Course Outline

¢ Image Processing Basics
* Segmentation & Grouping
¢ Object Recognition
¢ Local Features & Matching
¢ Object Categorization
¢ 3D Reconstruction
» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
> Multi-view Stereo

Optical Flow
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Recap: R-CNN for Object Deteection Recap: Faster R-CNN

e One network, four losses

» Remove dependence on
external region proposal

algorithm.
! .
Rol pooling
Instead, infer region propasals / ;
proposals from same

Bbox reg | SVMs Classify regions with SVMs
Bbox reg || SVMs

Bbox reg | | SVMs

Forward each region
ConvNet through ConvNet
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Recap: Fully Convolutional Networks Recap: Semantic Image Segmentation
CNN “tabby cat”
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¢ Encoder-Decoder Architecture
» Problem: FCN output has low resolution
» Solution: perform upsampling to get back to desired resolution
» Use skip connections to preserve higher-resolution information

¢ Intuition

» Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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Recap: FCNs for Human Pose Estimation ‘

¢ Input data

Image Keypoints Labels

o Task setup
» Annotate images with keypoints for skeleton joints
~ Define a target disk around each keypoint with radius r
» Set the ground-truth label to 1 within each such disk
» Infer heatmaps for the joints as in semantic segmentation

Computer Vision WS 16/17

Slide adapted from Georgia Gkioxari
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Discriminative Face Embeddings

¢ Learning an embedding using a Triplet Loss Network

» Present the network with triplets of examples
Negative Anchor Positive

» Apply triplet loss to learn an embedding f(-) that groups the
positive example closer to the anchor than the negative one.

2 2

I f(@F) = FDlz < If () — £tz
Negative N

.o ~ [ Negative

Anchor

Positive Positive

= Used with great success in Google’s FaceNet face recognition
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Topics of This Lecture

e Geometric vision
» Visual cues
» Stereo vision

* Epipolar geometry
» Depth with stereo
» Geometry for a simple stereo system
» Case example with parallel optical axes
» General case with calibrated cameras

e Stereopsis & 3D Reconstruction
» Correspondence search
» Additional correspondence constraints
» Possible sources of error
» Applications
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Other Tasks: Face Verification

REPRESENTATION |

— Human cropped (£7.5%)

—— DeepFace-ensemble (37 35%)

—— DeepFacesingle (47 00%)

—— 7L Joint Baysian (95 33%)

—— High-dimensional LBP (95.17%)

——— Tom.vs-Pete + Atiibute (83.30%;
combined Joins Baysian (52 42%)

D 06 010 015 020 028 030 038 G40 045 G5
fatsa positiva rate

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-
Level Performance in Face Verification, CVPR 2014

ide credit: Svetlana | azebnik
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Vector Arithmetics in Embedding Space '

¢ Learned embeddings often preserve linear regularities
between concepts
» Analogy questions can be answered through simple algebraic
operations with the vector representation of words.
» E.g., vec(“King”) - vec(“Man”) + vec(“Woman”) =~ vec(“Queen”)
. E.g.,

smiling man

B. Leibe

IMikolov, NIPS 20131, [Radford, ICLR 2016

Geometric vision

¢ Goal: Recovery of 3D structure
> What cues in the image allow us to do this?

ide credit:. Svetlana lazebnik



https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
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Visual Cues

¢ Shading

Merle Norman Cosmetics, Los Angeles

Slide credit: Steve Seit B. Leibe
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Visual Cues

¢ Focus

From The Art of Photography, Canon

ide credit: Steve Seit: B. Leibe
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Visual Cues

Figures from L. Zhang

¢ Perspective

¢ Motion

ide credit: Steve Seitz Kristen Grauman, DLt0:/ /W, com/teasers/2main=illus jon-shy
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Visual Cues

e Texture

The Visual Cliff, by William Vandivert, 1960

ide credit: Steve Seit; 8. Leibe
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Visual Cues

¢ Perspective

ide credit: Steve Seit. B Lefbe
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Our Goal: Recovery of 3D Structure

¢ We will focus on perspective and motion

* We need multi-view geometry because recovery of
structure from one image is inherently ambiguous

X?
X?

A

21
ide credit: Svetlana | azehnik. 5. Leibe
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To lllustrate This Point...

e Structure and depth are inherently ambiguous from
single views.

Computer Vision WS 16/17

Slide credit: Svetlana | azebnik, Kristen Grauman B- Leibe
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What Is Stereo Vision?

¢ Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape
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What Is Stereo Vision?

* Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image
Image 1 Image 2

Dense depth map
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http://www.well.com/~jimg/stereo/stereo_list.html

ide credit: Kristen Grauman

UNIVERSITY
What Is Stereo Vision?

¢ Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape

Computer Vision WS 16/17
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ide credit: Svetlana | azebnik, Steve Seit: B. Leibe
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What Is Stereo Vision?

