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Machine Learning – Lecture 1

Introduction

12.10.2017

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/
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Organization

• Lecturer

 Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)

• Assistants

 Francis Engelmann (engelmann@vision.rwth-aachen.de)

 Paul Voigtlaender (voigtlaender@vision.rwth-aachen.de)

• Course webpage

 http://www.vision.rwth-aachen.de/courses/

 Slides will be made available on the webpage and in L2P

 Lecture recordings as screencasts will be available via L2P

• Please subscribe to the lecture on the Campus system!

 Important to get email announcements and L2P access!

B. Leibe
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Language

• Official course language will be English

 If at least one English-speaking student is present.

 If not… you can choose.

• However…

 Please tell me when I’m talking too fast or when I should repeat 

something in German for better understanding!

 You may at any time ask questions in German!

 You may turn in your exercises in German.

 You may answer exam questions in German.

3
B. Leibe
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Organization

• Structure: 3V (lecture) + 1Ü (exercises)

 6 EECS credits

 Part of the area “Applied Computer Science”

• Place & Time

 Lecture/Exercises: Mon  10:15 – 11:45 room UMIC 025

08:30 – 10:00 AH IV (?)

16:15 – 17:45 AH I (?)

 Lecture/Exercises: Thu  14:15 – 15:45 H02 (C.A.R.L)

• Exam

 Written exam

 1st Try TBD TBD

 2nd Try Thu   29.03. 10:30 – 13:00

B. Leibe
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Exercises and Supplementary Material

• Exercises

 Typically 1 exercise sheet every 2 weeks.

 Pen & paper and programming exercises

– Matlab for first exercise slots

– TensorFlow for Deep Learning part

 Hands-on experience with the algorithms from the lecture.

 Send your solutions the night before the exercise class.

 Need to reach  50% of the points to qualify for the exam!

• Teams are encouraged!

 You can form teams of up to 3 people for the exercises.

 Each team should only turn in one solution via L2P.

 But list the names of all team members in the submission.

B. Leibe
5

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

http://www.vision.rwth-aachen.de/courses/

Course Webpage

6
B. Leibe

First exercise 

on 30.10.
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Textbooks

• The first half of the lecture is covered in Bishop’s book.

• For Deep Learning, we will use Goodfellow & Bengio.

• Research papers will be given out for some topics.

 Tutorials and deeper introductions.

 Application papers

B. Leibe
7

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

I. Goodfellow, Y. Bengio, A. Courville

Deep Learning

MIT Press, 2016

(available in the  library’s “Handapparat”)
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How to Find Us

• Office:

 UMIC Research Centre

 Mies-van-der-Rohe-Strasse 15, room 124

• Office hours

 If you have questions to the lecture, contact to Francis or Paul.

 My regular office hours will be announced

(additional slots are available upon request)

 Send us an email before to confirm a time slot.

Questions are welcome!

B. Leibe
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Machine Learning

• Statistical Machine Learning

 Principles, methods, and algorithms for learning and prediction on 

the basis of past evidence

• Already everywhere

 Speech recognition (e.g. Siri)

 Machine translation (e.g. Google Translate)

 Computer vision (e.g. Face detection)

 Text filtering (e.g. Email spam filters)

 Operation systems (e.g. Caching)

 Fraud detection (e.g. Credit cards)

 Game playing (e.g. Alpha Go)

 Robotics (everywhere)

9
B. LeibeSlide credit: Bernt Schiele
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What Is Machine Learning Useful For?

Automatic Speech Recognition

10
B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Computer Vision

(Object Recognition, Segmentation, Scene Understanding)
11

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Information Retrieval

(Retrieval, Categorization, Clustering, ...)
12

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Financial Prediction

(Time series analysis, ...)
13

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Medical Diagnosis

(Inference from partial observations)
14

B. LeibeSlide adapted from Zoubin Gharamani Image from Kevin Murphy
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What Is Machine Learning Useful For?

Bioinformatics

(Modelling gene microarray data,...)
15

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Autonomous Driving

(DARPA Grand Challenge,...)
16

B. LeibeSlide adapted from Zoubin Gharamani Image from Kevin Murphy
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And you might have heard of…

17
B. Leibe

Deep Learning
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Machine Learning

• Goal

 Machines that learn to perform a task from experience

• Why?

 Crucial component of every intelligent/autonomous system

 Important for a system’s adaptability

 Important for a system’s generalization capabilities

 Attempt to understand human learning

B. Leibe
18

Slide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Learning

 Most important part here!

