

Language

UNIVERSI

- Official course language will be English
 If at least one English-speaking student is present.
 - If not... you can choose.

However...

- Please tell me when I'm talking too fast or when I should repeat something in German for better understanding!
- You may at any time ask questions in Corman
- You may at any time ask questions in German!
 You may turn in your exercises in German.
- You may answer exam questions in German.

B. Leibe

RAN HAAN Organization Structure: 3V (lecture) + 1Ü (exercises) • 6 EECS credits > Part of the area "Applied Computer Science" Place & Time Lecture/Exercises: Mon 10:15 - 11:45 room LIMIC 025 08:30 - 10:00 AH IV (?) 16:15 - 17:45 AH I (?) Lecture/Exercises: Thu 14:15 - 15:45 H02 (C.A.R.L) • Exam Written exam 1st Try TBD TRD > 2nd Try Thu 29.03. 10:30 - 13:00 B. Leibe

	Со	urse Web	page		UNIVERS	EN
		Course Schedule				
		Date	Title	Content	Material	
ne Learning Winter '17		Thu, 2017-10-12	Introduction	Introduction, Probability Theory, Bayes Decision Theory, Minimizing Expected Loss		
		Mon, 2017-10-16	Prob. Density Estimation I	Parametric Methods, Gaussian Distribution, Maximum Likelihood		
		Thu, 2017-10-19	Prob. Density Estimation II	Bayesian Learning, Nonparametric Methods, Histograms, Kernel Density Estimation		
		Mon, 2017-10-23	Prob. Density Estimation III	Mixture of Gaussians, k-Means Clustering, EM-Clustering, EM Algorithm		
		Thu, 2017-10-26	Linear Discriminant Functions I	Linear Discriminant Functions, Least-squares Classification, Generalized Linear Models	1	
	[Mon, 2017-10-30	Exercise 1	Matlab Tutorial, Probability Density Estimation, GMM, EM		
		Thu, 2017-11-02	Linear Discriminant Functions II	Logistic Regression, Iteratively Reweighted Least Squares, Softmax Regression, Error Function Analysis	First exercise on 30.10.	e
		Mon, 2017-11-06	Linear SVMs	Linear SVMs, Soft-margin classifiers, nonlinear basis functions		
		Thu, 2017-11-09	Non-Linear SVMs	Soft-margin classifiers, nonlinear basis functions, Kernel trick, Mercer's condition, Nonlinear SVMs		
Aachi	http://www.vision.rwth-aachen.de/courses/					
2	B. Leibe					6

1

Application papers

B. Leibe

RNTHAAC

B. Leibe

Minimizing the Expected Loss

Optimal solution is the one that minimizes the loss.
 But: loss function depends on the true class, which is unknown.

RNTHA

· Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, \mathrm{d}\mathbf{x}$$

- This can be done by choosing the regions \mathcal{R}_{j} such that

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

which is easy to do once we know the posterior class probabilities $\ p(\mathcal{C}_k|\mathbf{x})$

B. Leibe

