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Course Outline

* Image Processing Basics
* Segmentation & Grouping
e Object Recognition
¢ Local Features & Matching
¢ Object Categorization
¢ 3D Reconstruction
» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
» Active Stereo

¢ Motion
» Motion and Optical Flow

¢ 3D Reconstruction (Reprise)
» Structure-from-Motion 3
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Recap: Epipolar Geometry - Uncalibrated Case
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Announcements
e Lecture Evaluation
~ Please fill out the evaluation form...
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Recap: Epipolar Geometry - Calibrated Case
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Recap: The Eight-Point Algorithm
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Recap: Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD.

T
SVD
F=UDV' =U

Set dj; to
zero and
reconstruct F'

4. Transform fundamental matrix back to original units: if
T and T* are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinates is 77 FT".
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Topics of This Lecture

¢ Introduction to Motion
» Applications, uses

¢ Motion Field
» Derivation

« Optical Flow
» Brightness constancy constraint
» Aperture problem
» Lucas-Kanade flow
Iterative refinement
Global parametric motion
Coarse-to-fine estimation
Motion segmentation
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o KLT Feature Tracking
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Motion and Perceptual Organization

¢ Sometimes, motion is the only cue...
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Practical Considerations

Small Baseline Large Baseline

1. Role of the baseline

» Small baseline: large depth error

» Large baseline: difficult search problem
¢ Solution

» Track features between frames until baseline is sufficient.
ide adapted from Steve Seit: B. Leibe 16
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Video

¢ Avideo is a sequence of frames captured over time

+ Now our image data is a function of space
(x, y) and time (t)

-y
B
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Motion and Perceptual Organization

* Sometimes, motion is foremost cue

20

ide credit: Kristen Grauman B. Leibe




Computer Vision WS 15/16

Computer Vision WS 15/16

RWTH//CHE
Motion and Perceptual Organization

* Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana | azebnik B. Leibe

Uses of Motion

e Estimating 3D structure
» Directly from optic flow
» Indirectly to create correspondences for SfM

¢ Segmenting objects based on motion cues

¢ Learning dynamical models

¢ Recognizing events and activities

¢ Improving video quality (motion stabilization)

ide adapted from Svetlana | azebnik B. Leibe

©
=
I
-
Y
=
=
o
o}
>
g
5
a
13
5]
(8]

Topics of This Lecture

¢ Motion Field
» Derivation

B. Leibe
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Motion and Perceptual Organization

¢ Even “impoverished” motion data can evoke a strong
percept

Computer Vision WS 15/16
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Motion Estimation Techniques

¢ Direct methods

» Directly recover image motion at each pixel from spatio-
temporal image brightness variations

» Dense motion fields, but sensitive to appearance variations
» Suitable for video and when image motion is small

* Feature-based methods

» Extract visual features (corners, textured areas) and track them
over multiple frames

» Sparse motion fields, but more robust tracking
» Suitable when image motion is large (10s of pixels)

Computer Vision WS 15/16
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Motion Field

¢ The motion field is the projection of the 3D scene
motion into the image
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Motion Field and Parallax
P(t+dt)

Pw

* P(t) is a moving 3D point

¢ Velocity of 3D scene point:
V =dP/d¢

p(t) = (2(t),y(t)) is the
projection of P in the
image.

e Apparent velocity v in the
image: given by components
v, = dz/dt and v, = dy/dt

¢ These components are

known as the motion field of \|
the image.

Computer Vision WS 15/16

Slide credit: Svetlana | azebnik B. Leibe
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Motion Field and Parallax

¢ Pure translation: V is constant everywhere

V, — Vi 1
Uy = chr V= E(VU - V.p),
_ V=V

Z

Uy

Vo = (an fV;;)
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Motion Field and Parallax

¢ Pure translation: V is constant everywhere

1
v==(vo=V.p),
vo = (fV., V)
* V., is nonzero:
~ Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.
* V,is zero:
» Motion is parallel to the image plane, all the motion vectors are
parallel.
¢ The length of the motion vectors is inversely
proportional to the depth Z.
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Quotient rule:

(f/9) = f —-9gh/g

Motion Field and Parallax

P(t+dt)
Pw
To find image velocity v, differentiate
p with respect to ¢ (using quotient rule):

P
V=[V.V,V.] p=i%

ZV-V,P _fV-V.p
Z2 N z

v=f

Ve — Ve fVy—Vuy \
Z vy = Z
 Image motion is a function of both the 3D motion (V)
and the depth of the 3D point (2).