 We do not want to encode the knowledge ourselves.

 The machine should learn the relevant criteria automatically from 

past observations and adapt to the given situation.

• Tools

 Statistics

 Probability theory

 Decision theory

 Information theory

 Optimization theory

B. Leibe
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Slide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Task

 Can often be expressed through a mathematical function

 𝐱: Input

 𝑦: Output

 𝐰: Parameters (this is what is “learned”)

• Classification vs. Regression

 Regression: continuous 𝑦

 Classification: discrete 𝑦

– E.g. class membership, sometimes also posterior probability

B. Leibe
20

Slide credit: Bernt Schiele

𝑦 = 𝑓(𝐱;𝐰)
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Example: Regression

• Automatic control of a vehicle

21
B. LeibeSlide credit: Bernt Schiele

𝑓(𝐱;𝐰)
𝐱 𝑦
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Examples: Classification

• Email filtering

• Character recognition

• Speech recognition

22

[a-z]x  [ ]y important, spam

B. LeibeSlide credit: Bernt Schiele
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Machine Learning: Core Problems

• Input x:

• Features

 Invariance to irrelevant input variations

 Selecting the “right” features is crucial

 Encoding and use of “domain knowledge”

 Higher-dimensional features are more discriminative.

• Curse of dimensionality

 Complexity increases exponentially with number of dimensions.

23
B. LeibeSlide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Performance measure: Typically one number

 % correctly classified letters

 % games won

 % correctly recognized words, sentences, answers

• Generalization performance

 Training vs. test

 “All” data

B. Leibe
24

Slide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Performance: “99% correct classification”

 Of what???

 Characters? Words? Sentences?

 Speaker/writer independent?

 Over what data set?

 …

• “The car drives without human intervention 99% of the time 

on country roads”

B. Leibe
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Machine Learning: Core Questions

• Learning to perform a task from experience

• What data is available?

 Data with labels: supervised learning

– Images / speech with target labels

– Car sensor data with target steering signal

 Data without labels: unsupervised learning

– Automatic clustering of sounds and phonemes

– Automatic clustering of web sites

 Some data with, some without labels: semi-supervised learning

 Feedback/rewards: reinforcement learning

B. Leibe
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Slide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Learning

 Most often learning = optimization

 Search in hypothesis space

 Search for the “best” function / model parameter 𝐰

– I.e. maximize 𝑦 = 𝑓(𝐱;𝐰) w.r.t. the performance measure

B. Leibe
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Slide credit: Bernt Schiele
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Machine Learning: Core Questions

• Learning is optimization of 𝑦 = 𝑓(𝐱;𝐰)

 𝐰: characterizes the family of functions

 𝐰: indexes the space of hypotheses

 𝐰: vector, connection matrix, graph, …

B. Leibe
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Slide credit: Bernt Schiele
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
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Note: Updated Lecture Contents

• New section on Deep Learning this year!

 Previously covered in “Advanced ML” lecture

 This lecture will contain an updated and consolidated version of the 

Deep Learning lecture block

 If you have taken the Advanced ML lecture last semester, 

you may experience some overlap!

• Lecture contents on Probabilistic Graphical Models

 I.e., Bayesian Networks, MRFs, CRFs, etc. 

 Will be moved to “Advanced ML”

• Reasons for this change:

 Deep learning has become essential for many current applications

 I will not be able to offer an “Advanced ML” lecture this academic 

year due to other teaching duties
30

B. Leibe
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Topics of This Lecture

• Review: Probability Theory
 Probabilities

 Probability densities

 Expectations and covariances

• Bayes Decision Theory
 Basic concepts

 Minimizing the misclassification rate

 Minimizing the expected loss

 Discriminant functions

31
B. Leibe
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Probability Theory

32
B. Leibe

“Probability theory is nothing but common sense reduced

to calculation.”

Pierre-Simon de Laplace, 1749-1827

Image source: Wikipedia
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Probability Theory

• Example: apples and oranges

 We have two boxes to pick from.

 Each box contains both types of fruit.

 What is the probability of picking an apple?

• Formalization

 Let                 be a random variable for the box we pick.

 Let                 be a random variable for the type of fruit we get.

 Suppose we pick the red box 40% of the time. We write this as

 The probability of picking an apple given a choice for the box is

 What is the probability of picking an apple?