¢ Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image.
» Humans can do it
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ide credit: Svetlana | azebnik, Steve Seit 5. Leibe



http://www.well.com/~jimg/stereo/stereo_list.html

What Is Stereo Vision?
¢ Narrower formulation: given a calibrated binocular

stereo pair, fuse it to produce a depth image.
> Humans can do it

Computer Vision WS 16/17

ereograms:
Slide credit: Svetlana | azebnik, Steve Seit;

Application of Stereo: Robotic Exploration

Nomad robot searches for meteorites
in Antartica

Computer Vision WS 16/17

Depth with Stereo: Basic Idea

¢ Basic Principle: Triangulation
» Gives reconstruction as intersection of two rays
» Requires
- Camera pose (calibration)
- Point correspondence
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ide credit: Steve Seit: B. Leibe

What Is Stereo Vision?

¢ Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image.
> Humans can do it

Computer Vision WS 16/17

Autostereograms: http://www.magiceye.com

ide credit: Svetlana lazebnik, Steve Seit:
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Topics of This Lecture

o Epipolar geometry
» Depth with stereo
» Geometry for a simple stereo system
» Case example with parallel optical axes
» General case with calibrated cameras

Computer Vision WS 16/17

B. Leibe

Camera Calibration

World

g frame
|

Pl

Extrinsic parameters:

Intrinsic parameters:
Image coordinates relative to

Camera camera «» Pixel coordinates

frame

e Parameters
» Extrinsic: rotation matrix and translation vector

» Intrinsic: focal length, pixel sizes (mm), image center point,
radial distortion parameters

We’ll assume for now that these parameters are given
and fixed.

ide credit: Kristen Grauman 5. Leibe
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Camera frame <> Reference frame

33



http://www.magiceye.com/
http://www.magiceye.com/
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

RWTH//CHE
Geometry for a Simple Stereo System

« First, assuming parallel optical axes, known camera
parameters (i.e., calibrated cameras):

Computer Vision WS 16/17

Slide credit: Kristen Grauman B. Leibe

RWTH//CHE
Geometry for a Simple Stereo System

* Assume parallel optical axes, known camera parameters
(i.e., calibrated cameras). We can triangulate via:

Similar triangles (p,, P, p,)
and (O,, P, O,):

T— (. — )
Z—7

T
Tz

“disparity”

Computer Vision WS 16/17

ide credit: Kristen Grauman B. Leibe
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General Case With Calibrated Cameras

¢ The two cameras need not have parallel optical axes.
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ide credit: Kristen Grauman. Steve Seit: B. Leibe

Depth of p
image point image point

Z (right)

optical
center
[(al:1219}

——

Computer Vision WS 16/17

baseline

ide credit: Kristen Grauman

Depth From Disparity

Image I(z,y) Disparity map D(z,y)
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Stereo Correspondence Constraints

¢ Given p in the left image, where can the corresponding
point p’ in the right image be?
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RWTH//CHE
Stereo Correspondence Constraints

d ®
¢ Given p in the left image, where can the corresponding

point p’ in the right image be?

40
Slide credit: Kristen Grauman B. Leibe

RWTH//CHE
Stereo Correspondence Constraints
* Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line '

ity i " epipolar line

¢ Epipolar constraint: Why is this useful?
» Reduces correspondence problem to 1D search along conjugate
epipolar lines.

42
ide adapted from Steve Seit; B. Leibe
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Epipolar Geometry: Terms

¢ Baseline
» Line joining the camera centers
* Epipole
» Point of intersection of baseline with the image plane
e Epipolar plane
» Plane containing baseline and world point
* Epipolar line
» Intersection of epipolar plane with the image plane

¢ Properties
» All epipolar lines intersect at the epipole.

» An epipolar plane intersects the left and right image planes in
epipolar lines.

44
ide credit: Marc Pollefe B. Leibe
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Stereo Correspondence Constraints
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ide credit: Kristen Grauman 8. Leibe

Epipolar Geometry

* Baseline

* Epipoles « Epipolar Lines

Computer Vision WS 16/17

43

ide adanted from Marc Pollefe

Epipolar Constraint

* Potential matches for p have to lie on the corresponding
epipolar line ['.

« Potential matches for p’ have to lie on the corresponding
epipolar line I.
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http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

45

ide credit: Marc Pollefe B. Leibe



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
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Example: Converging Cameras

As position of 3D
e point varies,
epipolar lines
S “rotate” about

/ the baseline
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Slide credit: Kristen Grauman B. Leibe ide credit: Kristen Grauman 8. Leibe Figure from Hartley & Zisserman
IVERSITY| UNIVERSITY]

Example: Motion Parallel With Image B ane Example: Forward Motion

¢ Epipole has same coordinates in both images.

