions
, Ideal error function
, Quadratic error
, Cross-entropy error
- Linear Support Vector Machines
, Lagrangian (primal) formulation
, Dual formulation
, Discussion

Generalization and Overfitting

- Goal: predict class labels of new observations
, Train classification model on limited training set.
, The further we optimize the model parameters, the more the training error will decrease.
, However, at some point the test error will go up again.
\Rightarrow Overfitting to the training set!

Example: Linearly Separable Data

- Overfitting is often a problem with linearly separable data
, Which of the many possible decision boundaries is correct?
, All of them have zero error on the training set...

, However, they will most likely result in different predictions on novel test data.
\Rightarrow Different generalization performance
- How to select the classifier with the best generalization performance?

Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
> Intuitively, we would like to select the classifier which leaves maximal "safety room" for future data points.
- This can be obtained by maximizing the margin between positive and negative
 data points.
. It can be shown that the larger the margin, the lower the corresponding classifier's VC dimension (capacity for overfitting).
- The SVM takes up this idea
, It searches for the classifier with maximum margin.
- Formulation as a convex optimization problem \Rightarrow Possible to find the globally optimal solution!

Support Vector Machine (SVM)

- Let's first consider linearly separable data
, N training data points $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \mathbf{x}_{i} \in \mathbb{R}^{d}$
, Target values $t_{i} \in\{-1,1\}$
, Hyperplane separating the data

Support Vector Machine (SVM)

- Margin of the hyperplane: $d_{-}+d_{+}$
> d_{+}: distance to nearest pos. training example
> d_{-}: distance to nearest neg. training example

Margin
, We can always choose \mathbf{w}, b such that $\quad d_{-}=d_{+}=\frac{1}{\|\mathbf{w}\|}$

Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \geq+1 & \text { for } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b \cdot-1 & \text { for } & t_{n}=-1
\end{array}
$$

- Combined in one equation, this can be written as

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

\Rightarrow Canonical representation of the decision hyperplane.
, The equation will hold exactly for the points on the margin

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1
$$

, By definition, there will always be at least one such point.

Support Vector Machine (SVM)

- We can choose w such that

$$
\begin{array}{lll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=+1 & \text { for one } & t_{n}=+1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b=-1 & \text { for one } & t_{n}=-1
\end{array}
$$

- The distance between those two hyperplanes is then the margin

$$
\begin{aligned}
d_{-}=d_{+} & =\frac{1}{\|\mathbf{w}\|} \\
d_{-}+d_{+} & =\frac{2}{\|\mathbf{w}\|}
\end{aligned}
$$

\Rightarrow We can find the hyperplane with maximal margin by minimizing $\|\mathbf{w}\|^{2}$

Support Vector Machine (SVM)

- Optimization problem
, Find the hyperplane satisfying

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

, Quadratic programming problem with linear constraints.

- Can be formulated using Lagrange multipliers.
- Who is already familiar with Lagrange multipliers?
. Let's look at a real-life example...

Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$.
, Example: we want to aet as close as possible, but there is a fence.
, How should we move?

$$
f(\mathbf{x})=0
$$

, We want to maximize ∇K
, But we can only move parallel to the fence, i.e. along

$$
\nabla_{\|} K=\nabla K+\lambda \nabla f
$$

with $\lambda \neq 0$.

Recap: Lagrange Multipliers

- Problem
, We want to maximize $K(\mathbf{x})$ subject to constraints $f(\mathbf{x})=0$.
, Example: we want to get as close as possible, but there is a fence.
, How should we move?

$$
\begin{aligned}
& f(\mathbf{x})=0 \\
\Rightarrow & \text { Optimize }
\end{aligned}
$$

$$
\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{x}}=\nabla_{\|} K \stackrel{!}{=} 0 \\
& \frac{\partial L}{\partial \lambda}=f(x) \stackrel{!}{=} 0
\end{aligned}
$$

Recap: Lagrange Multipliers

- Problem
, Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
, Example: There might be a hill from which we can see better...
, Optimize $\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$

- Two cases
, Solution lies on boundary $\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$
> Solution lies inside $f(\mathbf{x})>0$
\Rightarrow Constraint inactive: $\lambda=0$
, In both cases

$$
\Rightarrow \lambda f(\mathbf{x})=0
$$

Recap: Lagrange Multipliers

- Problem
- Now let's look at constraints of the form $f(\mathbf{x}) \geq 0$.
, Example: There might be a hill from which we can see better...
, Optimize $\max _{\mathbf{x}, \lambda} L(\mathbf{x}, \lambda)=K(\mathbf{x})+\lambda f(\mathbf{x})$

Karush-Kuhn-Tucker (KKT) conditions: $\lambda \geq 0$

- Two cases
, Solution lies on boundary
$\Rightarrow f(\mathbf{x})=0$ for some $\lambda>0$
, Solution lies inside $f(\mathbf{x})>0$
\Rightarrow Constraint inactive: $\lambda=0$
, In both cases
$\Rightarrow \lambda f(\mathbf{x})=0$

SVM - Lagrangian Formulation

- Find hyperplane minimizing $\|\mathbf{w}\|^{2}$ under the constraints

$$
t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1 \geq 0 \quad \forall n
$$