33
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B. Leibe

( ) ?p F a 

Image source: C.M. Bishop, 2006
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Probability Theory

• More general case

 Consider two random variables

and 

 Consider N trials and let

• Then we can derive

 Joint probability 

 Marginal probability

 Conditional probability
34

nij = #fX = xi ^ Y = yjg
ci = #fX = xig
rj = #fY = yjg

 iX x  jY y

B. Leibe Image source: C.M. Bishop, 2006
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Probability Theory

• Rules of probability

 Sum rule

 Product rule

35
B. Leibe Image source: C.M. Bishop, 2006
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The Rules of Probability

• Thus we have

• From those, we can derive

36

Sum Rule

Product Rule

Bayes’ Theorem

where

B. Leibe
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Probability Densities

• Probabilities over continuous 

variables are defined over their

probability density function 

(pdf)        .

• The probability that x lies in the interval             is given by 

the cumulative distribution function

37

( , )z

B. Leibe Image source: C.M. Bishop, 2006
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Expectations

• The average value of some function         under a 

probability distribution         is called its expectation

• If we have a finite number N of samples drawn from a pdf, 

then the expectation can be approximated by

• We  can also consider a conditional expectation 

38

( )p x
( )f x

discrete case continuous case

B. Leibe
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Variances and Covariances

• The variance provides a measure how much variability there 

is in         around its mean value              .

• For two random variables x and y, the covariance is defined 

by

• If x and y are vectors, the result is a covariance matrix

39
B. Leibe
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Bayes Decision Theory

40
B. Leibe

Thomas Bayes, 1701-1761

Image source: Wikipedia

“The theory of inverse probability is founded upon an

error, and must be wholly rejected.”

R.A. Fisher, 1925
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Bayes Decision Theory

• Example: handwritten character recognition

• Goal: 

 Classify a new letter such that the probability of misclassification is 

minimized.

41
B. LeibeSlide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Bayes Decision Theory

• Concept 1: Priors (a priori probabilities)

 What we can tell about the probability before seeing the data.

 Example:

• In general:

42
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 kp C

 

 

1

2

0.75

0.25

p C

p C





1

2

C a

C b





  1k

k

p C 

Slide credit: Bernt Schiele



8

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Bayes Decision Theory

• Concept 2: Conditional probabilities

 Let x be a feature vector.

 x measures/describes certain properties of the input.

– E.g. number of black pixels, aspect ratio, …

 p(x|Ck) describes its likelihood for class Ck.

43
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 | kp x C

x

 |p x b

 |p x a

x

Slide credit: Bernt Schiele
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Since               is much smaller than              , the decision should be 

‘a’ here.
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 |p x a  |p x b

15x 

Slide credit: Bernt Schiele

 |p x a |p x b
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Since               is much smaller than             , the decision should 

be ‘b’ here.
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 |p x a  |p x b

25x 

 |p x a  |p x b

Slide credit: Bernt Schiele
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Bayes Decision Theory

• Example:

• Question:

 Which class?

 Remember that p(a) = 0.75 and p(b) = 0.25…

 I.e., the decision should be again ‘a’.

 How can we formalize this?
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 |p x a  |p x b

20x 

Slide credit: Bernt Schiele

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Bayes Decision Theory

• Concept 3: Posterior probabilities

 We are typically interested in the a posteriori probability, i.e. the 
probability of class Ck given the measurement vector x.

• Bayes’ Theorem:

• Interpretation

47
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Slide credit: Bernt Schiele
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Bayes Decision Theory

48
B. Leibe

x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele
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Bayesian Decision Theory

• Goal: Minimize the probability of a misclassification

49
B. Leibe

=

Z

R1

p(C2jx)p(x)dx+

Z

R2

p(C1jx)p(x)dx

The green and blue

regions stay constant.

Only the size of the 

red region varies!

Image source: C.M. Bishop, 2006
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Bayes Decision Theory

• Optimal decision rule

 Decide for C1 if

 This is equivalent to 

 Which is again equivalent to (Likelihood-Ratio test)

50
B. Leibe

p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold 

Slide credit: Bernt Schiele
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Generalization to More Than 2 Classes

• Decide for class k whenever it has the greatest posterior 

probability of all classes:

• Likelihood-ratio test
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p(Ckjx) > p(Cjjx) 8j 6= k

p(xjCk)p(Ck) > p(xjCj)p(Cj) 8j 6= k

p(xjCk)
p(xjCj)

>
p(Cj)
p(Ck)

8j 6= k

Slide credit: Bernt Schiele
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Classifying with Loss Functions

• Generalization to decisions with a loss function

 Differentiate between the possible decisions and the possible true 

classes.