¢ Points move along lines radiating from e: “Focus of
expansion”

Computer Vision WS 16/17
Computer Vision WS 16/17

48

ide credit: Kristen Grauman B. Leibe Eigure from Hartlev & Zissermar)
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ide credit: Kristen Grauman B Lefbe Figure from Hartley & Zisserman
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Let’s Formalize This! Stereo Geometry With Calibrated Cameras
« For a given stereo rig, how do we express the epipolar X world point
constraints algebraically?
¢ For this, we will need some linear algebra. " x < o/
'zc Z; ) . X;‘
o, TS Iof

e But don’t worry! We’ll go through it step by step... Xo - - v!

Y, ¢

R

e If the rig is calibrated, we know:
» How to rotate and translate camera reference frame 1 to get to
camera reference frame 2.
- Rotation: 3 x 3 matrix; translation: 3 vector.

ide credit: Kristen Grauman . Steve Seit: B. Leibe
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Rotation Matrix 3D Rigid Transformation
1 0 0 |  Express 3D rotation as
R,(a)= |0 cosa —sina series of rotations
|0 sina cosa | around coordinate axes X’ i1 T2 riz| | X T
by angles «, 3, vy Y'| = |rax 1o res| |Y| + |Ty
[ cos@ 0 sinfg] A T3l T32 T33 Z T,
— 0 1 (LR ETS
5 R, (5) e Overall rotation is S
3 sin 0 cosf 3
W - - product of these o
= _ _ elementary rotations: =
S cosy —siny 0 2 X = RX+T
@ R.(7)= [siny cosy 0 =
s 0 0 1 2
= B - g
3 o 3
slide credit: Kristen Grauman B. Leibe ide credit: Kristen Grauman 8. Leibe
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Stereo Geometry With Calibrated Cameras Excursion: Cross Product

X world point

x] N
= | 1 p - N R
P ;fl // AN - a-¢ =10
< ~ axb=c -
\ b-& =0
\
P //!"”t ¥ e
e TANY .
& % _ Zo N X
g O, T O =l « Vector cross product takes two vectors and returns a
- . : .
o | X - - v @ third vector that’s perpendicular to both inputs.
2 -~ - ° 2
- Ye -s- =
2 R =
3 . o . . .
= * Camera-centered coordinate systems are related by = * So here, cis perpendicular to both a and b, which
% known rotation R and translation T % means the dot product is 0.
£ X =RX+T £
o 54 o
ide credit: Kristen Grauman B. Lethe ide credit: Kristen Grauman B. Leibe
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From Geometry to Algebra Matrix Form of Cross Product
X world point
L= Loa-d 0
axb =cC -
b-& =0
x' %
- P .
2 Z >_O Xg - “skew symmetric” matrix
E ' ) X 7 E
2 Ye ¢ = - -
z xi=RX{T] X (TxX')=X'-(TxRX) g @xb=lax]b
H g =X E
| TxX =TxRX+TxT 0=X'-(TxRX) 2
8 Normal Yo the plane 8
=TxRX wwmﬁ ide credit: Kristen Grauman
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From Geometry to Algebra

X world point

Essential Matri

2
.y
P \1

I=ETp

ide credit: Kristen Grauman
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27Ny Ty
OC Ll OL
. T '
' v
Yo
X':F@ X,’(TXX,)ZX,‘(TXRX)
i XFXHTXT [0=X"(TxRx)|
=TxRX ) . 58
RWTH//CHEN

x and Epipolar Lines

Epipolar constraint: if we observe
point p in one image, then its
position p’ in second image must
satisfy this equation.

I'= EP is the coordinate vector represen-
ting the epipolar line for point p

‘ (i.e., the line is given
by: I''x=0)

is the coordinate vector representing
the epipolar line for point p’

B. Leibe
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Essential Matrix Example: Parallel Cameras

For the parallel cameras,
image of any point must
lie on same horizontal

line in each image plane.

RWTHAACHE

« This holds for the rays p and p’ that
are parallel to the camera-centered
position vectors X and X’, so we have:

Computer Vision WS 16/17

ide credit: Kristen Grauman 8. Leibe

RWTH/ACHEN
Essential Matrix
X' (Tx RX) =0 X worid point
X'.( X RX):O s .
ot E= DR T
XTEX =0 :

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

Essential Matrix: Properties

given rotation and translation.
¢ Assuming intrinsic parameters are know

E=TR

Computer Vision WS 16/17

ide credit: Kristen Grauman B. Leibe

* Relates image of corresponding points in both cameras,

RWTHACHE

n

61

R=1
T=[-d,0,0]"

line in each image plane.