- Lagrangian formulation
, Introduce positive Lagrange multipliers: $\quad a_{n} \geq 0 \quad \forall n$
, Minimize Lagrangian ("primal form")

$$
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\}
$$

> l.e., find \mathbf{w}, b, and \mathbf{a} such that

$$
\frac{\partial L}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} a_{n} t_{n}=0 \quad \frac{\partial L}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

SVM - Lagrangian Formulation

- Lagrangian primal form

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}
\end{aligned}
$$

- The solution of L_{p} needs to fulfill the KKT conditions
, Necessary and sufficient conditions

$$
\begin{aligned}
a_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0
\end{aligned}
$$

KKT:	
λ	≥ 0
$f(\mathbf{x})$	≥ 0
$\lambda f(\mathbf{x})$	$=0$

SVM - Solution (Part 1)

- Solution for the hyperplane
- Computed as a linear combination of the training examples

$$
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}
$$

. Because of the KKT conditions, the following must also hold

$$
a_{n}\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0 \quad \begin{gathered}
\mathrm{KKT}: \\
\lambda f(\mathbf{x})=0
\end{gathered}
$$

, This implies that $a_{n}>0$ only for training data points for which

$$
\left(t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right)=0
$$

\Rightarrow Only some of the data points actually influence the decision boundary!

SVM - Support Vectors

- The training points for which $a_{n}>0$ are called "support vectors".
- Graphical interpretation:
, The support vectors are the points on the margin.
, They define the margin and thus the hyperplane.
\Rightarrow Robustness to "too correct" points!

Margin

SVM - Solution (Part 2)

- Solution for the hyperplane
, To define the decision boundary, we still need to know b.
, Observation: any support vector \mathbf{x}_{n} satisfies

$$
t_{n} y\left(\mathbf{x}_{n}\right)=t_{n}\left(\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+b\right)=1 \quad \begin{gathered}
\mathrm{KKT}: \\
f(\mathbf{x}) \geq 0
\end{gathered}
$$

, Using $t_{n}^{2}=1$ we can derive: $\quad b=t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}$
, In practice, it is more robust to average over all support vectors:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

SVM - Discussion (Part 1)

- Linear SVM
, Linear classifier
, SVMs have a "guaranteed" generalization capability.
, Formulation as convex optimization problem.
\Rightarrow Globally optimal solution!
- Primal form formulation
, Solution to quadratic prog. problem in M variables is in $\mathcal{O}\left(M^{3}\right)$.
, Here: D variables $\Rightarrow \mathcal{O}\left(D^{3}\right)$
> Problem: scaling with high-dim. data ("curse of dimensionality")

SVM - Dual Formulation

- Improving the scaling behavior: rewrite L_{p} in a dual form

$$
\begin{aligned}
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+b\right)-1\right\} \\
&=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}-b \sum_{\neq 1}^{N} a_{n} t_{n}+\sum_{n=1}^{N} a_{n} \\
& \text { - Using the constraint } \sum_{n=1}^{N} a_{n} t_{n}=0 \text { we obtain } \quad \frac{\partial L_{p}}{\partial b}=0 \\
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

SVM - Dual Formulation

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n}
$$

, Using the constraint $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$ we obtain

$$
\frac{\partial L_{p}}{\partial \mathbf{w}}=0
$$

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n} t_{n} \sum_{m=1}^{N} a_{m} t_{m} \mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}+\sum_{n=1}^{N} a_{n} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
\end{aligned}
$$

SVM - Dual Formulation

$$
L=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)+\sum_{n=1}^{N} a_{n}
$$

, Applying $\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ and again using $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$

$$
\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}=\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

, Inserting this, we get the Wolfe dual

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

SVM - Dual Formulation

- Maximize

$$
L_{d}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m}\left(\mathbf{x}_{m}^{\mathrm{T}} \mathbf{x}_{n}\right)
$$

under the conditions

$$
\begin{aligned}
a_{n} & \geq 0 \quad \forall n \\
\sum_{n=1}^{N} a_{n} t_{n} & =0
\end{aligned}
$$

, The hyperplane is given by the N_{S} support vectors:

Slide adapted from Bernt Schiele

$$
\mathbf{w}=\sum_{\substack{n=1 \\ \text { B. Leibe }}}^{N_{\mathcal{S}}} a_{n} t_{n} \mathbf{x}_{n}
$$

SVM - Discussion (Part 2)

- Dual form formulation
, In going to the dual, we now have a problem in N variables $\left(a_{n}\right)$.
, Isn't this worse??? We penalize large training sets!
- However...

1. SVMs have sparse solutions: $a_{n} \neq 0$ only for support vectors!
\Rightarrow This makes it possible to construct efficient algorithms

- e.g. Sequential Minimal Optimization (SMO)
- Effective runtime between $\mathcal{O}(N)$ and $\mathcal{O}\left(N^{2}\right)$.

2. We have avoided the dependency on the dimensionality.
\Rightarrow This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(\mathbf{x})$.
\Rightarrow We'll see that in the next lecture...

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop's book.

Christopher M. Bishop
Pattern Recognition and Machine Learning Springer, 2006

- Additional information about Statistical Learning Theory and a more in-depth introduction to SVMs are available in the following tutorial:
- C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.