Up =

28
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Motion Field and Parallax

¢ Pure translation: V is constant everywhere
1
v==(vo=V.p),

vo = (fVi, fV,)
* V. is nonzero:

» Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

e —.
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Topics of This Lecture

¢ Optical Flow
» Brightness constancy constraint
» Aperture problem
» Lucas-Kanade flow
Iterative refinement
Global parametric motion
Coarse-to-fine estimation
Motion segmentation
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Optical Flow Apparent Motion # Motion Field

¢ Definition

» Optical flow is the apparent motion of brightness patterns in
the image.
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¢ Important difference
Ideally, optical flow would be the same as the motion field.

But we have to be careful: apparent motion can be caused by
lighting changes without any actual motion.

v

v

S g
] 3
g » Think of a uniform rotating sphere under fixed lighting vs. a <£ -
= stationary sphere under moving illumination... = Figure 12-2. The optical fiow e
2 2 a smooth sphere is rotating un,
S S change, yet the motion field is no
§ E’ moving source—the shading in ¢
a 2
& ]
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slide credit: Svetlana | azebnik B. Leibe » ide credit: Kristen Grauman B. Leibe Figure from Horn ui;:(
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Estimating Optical Flow The Brightness Constancy Constraint
. (J;Qdisp\acement‘: (u,v)
s . . @t wy+v)
- T 1(x,y,t-1) 1(x.y.t)
I(z,y,t-1) I(z,y.t) « Brightness Constancy Equation:
¢ Given two subsequent frames, estimate the apparent I(x.v.t—1)=Il(x+u
-1)= X, +V(x,y)t
5l motion field u(z,y) and v(z,y) between them. i Oy, t=0=1( ()Y V(3 9).1)
wn wn
o o] . s . . : P
7l « Key assumptions 2 ¢ Linearizing the right hand side using Taylor expansion:
s » Brightness constancy: projection of the same point looks the = 1 (x t=D =~ (x D+ -ulx +1 -v(x
2 same in every frame. g .y, ) xy.1) x u(x,y) y x.y)
g » Small motion: points do not move very far. 3 0
é— » Spatial coherence: points move like their neighbors. ;l' * Hence, -U -V ~
8 35 8 Spatial derivatives Temporal derivative 16
ide credit: Svetlana | azebnik B. Leibe ide credit: Svetlana | azebnik, LA
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The Brightness Constancy Constraint The Aperture Problem

lo-u+l,-v+1, =0

¢ How many equations and unknowns per pixel?
» One equation, two unknowns

¢ Intuitively, what does this constraint mean?
VI-(u,v)+1,=0

¢ The component of the flow perpendicular to the

© ©

2 gradient (i.e., parallel to the edge) is unknown &

o 9

[ 1

E gradient B

s §

@ &

> If (u,V) satisfies the equation, >

Q LRV o

3 so does (U+U’, v+Vv')if VI-(u',v')=0 i, +u,,v ) s . .
g (U, v+v) g Perceived motion
© edge 7 o
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UNIVERSITY UNIVERSITY]

The Aperture Problem The Barber Pole Illusion

/,

Actual motion

Computer Vision WS 15/16
Computer Vision WS 15/16

http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana | azebnik 8. Leibe
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UNIVERSITY UNIVERSITY]

The Barber Pole lllusion The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana | azebnik B. Leibe

http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana | azebnik B Lefbe
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Solving the Aperture Problem Solving the Aperture Problem
¢ How to get more equations for a pixel? ¢ Least squares problem:
« Spatial coherence constraint: pretend the pixel’s L(p1)  Iy(p1) I(p1)
neighbors have the same (u,v) Le(p2) Iy(p2) | |uw | _ _| L(p2) Ad=b
~ If we use a 5x5 window, that gives us 25 equations per pixel i i v i 25x2 2x1 251
0= Ii(py) + VI(py) - [u ] I:(p2s) Iy(p2s) Ii(p2s)
I:(p1)  Iy(p1) Ii(p1) * Minimum least squares solution given by solution of
L(p2) Iy(p2) || uw|_ | Llp2) (ATA) d = ATp

2x2 2x1 2x1

fz(I-st) fy(i?zs) fr(r;zs)

ey 3 IxDy w_ M I0
Sl Y Iyl v S Iyl
AT A ATp
(The summations are over all pixels in the K x K window)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 674-679, 1981.

ide credit: Svetlana | azebnik B. Leibe
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http://en.wikipedia.org/wiki/Barberpole_illusion
http://en.wikipedia.org/wiki/Barberpole_illusion
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
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. . UNIVERSITY
Conditions for Solvability

¢ Optimal (u, v) satisfies Lucas-Kanade equation

Yl YLIy|[uw]_ |TLhk
Ny YL | |v |~ | oL

AT A ATy

¢ When is this solvable?
» ATA should be invertible.
» ATA entries should not be too small (noise).
» ATA should be well-conditioned.