Essential Matrix Example: Parallel Cameras

E=[T{R :E ’ gj
-d

T 0 00 0[]
g PTEp [« fI|0 0 d]|y| =0
5 0—doj|f]
B
E 0
& o -
; For the parallel cameras, = ['1 y f- d{ =
=| image of any point must 4y
E lie on same horizontal
o

RWTHACHE

D

63

Slide credit; Kristen

10
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More General Case

Image I(xz,y)

Disparity map D(z,y)

(@.y) = (z+D(z.y)y)

What about when cameras’ optical axes are not parallel?

64
Slide credit: Kristen Grauman B. Leibe

Stereo Image Rectification: Example

66
Source: Alvosha Efros
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Stereo Reconstruction

¢ Main Steps
» Calibrate cameras
~ Rectify images
» Compute disparity
» Estimate depth

ide credit: Kriten Grauman B. Leibe
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Stereo Image Rectification

¢ In practice, it is
convenient if image
scanlines are the
epipolar lines.

¢ Algorithm
» Reproject image planes onto a common
plane parallel to the line between optical
centers
~ Pixel motion is horizontal after this transformation
» Two homographies (3 x 3 transforms), one for each
input image reprojection

65
ide adapted from 1i Zhang jies for Stereo Vision, CVPR'99)

C. 1000 & Z, Zhane, Comouting Rectifving

)
Topics of This Lecture
o Stereopsis & 3D Reconstruction
» Correspondence search
» Additional correspondence constraints
» Possible sources of error
~ Applications
67
B. Leibe
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Correspondence Problem

Multiple match
hypotheses satisfy

® Hypothesis 1

A . o Hypothesis 2 eplpola.r cqnstralnt,
Py X uypotress 3 but which is
: correct?
b - . .-

0¥  Leftimage

69

Eigure fiom Gee & Cinglla 1999

ide credit: Kristen Grauman 5. Leibe
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
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Dense Correspondence Search

7T HON. ABRAIIAM LINCOLN, President of United States.

¢ For each pixel in the first image
» Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

¢ This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana lazebnik, 1 Zhang

Example: Window Search

¢ Data from University of Tsukuba

Window-based matching
(best window size)

Ground truth

ide credit: Kristen Grauman B. Leibe
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Alternative: Sparse Correspondence Search
¥, President of United mm.’ﬁ

T HON. ABRATIAM 1

« |dea: Restrict search to sparse set of detected features

* Rather than pixel values (or lists of pixel values) use
feature descriptor and an associated feature distance

o Still narrow search further by epipolar geometry

What would make good features?
B. Leibe

ide credit: Kristen Grauman

Example: Window Search

¢ Data from University of Tsukuba

Effect of Window Size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Computer Vision WS 16/17

ide credit: Kristen Grauman LA

Eigures from 1i Zhang|
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ide credit: Kristen Grauman 8. Leibe
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Dense vs. Sparse

e Sparse
» Efficiency
> Can have more reliable feature matches, less
sensitive to illumination than raw pixels
» But...
- Have to know enough to pick good features
- Sparse information

- Breaks down in textureless regions anyway
- Raw pixel distances can be brittle
- Not good with very different viewpoints

ide credit: Kristen Grauman

= * Dense

© .

b » Simple process

E » More depth estimates, can be useful for surface
= reconstruction

> » But...
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Difficulties in Similarity Constraint

Occlusions
Slide credit: Kristen Grauman B. Leibe
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Application: View Interpolation

Right Image

ide credit. Svetlana lazebnik
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Application: View Interpolation

Disparity

ide credit. Svetlana lazebnik
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Possible Sources of Error?

e Low-contrast / textureless image regions
¢ Occlusions
¢ Camera calibration errors

¢ Violations of brightness constancy (e.g., specular
reflections)

¢ Large motions

78

ide credit: Kristen Grauman 8. Leibe
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L. . . UNIVERSITY
Application: View Interpolation

Left Image

ide credit: Svetlana Lazebnik

RWTH CHET
L . . UNIVERSITY
Application: View Interpolation

ide credit:. Svetlana lazebnik
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Application: Free-Viewpoint Video Summary: Stereo Reconstruction
¢ Main Steps
» Calibrate cameras
» Rectify images 3 ;
. Compute disparity e Rt
» Estimate depth

¢ So far, we have only considered m a
calibrated cameras...

Let Right

¢ Next lecture
» Uncalibrated cameras
» Camera parameters
» Revisiting epipolar geometry
» Robust fitting

Computer Vision WS 16/17
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http://www.liberovision.com
B. Leibe

84

ide credit: Kristen Grauman 8. Leibe

RWTH/ACHEN
References and Further Reading

* Background information on epipolar geometry and
stereopsis can be found in Chapters 10.1-10.2 and
11.1-11.3 of

D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

¢ More detailed information (if you really
want to implement 3D reconstruction
algorithms) can be found in Chapters 9
and 10 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004
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