 Example: medical diagnosis

– Decisions: sick or healthy (or: further examination necessary)

– Classes: patient is sick or healthy

 The cost may be asymmetric:

52
B. Leibe

loss(decision = healthyjpatient = sick) >>

loss(decision = sick jpatient = healthy)

Slide credit: Bernt Schiele
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Classifying with Loss Functions

• In general, we can formalize this by introducing a 
loss matrix Lkj

• Example: cancer diagnosis

53
B. Leibe

Decision

T
ru

thLcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:
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Classifying with Loss Functions

• Loss functions may be different for different actors.

 Example:

 Different loss functions may lead to different Bayes optimal 

strategies.
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Lstocktrader (subprime) =

µ
¡1

2
cgain 0

0 0

¶

Lbank (subprime) =

µ
¡1

2
cgain 0

0

¶

“invest”
“don’t

invest”
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Minimizing the Expected Loss

• Optimal solution is the one that minimizes the loss.

 But: loss function depends on the true class, which is unknown.

• Solution: Minimize the expected loss

• This can be done by choosing the regions      such that

which is easy to do once we know the posterior class 

probabilities            .
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Rj

p(Ckjx)
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Minimizing the Expected Loss

• Example:

 2 Classes:    C1, C2

 2 Decision:  ®1, ®2

 Loss function:

 Expected loss (= risk R) for the two decisions:

• Goal: Decide such that expected loss is minimized

 I.e. decide ®1 if 
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L(®jjCk) = Lkj

Slide credit: Bernt Schiele
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Minimizing the Expected Loss

 Adapted decision rule taking into account the loss.

57
B. Leibe

R(®2jx) > R(®1jx)
L12p(C1jx) +L22p(C2jx) > L11p(C1jx) +L21p(C2jx)

(L12 ¡L11)p(C1jx) > (L21¡L22)p(C2jx)
(L12 ¡L11)

(L21 ¡L22)
>

p(C2jx)
p(C1jx)

=
p(xjC2)p(C2)
p(xjC1)p(C1)

p(xjC1)
p(xjC2)

>
(L21 ¡L22)

(L12 ¡L11)

p(C2)
p(C1)

Slide credit: Bernt Schiele
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The Reject Option

• Classification errors arise from regions where the largest 

posterior probability          is significantly less than 1.

 These are the regions where we are relatively uncertain about class 

membership.

 For some applications, it may be better to reject the automatic 

decision entirely in such a case and e.g. consult a human expert.
58

B. Leibe

p(Ckjx)

Image source: C.M. Bishop, 2006
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Discriminant Functions

• Formulate classification in terms of comparisons

 Discriminant functions

 Classify x as class Ck if

• Examples (Bayes Decision Theory)

59
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y1(x); : : : ; yK(x)

yk(x) > yj(x) 8j 6= k

yk(x) = p(Ckjx)
yk(x) = p(xjCk)p(Ck)
yk(x) = log p(xjCk) + log p(Ck)

Slide credit: Bernt Schiele
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Different Views on the Decision Problem

•
 First determine the class-conditional densities for each class 

individually and separately infer the prior class probabilities.

 Then use Bayes’ theorem to determine class membership.

 Generative methods

•
 First solve the inference problem of determining the posterior class 

probabilities.

 Then use decision theory to assign each new x to its class.

 Discriminative methods

• Alternative

 Directly find a discriminant function           which maps each input x

directly onto a class label.

60
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yk(x) / p(xjCk)p(Ck)

yk(x) = p(Ckjx)

yk(x)



11

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
7

Next Lectures…

• Ways how to estimate the probability densities

 Non-parametric methods

– Histograms

– k-Nearest Neighbor

– Kernel Density Estimation

 Parametric methods

– Gaussian distribution

– Mixtures of Gaussians

• Discriminant functions

 Linear discriminants

 Support vector machines

 Next lectures…
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p(xjCk)
N = 1 0
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References and Further Reading

• More information, including a short review of Probability 

theory and a good introduction in Bayes Decision Theory 

can be found in Chapters 1.1, 1.2 and 1.5 of 

B. Leibe
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Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006