45
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. . UNIVERSITY
Interpreting the Eigenvalues

¢ Classification of image points using eigenvalues of the
second moment matrix:

A,

A, and A, are small

ide credit: Kristen Grauman B. Leibe A41
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. UNIVERSITY
Low-Texture Region

Svivn®

- Gradients have small magnitude
- Small A\, small ),

49
ide credit: Svetlana | azebnik B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

UNIVERSITY]
Eigenvectors of ATA

Ll SLI L
A= [ %Mg %Ig}j } =X [ I ] Us L) =Y vI(vD)"

* Haven’t we seen an equation like this before?
¢ Recall the Harris corner detector
» M =ATAis the second-moment matrix.

¢ The eigenvectors and eigenvalues of M relate to edge
direction and magnitude.

» The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change.

» The other eigenvector is orthogonal to it.

46
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Edge
Svivn?
- Gradients very large or very small
- Large A, small A,
ide credit: Svetlana | azebnik. B. Leibe @
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High-Texture Region

Svivn?

- Gradients are different, large magnitude
- Large )\, large )\,

ide credit: Svetlana | azebnik B. Leibe
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Per-Pixel Estimation Procedure

o Let M=>(VI)(VI) and b{:%::}

* M is singular if all gradient vectors point in the same
direction
» E.g., along an edge
» Trivially singular if the summation is over a single pixel
or if there is no texture
» l.e., only normal flow is available (aperture problem)

e Corners and textured areas are OK

Slide credit: Steve Seit; B. Leibe

o Algorithm: At each pixel compute U by solving MU =b

Optical Flow: Iterative Refinement

A 1@ @)

estimate
update
d

Initial guess:dy = 0
Estimate: d; = dg +d

xy

Xo

(using d for displacement here instead of u)

ide credit: Steve Seit; B. Leibe
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Optical Flow: Iterative Refinement

4 file—d2)  fo(x)

estimate
update
d

Initial guess: do
Estimate: d3 = dp +d

xy

Xo

(using d for displacement here instead of u)

ide credit: Steve Seit; B. Leibe
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Iterative Refinement

1. Estimate velocity at each pixel using one iteration of
Lucas and Kanade estimation.

Iyl ZIJ‘Iy wo|_ > I
S Idy, S I v | T | NIy

ATA ATy

2. Warp one image toward the other using the estimated
flow field.

» (Easier said than done)

3. Refine estimate by repeating the process.

Computer Vision WS 15/16

ide adapted from Steve Seit: B. Leibe
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Optical Flow: Iterative Refinement

4 file —d1) ,_ fo(x)

estimate
update
d

Initial guess: d;
Estimate: dy = dy +d

bl /

Xg

(using d for displacement here instead of u)

Computer Vision WS 15/16
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Optical Flow: Iterative Refinement

A J1(z — d3) = fa(z)

(using d for displacement here instead of u)

©
=
Tl
X
1
=
=
=
3
>
g
=
=
E
S
o

ide credit: Steve Seit 5. Leibe




Optic Flow: Iterative Refinement

¢ Some Implementation Issues:

» Warping is not easy (ensure that errors in warping are smaller
than the estimate refinement).

~ Warp one image, take derivatives of the other so you don’t need
to re-compute the gradient after each iteration.

» Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity).

Computer Vision WS 15/16

Slide credit: Steve Seit B. Leibe

Dealing with Large Motions

Computer Vision WS 15/16

ide credit: Svetlana | azebnik. B. Leibe

Idea: Reduce the Resolution!
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Problem Cases in Lucas-Kanade

¢ The motion is large (larger than a pixel)
.~ Iterative refinement, coarse-to-fine estimation

¢ A point does not move like its neighbors
» Motion segmentation

¢ Brightness constancy does not hold
» Do exhaustive neighborhood search with normalized correlation.

Computer Vision WS 15/16
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ide credit: Svetlana lazebnik B. Leibe

Temporal Aliasing

Temporal aliasing causes ambiguities in optical flow
because images can have many pixels with the same
intensity.
¢ |.e., how do we know which ‘correspondence’ is
correct?
) f1(@), f2(x) 4 f1(@)  falx)

actual shift

estimated shift

Nearest match is
correct (no aliasing)

Nearest match is
incorrect (aliasing)

¢ To overcome aliasing: coarse-to-fine estimation.

Computer Vision WS 15/16
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ide credit: Steve Seit B Lefbe

Coarse-to-fine Optical Flow Estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Computer Vision WS 15/16

Gaussian pyramid of image 1

Gaussian pyramid of image 2
65

ide credit: Steve Seit: B. Leibe
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Coarse-to-fine Optical Flow Estimation

- — Run iterative L-K . -

lWarp & upsampl

Computer Vision WS 15/16

Gaussian pyramid of image 1

Gaussian pyramid of image 2

Slide credit: Steve Seit; B. Leibe
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Feature Tracking

* So far, we have only considered optical flow estimation
in a pair of images.

« If we have more than two images, we can compute the
optical flow from each frame to the next.

¢ Given a point in the first image, we can in principle
reconstruct its path by simply “following the arrows”.

Computer Vision WS 15/16

ide credit: Svetlana | azebnik B. Leibe
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Handling Large Displacements

* Define a small area around a pixel as the template.

¢ Match the template against each pixel within a search
area in next image - just like stereo matching!

¢ Use a match measure such as SSD or correlation.

o After finding the best discrete location, can use Lucas-
Kanade to get sub-pixel estimate.
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ide credit: Svetlana | azebnik B. Leibe

Tracking Challenges

* Ambiguity of optical flow
» Find good features to track
¢ Large motions
» Discrete search instead of Lucas-Kanade
* Changes in shape, orientation, color
» Allow some matching flexibility
¢ Occlusions, disocclusions
» Need mechanism for deleting, adding new features
« Drift - errors may accumulate over time
» Need to know when to terminate a track

Computer Vision WS 15/16

ide credit: Svetlana L azebnik. B. Leibe
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Topics of This Lecture
2
2
s
g
S| * KLT Feature Tracking
S 75
B. Leibe
RWTH/CHED
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Tracking Over Many Frames

¢ Select features in first frame
e For each frame:
» Update positions of tracked features
- Discrete search or Lucas-Kanade
» Terminate inconsistent tracks

- Compute similarity with corresponding feature in the previous
frame or in the first frame where it’s visible

Q » Start new tracks if needed
) - Typically every ~10 frames, new features are added to “refill the
@ ranks”.
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Shi-Tomasi Feature Tracker Tracking Example
¢ Find good features using eigenvalues of second-
moment matrix
> Key idea: “good” features to track are the ones that can be
tracked reliably.
e From frame to frame, track with Lucas-Kanade and a
pure translation model.
»  More robust for small displacements, can be estimated from
smaller neighborhoods.
¢ Check consistency of tracks by affine registration to
the first observed instance of the feature.
»  Affine model is more accurate for larger displacements.
» Comparing to the first frame helps to minimize drift.

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1st, 11th, and
2lst frames of a subsequence from the maovie.

wem i fwmnd _mi m_! !5|
2s| 25 25 25 25
=1 == (=] Iz ==
25l 25| 28| = =5
Figure 2: The traffic sign windows from frames

1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom ).

Computer Vision WS 15/16
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J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
Slide credit: Svetlana | azebnik B. Leibe

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

81
ide credit: Svetlana | azebnik B. Leibe
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Real-Time GPU Implementations Real-Time Optical Flow Example
¢ This basic feature tracking framework (Lucas-Kanade +
Shi-Tomasi) is commonly referred to as “KLT tracking”.

» Used as preprocessing step for many applications
(recall the Structure-from-Motion pipeline)
» Lends itself to easy parallelization

GPU_KLT:

¢ Very fast GPU implementations available
» C. Zach, D. Gallup, J.-M. Frahm,

Fast Gain-Adaptive KLT tracking on the GPU.
In CVGPU’08 Workshop, Anchorage, USA, 2008

» 216 fps with automatic gain adaptation
» 260 fps without gain adaptation

A GPU-based Implementation of the
Kanade-Lucas-Tomasi Feature Tracker

http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/ http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/
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http://cs.unc.edu/~cmzach/opensource.html
B. Leibe

http://cs.unc.edu/~cmzach/opensource.html
B. Leibe
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Dense Optical Flow Summary

* Dense measurements can be obtained by
adding smoothness constraints. Color map

K .

¢ Motion field: 3D motions projected to 2D images;
dependency on depth.

¢ Solving for motion with

~ Sparse feature matches
» Dense optical flow
¢ Optical flow
» Brightness constancy assumption
» Aperture problem

» Solution with spatial coherence assumption

(¢) Thomas Brox 2009

T. Brox, C. Bregler, J. Malik, Large displacement
optical flow, CVPR‘09, Miami, USA, June 2009.

B. Leibe

Computer Vision WS 15/16
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http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf
http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf
http://cs.unc.edu/~cmzach/pdf/cvgpu2008-preprint.pdf
http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/
http://cs.unc.edu/~cmzach/opensource.html
http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/
http://cs.unc.edu/~cmzach/opensource.html
http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
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References and Further Reading

¢ Here is the original paper by Lucas & Kanade

» B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. IJCAI,
pp. 674-679, 1981.
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